Midterm Exam Study Guide Tuesday, March 3, 10:30-11:30 am, in MSEE 239

Material covered:

- Chapters 1, 4, 5, and 6 of McCarthy text (3rd Ed)
- Lecture Notes: Foundations, Summation, Enclosures, Perception, and Evaluation
- Research Paper (hard copy only): "Introduction to Transmission Line Loudspeaker Enclosure Design" (D. G. Meyer)
- JAES Paper: "Loudspeakers on Damped Pipes" (G. L. Augspurger)
- U.S. Patents 2,031,500 and 3,523,589
- Written Homework Assignments 1-4 (be sure to review posted solutions)

Scientific calculator required (TI-30X IIS is "officially approved" for engineering exams)

Chapter 1 – Foundations

- acoustic decibel
- good sound: context, complications, and quality factors
- acoustic environment indoors and outdoors
- relationship between wavelength and frequency
- effect of temperature on speed of sound
- how sound propagates
- environmental effects on speed of sound
- acoustic waveform: compression and rarefaction
- frequency and phase response
- waveform combining
- crest factor and sound power levels
- loudspeaker sensitivity, calculation of electrical power required
- inverse square law
- loudspeaker beamwidth
- pistonic approximation of cone loudspeaker radiation
- change in directivity pattern and sidelobes as a function of frequency
- maximum frequency a given size driver should radiate

Chapter 4 – Summation

- stable summation criteria
- adding/subtracting dB levels (formulas will be given be able to apply them)
- phase wheel
- response ripple
- summation zones (know McCarthy's "icons")
 - o coupling
 - o cancellation
 - o combing
 - o combining
 - o isolation

- flanging vs. phasing
- triangle type and affect at summation point
- divider/crossover terminology
- acoustic crossover
- spectral vs. spatial dividers
- crossover class (overlap, unity, gap)
- crossover slope (1st / 2nd / 3rd order)
- spectral vs. spatial crossovers (differences and analogous functions)
- spatial shapes vs. speaker orders
- speaker array types (know the crossover class progressions)
 - o coupled vs. uncoupled
 - o line source
 - o point source
 - o point destination
- speaker/room summation

Loudspeaker Enclosures

- how loudspeakers work
- open back loudspeaker cabinet analysis
- damped pipe analysis
- loudspeaker small signal parameters (e.g., Fs, Vas, Q)
- sonic effect of loudspeaker cable (damping)
- loudness level and power requirement
- baffles
 - o enclosure-related parameters (e.g., EBP, Fc, Vc, Vb, Q)
 - o infinite baffle
 - o sealed box
 - electromechanical equivalent
 - response shape as a function of Q_{TC}
 - enclosure volume and efficiency
 - box filling or damping
 - design example
 - golden ratio box dimension ratios
 - o vented box
 - bass reflex
 - design example
 - passive radiator
 - compound/band-pass
 - rear-loaded horn
 - labyrinth/transmission line/damped pipe
 - waveguides
 - Bose Wave Radio case study/comparison
 - AWR1
 - WRII

Chapter 5 – Reception

- loudness perception
- crest factor
- equal loudness contours
- localization
 - o vertical HRTF
 - o horizontal ITD and ILD
- panoramic perception
- level vs. delay panning
- precedence (Haas) effect
- tonal, spatial, and echo perception
- stereo scaling for different size/shape venues
- panoramic angle
- myth of "stereo everywhere"

Chapter 6 – Evaluation

- Features of natural emission/transmission/reception
- Features of amplified emission/transmission/reception
- Subjective room parameters (quiz each other over these)
 - o intimacy
 - o liveness
 - o warmth
 - o definition/clarity
 - o brilliance
 - o diffusion
 - o balance
 - o blend
 - o ensemble
 - o immediacy of response
 - o texture
 - o dynamic range
 - o tonal quality
 - o uniformity