
ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Huffman Coding Walkthrough
 Huffman coding is used to compress data.

◼ It is used by ZIP files, among many other things.

 The overall process is as follows:
1. Calculate the frequency of each character in the data.
2. Build a Huffman tree structure using the frequencies.
3. Build an encoding table using the Huffman tree.
4. Encode each character in the data.

 The output will normally contain ≥2 things:
◼ Coding table
◼ Encoded data

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

1. Calculate the frequencies

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

huffman fluffs many mums

Next step: Make a frequency table

Goal: Make a Huffman code table for compressing the following string.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

huffman fluffs many mums

char frequency

f 5

m 4

u 3

‿ 3

s 2

a 2

n 2

y 1

h 1

l 1

Frequency
table

Next step: Start creating the Huffman tree.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

2. Build the Huffman tree

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

h 1 • •

• •

l 1 • •

• •

y 1 • •

• •

a 2 • •

• •

n 2 • •

• •

s 2 • •

• •

‿3 • •

• •

u 3 • •

• •

m4 • •

• •

f 5 • •

• •

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

We start by creating a priority queue where each list node
refers to a tree node containing a single character.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

y 1 • •

• •

a 2 • •

• •

n 2 • •

• •

s 2 • •

• •

‿3 • •

• •

u 3 • •

• •

m4 • •

• •

f 5 • •

• •• •

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

░2 • •

h 1 • • l 1 • •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • •

• •

n 2 • •

• •

s 2 • •

• •

‿3 • •

• •

u 3 • •

• •

m4 • •

• •

f 5 • •

• •• •

░2 • •

h 1 • • l 1 • •

░3 • •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • •

• •

n 2 • •

• •

s 2 • •

• •

‿3 • •

• •

u 3 • •

• •

m4 • •

• •

f 5 • •

• •

░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • • n 2 • •

• •

s 2 • •

• •

‿3 • •

• •

u 3 • •

• •

m4 • •

• •

f 5 • •

• •

░2 • •

h 1 • • l 1 • •

░3 • • ░4 • • ░5 • •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • •

n 2 • • s 2 • •

• •

‿3 • •

• •

u 3 • •

• •

m4 • •

• •

f 5 • •

• •

░2 • •

h 1 • • l 1 • •

░3 • •

░4 • • ░5 • • ░6 • •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • • n 2 • • s 2 • •

• •

‿3 • • u 3 • •

• •

m4 • •

• •

░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

░5 • • ░6 • • ░8 • •

• •

f 5 • •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • • n 2 • • s 2 • • ‿3 • •

u 3 • •

• •

m4 • •

• •

░2 • •

h 1 • • l 1 • •

░3 • • ░4 • • ░5 • •

░6 • • ░8 • •

f 5 • •

░10• •

• •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • • n 2 • • s 2 • •

‿3 • • u 3 • • m4 • •░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

░5 • • ░6 • • ░8 • •f 5 • •

░10• •

• • • •

░14• •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

y 1 • • a 2 • • n 2 • • s 2 • •

‿3 • • u 3 • • m4 • •░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

░5 • • ░6 • • ░8 • •f 5 • •

░10• •

• •

░14• •

░24• •

Next step: Remove head of
priority queue,
leaving only the
tree.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Next step: Create the code table

y 1 • • a 2 • • n 2 • • s 2 • •

‿3 • • u 3 • • m4 • •░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

░5 • • ░6 • • ░8 • •f 5 • •

░10• • ░14• •

░24• •
10

1

1

111

1 1

10 0

000

0 0 0

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

3. Build the encoding table.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

char code # of bits frequency
f 00 2 5

m 110 3 4
‿ 011 3 3
u 100 3 3
s 1111 4 2
a 1011 4 2
n 1110 4 2
y 1010 4 1
h 0100 4 1
l 0101 4 1

Code table

Notice that no code
is a prefix of
another.

y 1 • • a 2 • • n 2 • • s 2 • •

‿3 • • u 3 • • m4 • •░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

░5 • • ░6 • • ░8 • •f 5 • •

░10• • ░14• •

░24• •
10

1

1

111

1 1

10 0

000

0 0 0

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

char code # of bits frequency
f 00 2 5

m 110 3 4
‿ 011 3 3
u 100 3 3
s 1111 4 2
a 1011 4 2
n 1110 4 2
y 1010 4 1
h 0100 4 1
l 0101 4 1

Code table

y 1 • • a 2 • • n 2 • • s 2 • •

‿3 • • u 3 • • m4 • •░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

░5 • • ░6 • • ░8 • •f 5 • •

░10• • ░14• •

░24• •
10

1

1

111

1 1

10 0

000

0 0 0

More frequently
occurring characters
get shorter codes.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

4. Encode each character in the data.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Code table

huffman fluffs many mums
h 0100

u 100

f 00

f 00

m 110

a 1011

n 1110

‿ 011

f 00

l 0101

u 100

f 00

f 00

s 1111

‿ 011

m 110

a 1011

n 1110

y 1010

‿ 011

m 110

u 100

m 110

s 1111

0100 100 00 00 110
h u f f m

1011 1110 011 00 0101
a n ‿ f l

100 00 00 1111 011
110
u f f s ‿ m

1011 1110 1010 011
110
a n y ‿ m

100 110 1111

Encoded string

char code # of bits frequency
f 00 2 5

m 110 3 4
‿ 011 3 3
u 100 3 3
s 1111 4 2
a 1011 4 2
n 1110 4 2
y 1010 4 1
h 0100 4 1
l 0101 4 1

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Code table

huffman fluffs many mums

01001000 00011010
h u f f m a

11111001 10001011
n ‿ f l u

00000011 11011110
f f s ‿ m

10111110 10100111
a n y ‿ m

10100110 11110000
u m s

char code # of bits frequency
f 00 2 5

m 110 3 4
‿ 011 3 3
u 100 3 3
s 1111 4 2
a 1011 4 2
n 1110 4 2
y 1010 4 1
h 0100 4 1
l 0101 4 1

Encoded string
10 bytes

h 0100

u 100

f 00

f 00

m 110

a 1011

n 1110

‿ 011

f 00

l 0101

u 100

f 00

f 00

s 1111

‿ 011

m 110

a 1011

n 1110

y 1010

‿ 011

m 110

u 100

m 110

s 1111

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Input: 24 bytes
◼ 01101000 01110101 01100110 01100110 01101101
h u f f m
01100001 01101110 00100000 01100110 01101100
a n ‿ f l
01110101 01100110 01100110 01110011 00100000
u f f s ‿
01101101 01100001 01101110 01111001 00100000
m a n y ‿
01101101 01110101 01101101 01110011
m u m s

 Output: 10 bytes
◼ 01001000 00011010 11111001 10001011 00000011
11011110 10111110 10100111 10100110 11110000

 Compression ratio: 10 / 24 = 42%

