Objectives for Tue 10/3/2023

Recurrence relations
Master theorem

Recurrence relations

Recurrence relation is a mathematical function
that is defined in terms of itself, usually with
some initial conditions (like base cases)

Example: Fibonacci

-ib(n) = Fib(n - 1) + Fib(n - 2)
Fib(0) =0
Fib(1) =1

Divide and conquer problems

Binary search

Merge sort

Quicksort

Selection (using quicksort partition)

Closest pair of points in a set (on x-y plane)
Matrix multiplication - Strassen's algorithm
Fast Fourier Transform (FFT) - Cooley Tukey

O(...) is not a function, but...

If we say something like...
f(n) =3n+ O(1)

..what we really mean is...
f(n) =3n + g(n)

... where g(n) is O(1).

In this case, g(n) need not even be a constant.
Example: g(n) =min(|n]|,5) //g€]0, 5]

Binary search

Let T(n) = the time to search for an arbitrary
element in an array of size n.

T(n) is the average-case time to search for an
arbitrary element in an array of size n.

T(n) =T(n/2) + O(1)
T(0) = 0
T(1) =0

In the above equation, O(1) is shorthand for some function g(n) where
g(n) is O(1).

MaSter theorem (for algorithms)

SIGACT News 36 Fall 1980

A General Mothod for Solving Divide-and-Conquer Recurrences)

Jon Louis E!entley2
Dorothea Haken
James B. Saxe
Department of Computer Science
Carnegio-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

The approximate complexity of divide-and-conquer algorithms is often described
by recurrence relations of the form

T(n) = KT(n/c) + f(n) .

The only well-defined method currently used for solving such recurrences consists
of solution tables for fixed functions { and varying k and c. In this note we describe
a unifying method for solving these recurrences that is both general in applicability
and easy to apply. This method is appropriate both as a classroom technique and as
1 tool for practicing algorithm designers.

1. Introduction

The mathematical analysis of algorithms has proven to be an important subject of
both practical and theoretical interest. One school within this field, championed by
Professor D. E. Knuth of Stanford University, has concentrated on exact analyses. In
addition to providing practical tools (i.e., the algorithms analyzed), this research has

also produced much deep and beautiful mathematics. On the other hand,
annroximate analvses althniiah lese snhetantial mathematirallvy arn ctill Af ~rantinal

Divide-and-Conquer algorithms

Given an algorithm of this form:

procedure p(input x of size n):
if n < some constant k:
Solve x directly without recursion

else:
Create a subproblems of x, each having size n/b

Call procedure p recursively on each subproblem
Combine the results from the subproblems

Runtime is given by this recurrence relation:

T(n)=aT (%) + f(n)

a (constant) is the number of subproblems in the recursion
b (constant) is the factor by which the n is reduced in each recursive call
f(n) is the time to create the subproblems and combine their results

Credit: Wikipedia "Master theorem (analysis of algorithms)"

MaSter theo rem (for algorithms)

n
T(n) =aT [ﬂ + f(n)
f(n) is a function that is 0(n%).

a>0 // because we recurse at least once
b>1 // because we reduce input at each step
d=>0 // because <1 unit of work would make no sense

a, b, and d are constants.

O(nlogb a) ifd <logya
T(n){ 0(n® logn) ifd = log, a
0(n?)ifd > logy a

Cerit = lﬂgb 1 = ng(#SlIbprﬂblﬁmS)/ log{r{:lativ{: Sllbprﬂblem Siz-::) Credit: Wikipedia "Master theorem (analysis of algorithms)"

f(n) and d

f(n) is the time to do the work in the
procedure, excluding any recursive calls.

m splitting into subproblems
m combining results

m comparing values

m deciding which subproblem(s) to solve in the next recursive call(s)

f(n) is O(nd)
d is the exponent (above)
d=1 indicates the work is O(n)

m Ex: merge step of merge sort

m Ex: partition in quicksort or our selection algorithm

d=0 indicates the work is O(1)

m Ex: comparing search value with middle value in array in binary search

Tighter version...

Wikipedia has a tighter version, which gives
Big-Theta bounds and uses the k parameter.
C.rit = logy, a in the Wikipedia version.

We will stick with the simpler version on the
previous slide.

Case

Description

Work to
split'recombine
a problem is
dwarfed by
subproblems.

i.e. the
recursion tree is
leaf-heavy

Work to
split/recombine
a problem is
comparable to
subproblems.

Work to
splitrecombine
a problem
dominates
subproblems.

i.e. the
recursion tree is
root-heavy.

MaSter theorem (for algorithms)

Condition on f(n) in
relation to ¢t , i.e.
log;, a

When f(n) = O(n®)

where ¢ << €t

(upper-bounded by a
lesser exponent
polynomial)

When
f(n) = ©(n"s" log" n)
forak >0

(rangebound by the
critical-exponent
polynomial, times zero or
moare optional logs)

When f(n) = Q(n°)
where ¢ > Cit
(lower-bounded by a

greater-exponent
polynomial)

Master Theorem bound

... then T'(n) = © (nSit)
(The splitting term does not

appear; the recursive tree
structure dominates.)

... then
T(n) = © (n“t log"™ n)

(The bound is the splitting
term, where the log is
augmented by a single power.)

... this doesn't necessarily yield
anything. Furthermore, if

T
af (3) < kf(n) for
some constant k < 1 and
sufficiently large n (often
called the regularity

condition)

then the total is dominated by
the splitting term f(n):

T (n) = © (f(n))

Notational examples

Ifb = a? and f(n) = O(n27%), then T(n) = O(n'/?).

b = a® and f(n) = O(n'/?), then T'(n) = O(n'"? logn).

Ifb = a® and f(n) = O(n'/? logn), then
T(n) = O(n'/%log? n).

b = a® and f(n) = ﬂ(nl’m“) and the regularity condition
holds, then T'(n) = ©(f(n)).

Cenit = logy a = log(#subproblems)/ log(relative subproblem size) Ccredit: Wikipedia "Master theorem (analysis of algorithms)"

MaSter theorem (for algorithms)

A useful extension of Case 2 handles all values of k:[*]

Condition on f(n) in relation
to ceit, i.e. log, a

Case Master Theorem bound Notational examples

—.then T(n) = © (nit log"*! n)

(The bound is the splitting term, where the
log is augmented by a single power.)

fb = a® and f(n) = ©(n'/?/log"? n), then

When f(n) = ©(n‘ log* n)
T(n) = 0(n'2log"? n).

2a forany k > —1

..thenT(n) = © (n“* loglogn)
When f(n) = ©(n° log* n) (
fork =—1

fb = a? and f(n) = ©(n'/?/logn), then

The bound is the splitting term, where the 1/2
T(n) = ©(n"'"loglogn).

log reciprocal is replaced by an iterated log.)

2b

.thenT(n) = © (nit)
When f(n) = ©(n° log* n) (
forany k < —1

Ifb = a® and f(n) = ©(n'/?/log? n), then

The bound is the splitting term, where the 1/2
T(n) =0(n"").

log disappears.)

2c

Credit: Wikipedia "Master theorem (analysis of algorithms)"

MaSter theorem (for algorithms)

Application to common algorithms edit;

Algorithm Recurrence relationship Run time Comment
Binary search T(n) =T (g) +0(1) Dlioen) Eﬁﬁl]pply Master theorem case ¢ = log, a, wherea = 1,b=2,c =0,k =0
Binary tree traversal T(n) =2T (%) + O(1) O(n) Apply Master theorem case ¢ < log; a where a = 2,b = 2, ¢ = 0F!
Optimal sorted matri Apply the Akra—Bazzi th fi = d — t t
ptimal sorted matrix T(n) = 2T (E) 1 O(logn) | O(n) pply the Akra-Bazzi theorem forp = 1 and g(u) = log(u) to ge
search 2 O(2n — logn)
Merge sort T(n) =2T (%) + O(n) O(nlogn) | Apply Master theorem case ¢ = log;, @, where a = 2,b = 2,¢ = 1,k = 0

Credit: Wikipedia "Master theorem (analysis of algorithms)"

	Default Section
	Slide 1: Objectives for Tue 10/3/2023
	Slide 2: Recurrence relations
	Slide 3: Divide and conquer problems
	Slide 4: O(…) is not a function, but…
	Slide 5: Binary search
	Slide 6
	Slide 7: Divide-and-Conquer algorithms
	Slide 8: Master theorem (for algorithms)
	Slide 9: f(n) and d
	Slide 10: Tighter version…
	Slide 11: Master theorem (for algorithms)
	Slide 12: Master theorem (for algorithms)
	Slide 13: Master theorem (for algorithms)

