

ECE 477 Digital Systems Senior Design Project Spring 2004

Homework 10: Software Design Considerations, Narrative, and Documentation

Due: Thursday, April 8, at Classtime

Team Code Name: Chateau de Nemo Group No. 1
Team Member Completing This Homework: Jason LitJeh Lim

1. Introduction

A microcontroller is used to monitor a household aquarium and maintain

its living conditions. This paper will discuss the software needs and

considerations taken note of in the operation of such a device.

Our smart aquarium device, otherwise known as “Chateau de Nemo”,

features internet accessible capabilities for the frequent traveler and thus would

require software support for user communication and interaction with the device

over the internet. The software would have to support a user interface for

modification of aquarium settings and reporting of current aquarium conditions.

At the same time our software must also support local setting modifications via a

LCD display/keypad manufactured and marketed by Rabbit Semiconductors.

This LCD display/keypad module will also serve as the software’s “window to the

world”, where the software can communicate messages to users.

One of our team objectives is to maintain the aquarium so that the fishes

don’t die, and thus it is pertinent that the user will be informed of any drastic

changes in aquarium conditions that could be fatal to its inhabitants. Up to date

information allows for the user to take prompt action (i.e. calling upon a neighbor

to do something if he/she isn’t able to at the moment) and prevent fatal casualties.

This responsibility of notifying the user of any irregular conditions will be held by

the software for this device. Locally the software will have to light up an LED on

the LCD display/keypad module to alert local users and when a user establishes

connection via the internet, he/she will also be informed by way of messages or

notifications. As this information is time sensitive material, a time stamp should

come with any messages or notifications.

 - 1 -

ECE 477 Digital Systems Senior Design Project Spring 2004

2. Software Design Considerations

2.1 Memory Usage

 Our main memory usage is limited to three different blocks. The main

program code, current conditions, and user defined desired conditions.

FLASH: Flash memory on the Rabbit Core Module (RCM) 3000 will hold our

main program code and this is where the software program will run off. This is a

good place to hold the main program code as flash memory can only be

programmed a specific number of times before its reliability to retain data drops;

we only program the flash a few times during the manufacturing process and

during the prototyping process a few dozen times.

SRAM: SRAM onboard the RCM 3000 will store more long term variables like

current conditions and user defined desired conditions. As these variables are

often read and written, it is a good idea to put them in SRAM to prevent loss of

data from excessive reading/writing.

 In the main program code, current conditions and user defined desired

conditions are declared as global variables so that they are accessible

throughout the entire program as they need to be modified often.

 Making use of Rabbit Semiconductor’s Dynamic C program, we will allow

for exact memory mappings to be handled by this program. As the Dynamic C

program was design specifically for Rabbit microcontrollers, it will be able to do a

much better job of memory mapping than if we were to attempt it by integrating

assembly code into our C code.

2.2 Startup Code/Initialization Routine

 This is an important section of our software program. Chateau de Nemo is

heavily dependent on its I/O pins to communicate with its many peripherals to

 - 2 -

ECE 477 Digital Systems Senior Design Project Spring 2004

keep track of aquarium conditions and modify them as necessary. It is of great

import that the I/O pins are setup as input or output correctly on reset and if they

are output pins, output the right signal. For example, it would be disastrous to

have the pin controlling the heating element reset asserted, effectively cooking

the fishes slowly.

 On reset, our I/O pins have been setup to be at the conditions as shown in

Table 2.1 on the following page.

 - 3 -

ECE 477 Digital Systems Senior Design Project Spring 2004

Port I/O I/O State Chateau de Nemo Use
PB0 Output High LCD Module LED 1 (Power)
PB2 Output Low LCD Module LED 2
PB3 Output Low LCD Module LED 3
PB4 Output Low LCD Module LED 4
PB5 Output Low LCD Module LED 5
PB6 Output Low LCD Module LED 6
PB7 Output Low LCD Module LED 7

PC0 Output Low Light
PC1 Input N/A Water Level Low
PC2 Output Low Heater
PC3 Input N/A Water Level High
PC4 Output Low Auto Feeder
PC5 Input N/A Water Level Critical
PC7 Input N/A Temp Sensor

PE0 Output Low LCD Module DB0B
PE1 Output Low LCD Module DB1B
PE2 Output Low LCD Module DB2B
PE3 Output Low LCD Module DB3B
PE4 Output Low LCD Module DB4B
PE5 Output Low LCD Module DB5B
PE6 Output Low LCD Module DB6B
PE7 Output Low LCD Module DB7B

PF0 Output Low Water Pump In
PF1 Output Low Water Pump Out
PF4 Input N/A LCD Module A0B
PF5 Input N/A LCD Module A1B
PF6 Input N/A LCD Module A2B
PF7 Input N/A LCD Module A3B

PG2 Output Low A2D SCLK
PG3 Input N/A A2D Dout
PG5 Output High LCD Module Reset
PG6 Output Low LCD Module PE7

Table 2.1 I/O Pin reset use/status

 - 4 -

ECE 477 Digital Systems Senior Design Project Spring 2004

Using the initialization routine found in the RCM3000.lib library provided

with Rabbit Semiconductor’s Dynamic C program, the routine has been modified

to cater to our own needs; setting up our microcontroller to the status as shown

in Table 2.1.

During startup and initialization, the RTC is updated with the current time

as well. This is done via a query to the user for the current local time.

2.3 Organization of Embedded Code
 Our software program is mostly polled loop driven, where it runs in an

infinite loop after setup. Conditions are constantly being tested, some every cycle,

some every second. Upon meeting certain conditions/criteria, certain pins would

be asserted to handle the event. At the same time, the TCP socket is listening

during every loop for a client program to request a connection to the server on

the microcontroller. Should a connection be established, program control would

be handed to a function that interacts with the client to transfer information.

3. Software Design Narrative
 Our software is designed to consist of 4 main modules, the main module,

the server module, the client module, and the local setup module. The main

module is generally where the program will always be running at most times. The

server and client modules work hand in hand with each other in communicating

via the internet; allowing the user to control his/her aquarium from a distance.

The local setup module controls the LCD display/keypad module to setup

aquarium conditions locally.

3.1 Main Module:
 The main module of our software program runs in an infinite loop, and

handles does different things as certain conditions are met. It can be envisioned

as a state machine, passing to different states given different inputs. The

program checks input signals on every iteration of the loop for changes and the

need to take action. Conditions checked are as follows:

 - 5 -

ECE 477 Digital Systems Senior Design Project Spring 2004

 pH Sensors – should aquarium pH exceed user defined desired levels by

more than 1, both water pumps would be activated to cycle fresh water

into the aquarium, effectively lowering ammonium levels and bringing the

water in the aquarium back to comfortable conditions for the fishes.

 Temperature Sensors – if the surrounding temperature brings the water to

be 5 degrees lower than user desired levels, the water heater should be

activated to bring the water temperate back up to desired temperatures.

The water heater should heat the water to no more than 5 degrees more

than desired levels, and will be shut off when this level is reached.

 Water Level Sensors – the optimum level for water to be at is exactly at

the middle sensor. However this is often impossible to maintain so our

bounds are the top and bottom sensors. When water levels drop below the

low sensor, the pump in is activated and run for 10 seconds or so. This is

sufficient time to bring the water back to safe levels. It would be the same

for the situation when water levels rise above the high critical sensor,

except the pump out is activated instead. Water level sensor functions

supercede the pH sensors such that these will be asserted first before pH

stabilizing functions. They also have the capability of shutting off pH

stabilizing functions for the duration of the water balancing.

 Light and Feeder Timings – the main driving force behind the infinite loop

is the real time clock (RTC) and each loop iteration will check for matching

times with light on, light off, or feeding times. As the names imply, when

light on occurs, the lighting pin is asserted and when light off occurs, the

lighting pin is driven low. Feeding times assert the pin which drives a

motor; this motor shakes fish feed into the aquarium, not unlike a

saltshaker, from above.

The main module also checks for a TCP/IP connection every loop and

executes the server module when a connection from the client is detected. At the

same time, it executes the local setup module if input is received from the LCD

display/keypad module.

 - 6 -

ECE 477 Digital Systems Senior Design Project Spring 2004

3.2 Server Module:
 The server module is the program segment that listens for a client to try to

establish a connection with our device. It initializes the microcontroller TCP/IP

settings to listen for a connection and when such a connection is established,

waits for commands from the client. The server has three major functions;

1. Receiving new user defined desired conditions from the client and

modifying memory on the microcontroller.

2. Sending current aquarium conditions to client.

3. Sending current user defined desired conditions to the client.

The server, upon receiving a selection will execute accordingly. When

receiving data from the client to modify memory on the microcontroller, it writes

directly to the global variables where settings are defined.

When a request for information is received from the client, two strings are

written, in a predefined format, to temp variables and one string is sent as a

packet to the client module depending on which set of information is desired by

the client. The first string contains current aquarium conditions and the second

contains current user desired conditions.

3.3 Client Module:
 The client module serves as a user interface program for the user to

access the device. It works over telnet (port 23) and on connection presents a

menu to the user. The user is given the option to:

1. View current aquarium settings.

2. Modify desired aquarium settings.

3. View desired aquarium settings.

4. Quit connection.

As the client module works hand in hand with the server module, it works

almost exactly opposite of the server. It sends out commands to the server to

 - 7 -

ECE 477 Digital Systems Senior Design Project Spring 2004

send or receive information. When modifying aquarium settings, the user is

presented with another set of menus on which option to modify. As mentioned in

the server module analysis, the team has predefined methods for identifying data

sent to and fro the server; each data item starts with a character from ‘A’ through

‘H’, which identifies which condition it is. After selection and input of data from the

user, this data is sent and parsed by the server to modify the correct settings.

When sending a request for information to the server, the client readies

itself to receive a packet of information. It then parses this packet of data

received and presents the information to the user.

3.4 Local Setup Module:
 This module executes when input is detected from the LCD

display/keypad module. On execution, the module acts very much like the client

module. It presents the user with a menu for modification of aquarium settings

and allows the user to view current aquarium conditions or current desired

aquarium conditions. It communicates with the LCD display/keypad module via

the auxiliary I/O port and as this is the only time the LCD display/keypad module

is used, it controls all inputs and outputs to and from the LCD display/keypad

module.

 - 8 -

ECE 477 Digital Systems Senior Design Project Spring 2004

4. Software Documentation

4.1 Program Flowcharts

RESET

INITIALIZATION
ROUTINE

CHECK CONDITIONS
Any Modifications?

SERVER
Any Client Connection?

LOCAL SETUP
Any keypad input?

NO

NO

SERVER MODULE YES
Interact with user via

client module.

LOCAL SETUP
MODULE
Interact with user via
LCD display/keypad

NO YES

YES Assert pins as
required to handle
condition

 - 9 -

ECE 477 Digital Systems Senior Design Project Spring 2004

4.2 Functions Listing

Main Module

void print_time(unsigned long) Prints current time given seconds
void level_check() Water level check, water in aquarium is broken

into a few regions from -2 to 4:
 | 4
critical sensor ----- 3
 | 2
good sensor ----- 1
 | 0
low sensor ----- -1
 | -2

float read_pH() Reads pH readings from the pH sensor LEDs.
Data comes in serial.

float read_temp() Reads the temperature from the temperature
sensor. Data comes in serial.

void time_change() Queries the user for present local time and
updates RTC

void brdInit() Board I/O pin initialization routine
void ledOut(int led, int value) LED ON/OFF control on LCD display/keypad

module
Server Module
int receive_packet() Receives information from client module,

parses it and stores it in global variables
int send_packet() Sends requested information to client module
void server() Server initialization and port listener
Client Module
int main(int argc, char **argv) Main program. Sets up connection with server

module and sends commands to server
depending on selection

void Read_Port(int sockfd) Receives current aquarium conditions from
server and prints to screen

void Read_PortD(int sockfd) Receives desired aquarium conditions from
server and prints to screen

void Write_Port(int sockfd,
char IPAddress[], int
ServerPort)

UI for desired aquarium conditions modification.
Sends selected condition to be modified and
value to modify it to

Local Setup Module
void receive_input() Receives LCD display/keypad input and

modifies global variables
void print_screen(char* string) Prints input string to LCD display

 - 10 -

ECE 477 Digital Systems Senior Design Project Spring 2004

4.3 References
 A few of our functions were adapted off of code from Rabbit

Semiconductor’s sample demo code that is packaged with their Dynamic C

program.

Main Module

• Uses modified version of brdInit() function found in RCM3000.lib

Server Module

• Echo_Server.c

http://www.rabbitsemiconductor.com/documentation/SamplesRoadmap/ro

admap.htm#1006382

Local Setup Module

• KEYPADTOLED.c

http://www.rabbitsemiconductor.com/documentation/SamplesRoadmap/ro

admap.htm#1006405

 - 11 -

