1. **Coupon Collector**

Each brand of candy bar has one coupon in it. There are \(n \) different coupons in total; getting at least one coupon of each type entitles you to a prize. Each candy bar you eat can have any one of the coupons in it, with all being equally likely. Let \(X \) be the (random) number of candy bars you eat before you have all coupons. What are the mean and variance of \(X \)?

Solution

First, let \(X_1 \) be the number of candy bars which must be eaten to obtain a unique coupon. We will have that a unique coupon is obtained when the first candy bar is eaten, so that \(X_1 = 1 \), always. Now let \(X_2 \) be the number of candy bars after the first which must be eaten before getting another unique coupon. We have \(X_2 \) is a geometric random variable with parameter \(\frac{n-1}{n} \), since there are \(n - 1 \) unique coupons left to be obtain out of the \(n \) possible coupons. We have, then, that \(E[X_2] = \frac{n}{n-1} \). Now similarly, let \(X_3 \) be the number of candy bars eaten after obtaining the second unique coupon before finding a third unique coupon. \(X_3 \) is geometric with parameter \(\frac{n-2}{n} \Rightarrow E[X_3] = \frac{n}{n-2} \).

In general, \(X_i \), or the number of candy bars eaten after obtaining the \((i - 1)\)-th unique coupon before obtaining the \(i\)-th unique coupon, is geometric with parameter \(\frac{n-i+1}{n} \), so that \(E[X_i] = \frac{n}{n-i+1} \).
We have that
\[X = \sum_{i=1}^{n} X_i \Rightarrow E[X] = \sum_{i=1}^{n} E[X_i] \]
\[= \sum_{i=1}^{n} \frac{n}{n - i + 1} \]
\[= n \sum_{i=1}^{n} \frac{1}{i} \]

Since \(X_i \) and \(X_j \) are independent for \(i \neq j \), we have that
\[Var[X] = Var \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} Var[X_i]. \]

Since
\[Var[X_i] = \frac{1 - \frac{n-i+1}{n}}{\left(\frac{n-i+1}{n} \right)^2} = \frac{n(i-1)}{(n - i + 1)^2}, \]
then
\[Var[X] = \sum_{i=1}^{n} \frac{n(i-1)}{(n - i + 1)^2}. \]

2. Minimum of Exponentials

(a) \(X_1 \) is an exponential random variable with parameter \(\lambda_1 \), and \(X_2 \) with \(\lambda_2 \). Let \(Y = \min(X_1, X_2) \). What is the PDF of \(Y \)? Is \(Y \) one of the common random variables?

(b) Use induction to show that the minimum of \(n \) exponential random variables with parameter 1 is an exponential random variable with parameter \(n \).

Solution

(a) We have that the CDF of \(Y \) follows
\[F_Y(y) = P(Y \leq y) = P(\min(X_1, X_2) \leq y) = 1 - P(\min(X_1, X_2) > y) \]
\[= 1 - P(X_1 > y \cap X_2 > y) \]
\[= 1 - P(X_1 > y)P(X_2 > y) \]
We have that
\[P(X_1 > y) = \int_y^\infty f_{X_1}(x)dx = \int_y^\infty \lambda_1 e^{-\lambda_1 x}dx = e^{-\lambda_1 y}. \]

Similarly, \(P(X_2 > y) = e^{-\lambda_2 y} \), so that
\[F_Y(y) = 1 - P(X_1 > y)P(X_2 > y) = 1 - e^{-(\lambda_1 + \lambda_2)y} \]
\[\Rightarrow f_Y(y) = \frac{d}{dy}F_Y(y) = (\lambda_1 + \lambda_2)e^{-(\lambda_1 + \lambda_2)y}. \]

Thus, \(Y \) is an exponential random variable with parameter \(\lambda = \lambda_1 + \lambda_2 \).

(b) We have from part (a) that if \(X_1 \) and \(X_2 \) are iid (independent and identically-distributed) exponential random variables with parameter \(\lambda = 1 \), that \(Z_2 \triangleq \min(X_1, X_2) \) is distributed as an exponential random variable with parameter \(\lambda_2 = 1 + 1 = 2 \). This proves the case for \(n = 2 \).

Now for the inductive case, assume that \(Z_{n-1} \triangleq \min(X_1, X_2, \ldots, X_{n-1}) \) is an exponential random variable with parameter \(\lambda_{n-1} = n - 1 \), and \(X_1, X_2, \ldots, X_{n-1} \) are exponential random variables with parameter \(\lambda = 1 \). Let \(X_n \) be an additional exponential random variable with parameter \(\lambda = 1 \). We wish to find the distribution of \(Z_n \triangleq \min(X_1, X_2, \ldots, X_{n-1}, X_n) \). We find, however, that
\[Z_n = \min(X_1, X_2, \ldots, X_{n-1}, X_n) = \min(\min(X_1, X_2, \ldots, X_{n-1}), X_n) = \min(Z_{n-1}, X_n). \]

Since \(Z_{n-1} \) is exponential with parameter \(\lambda_{n-1} = n - 1 \), and \(X_n \) is exponential with parameter \(\lambda = 1 \), we have from part (a) that \(Z_n \) is exponential with parameter \(\lambda_{n-1} + \lambda = n \). This proves the inductive case, and completes the proof.

3. Random Chord

A circle has radius \(r \). Any chord of the circle is at distance at most \(r \) from the center. A random chord is drawn by first choosing its distance \(D \) from the center uniformly from the interval \([0, r]\), and then choosing any chord at that distance from the center. Find the PDF of \(L \), the length of the chord. Draw a figure to illustrate.
Solution Without loss of generality, D is a random point in the interval $[0, r]$ on the horizontal axis, and the chord is parallel to the vertical axis as shown in the diagram.

Note that L takes on values in $[0, 2r]$ and hence $F_L(l) = 0$ for $l < 0$, and $F_L(l) = 1$ for $l > 2r$. Furthermore, $D^2 + (L/2)^2 = r^2$, and hence for any $l \in [0, 2r],
\[
F_L(l) = P(L \leq l) = P(2\sqrt{r^2 - D^2} \leq l) = P(D^2 \geq r^2 - l^2/4) = P(D \geq \sqrt{r^2 - l^2/4}) = \frac{1}{r}(r - \sqrt{r^2 - l^2/4})
\]
since D is uniformly distributed on $[0, r]$. It follows that
\[
f_L(l) = \frac{d}{dl}F_L(l) = \begin{cases} \frac{l}{2r\sqrt{2r^2-l^2}}, & 0 \leq l \leq 2r \\ 0, & \text{else} \end{cases}
\]

4. Fire Station

(a) A fire station is to be located at a point a along a road of length A, $0 < A < \infty$. If fires will occur at points uniformly chosen on $(0, A)$, where should the station be located so as to minimize the expected distance from the fire? That is, choose a so as to minimize the quantity $E[|X-a|]$ when X is uniformly distributed over $(0, A)$.
(b) Now suppose that the road is of infinite length—stretching from point 0 outward to \(\infty \). If the distance of a fire from point 0 is exponentially distributed with rate \(\lambda \), where should the fire station now be located? That is, we want to minimize \(E[|X - a|] \) with respect to \(a \) when \(X \) is now an exponential random variable with parameter \(\lambda \).

Solution

(a) We have that \(f_X(x) = 1/A, \) for \(x \in [0, A] \), and 0 otherwise. Thus

\[
E[|X - a|] = \int_0^a (a-x)\frac{1}{A} dx + \int_a^A (x-a)\frac{1}{A} dx \\
= \frac{1}{A} \left(\frac{A^2}{2} - aA + a^2 \right) \\
= \frac{1}{A} \left(\left(a - \frac{A}{2} \right)^2 + \frac{A^2}{4} \right).
\]

Minimizing in terms of \(a \), we will have that \(a - \frac{A}{2} = 0 \Rightarrow a = \frac{A}{2} \).

(b) We now have that \(f_X(x) = \lambda e^{-\lambda x}, \) for \(x \geq 0 \), so that

\[
E[|X - a|] = \int_0^a (a-x)\lambda e^{-\lambda x} dx + \int_a^A (x-a)\lambda e^{-\lambda x} dx \\
= a + \frac{1}{\lambda} 2e^{-a\lambda} + \frac{1}{\lambda}.
\]

To minimize in terms of \(a \), we compute

\[
\frac{d}{da} E[|X - a|] = 1 - 2e^{-a\lambda} = 0 \\
\Rightarrow a = \frac{\ln 2}{\lambda}.
\]

To check that this is a minimizer, we find that \(\frac{d^2}{da^2} E[|X - a|] = 2\lambda e^{-a\lambda} > 0 \) at \(a = \frac{\ln 2}{\lambda} \). Thus, we have found the minimizer.