Objectives for Thu 9/21/2023

- Analysis of sorting algorithms
- Merge sort
 - Algorithm
 - Analysis
- Quick sort
 - Algorithm
 - Analysis
- Comparing Merge Sort and Quick Sort
- Coming soon: Heap Sort
- Divide and conquer algorithms

Merge Sort

ECE 36800 Data Structures, Fall 2023 C 2023 Andrew Jones, Cheng-Kok Koh, Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Algorithm – Merge Sort

- Divide the sequence¹ into two subsequences
- Merge-Sort each subsequence
- Merge the two sorted subsequences into one sorted sequence

¹ sequence could be an array, linked list, file, or other sequence of data.

merge(...)

- Merge sorted subarrays r[lidx..mid] and r[mid+1..ridx] in ascending order
- Assume auxiliary space tmp[0..n-1], where n is the number of elements in the array
- The function memcpy copies the contents at second parameter to the location at first parameter; the number of elements copied is specified by third parameter
 - Not exactly the function in string.h

merge (r[], lidx, mid, ridx): memcpy(&tmp[lidx], &r[lidx], mid-lidx+1); memcpy(&tmp[mid+1], &r[mid+1], ridx-mid); $i \leftarrow lidx; j \leftarrow mid+1;$ for $k \leftarrow \text{lidx to ridx}$ if (i > mid) $r[k] \leftarrow tmp[j++];$ else if (j > ridx) r[k] \leftarrow tmp[i++]; else if (tmp[j] < tmp[i])</pre> $r[k] \leftarrow tmp[j++];$ else r[k] \leftarrow tmp[i++];

mergesort(...)

```
mergesort (r[], lidx, ridx):
  if lidx \ge ridx
    return;
  // divide
  mid = (lidx+ridx)/2; // assume no overflow
  // conquer left subarray
  mergesort(r, lidx, mid);
  // conquer right subarray
  mergesort(r, mid+1, ridx);
  // merge subarrays
  merge(r, lidx, mid, ridx)
```

ECE 36800 Data Structures, Fall 2023 C 2023 Andrew Jones, Cheng-Kok Koh, Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed

Properties

- Time complexity
 - Worst case: O(n log n)
 - Best case: Ω(n log n)
 - Average case: O(n log n)

Space complexity: O(n)

Improvements

 By alternating the role of the output array and the auxiliary buffer (and proper initialization), we can avoid the memcpy operations in merge function

// store sorted left subarray in tmp using r as aux
mergesort(tmp, r, lidx, mid);
// store sorted right subarray in tmp using r as aux
mergesort(tmp, r, mid+1, ridx);
// merge sorted subarrays in tmp into r
merge(r, tmp, lidx, mid, ridx)

- In-place mergesort by Katajainen, Pasanen, and Tehuola, 1996
 - High overhead to be practical

Iterative version

- Bottom-up process
- Leaf nodes: Consider original array as n subarrays, each of size 1
- Scan through array performing n/2 times, merging of two 1element arrays to produce n/2 sorted subarrays, each of size 2
- Scan through array performing n/4 times, merging of two 2element arrays to produce n/4 sorted subarrays, each of size 4
- ...
- Perform merging of two n/2-element arrays to produce the final sorted array of n elements

Comparing sorting algorithms

Algorithms	Best	Average	Worst
Insertion	O(<i>n</i>)	O(<i>n</i> ²)	O(<i>n</i> ²)
Bubble	O(<i>n</i>)	O(<i>n</i> ²)	O(<i>n</i> ²)
Quick	O(<i>n</i> log n)	O(<i>n</i> log n)	O(<i>n</i> ²)
Simple selection	O(<i>n</i> ²)	O(<i>n</i> ²)	O(<i>n</i> ²)
Неар	O(<i>n</i>)	O(<i>n</i> log n)	O(<i>n</i> log n)
Merge	O(<i>n</i> log n)	O(<i>n</i> log n)	O(<i>n</i> log n)

ECE 36800 Data Structures, Fall 2023 C 2023 Andrew Jones, Cheng-Kok Koh, Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed

O(n²) vs. O(n log n)

- How can mergesort, quicksort, and heapsort achieve O(n log n) when insertion sort and bubble sort run at O(n²)?
 - Mergesort, quicksort, and heapsort move elements far distances, correcting multiple inversions (incorrect ordering) at a time
 - Insertion and bubble sort correct one inversion at a time
- Why is quicksort worst-case O(n²) while mergesort has no such problem?
 - The choice of pivot determines size of partitions, whereas mergesort cuts array in half every iteration
 - Simple selection sort uses the worst pivot in every iteration
- Is O(n log n) the best we can do?
 - Yes, if we use binary comparison on the key values

Quick Sort

ECE 36800 Data Structures, Fall 2023 C 2023 Andrew Jones, Cheng-Kok Koh, Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

quicksort(...)

- Sort n integers r[0] to r[n-1] in ascending order
- Call qsort(r, 0, n 1)

```
qsort (r[], lidx, ridx):
    if lidx ≥ ridx
        return;
    // divide
    pivot_idx = partition(r, lidx, ridx);
    // conquer left subarray
    qsort(r, lidx, pivot_idx-1);
    // conquer right subarray
    qsort(r, pivot_idx+1, ridx);
```

Credit: Andrew Jones & Cheng-Kok Koh

Complexity

- Assume that selection of median O(n) time complexity
 - Indeed, such an algorithm exists but it is beyond the scope of this course
 - The coefficient of the linear term is quite high, making it impractical
- Every level requires O(n) operations to find all the medians at that level
- There are log n levels
- Overall time complexity is O(n log n)

Partition(r[], lidx, ridx):

```
pivot \leftarrow r[lidx]
lo \leftarrow lidx
hi \leftarrow ridx
while lo < hi
  // find an item larger than pivot
  while r[lo] \leq pivot and lo < ridx
    10++
  // find an item not larger than pivot
  while r[hi] > pivot
    hi--;
  // swap out-of-order items
  if lo < hi
     r[lo] \leftrightarrow r[hi]
r[lidx] \leftarrow r[hi] // set pivot at the right place
r[hi] \leftarrow pivot // to partition array
return hi
```


ECE 36800 Data Structures, Fall 2023 C 2023 Andrew Jones, Cheng-Kok Koh, Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Notes

- Not a stable sorting algorithm because of the partition function
- Recursion requires stack space
 - It is important the stack space is minimized
- Important that the recursive calls are on subarrays that have fewer elements than the original
 - The partition function puts the pivot at the correct position, the subarrays are therefore guaranteed to have fewer elements than the original
 - Other partition functions may not put the pivot at the correct position, must call qsort recursively with correct left and right indices to avoid infinite recursion

Complexity

- Best case: Similar to the ideal case, O(n log n) for time complexity and O(log n) for space complexity
- Worst case: Alway chooses a lousy pivot
 - It takes n 1 comparisons to partition into two subarrays of size 0 and n – 1 (pivot is placed at the correct position)
 - It then works on the larger subarray
 - Total number of comparisons is (n 1) + (n 2) + ... + 1= $n(n - 1)/2 = O(n^2)$
 - Time complexity is $O(n^2)$ and space complexity is O(n)

Pivot selection strategies

- Median as pivot (O(n) but not practical)
- Middle element instead of the first element or last element
 - If the array is already sorted, the middle element is the median
- Median-of-three: median of first, middle, and last elements
 - If you are already comparing them, might as well put them in the correct relative positions
 - After that, the non-median elements are also in the correct partitions
- Use the mean of an array as your pivot
 - Mean is not an element in the array
 - If you use integer type for your calculation of mean (assuming keys are integer), beware of overflow/underflow issue
 - If you use floating point (float, double, long double), be aware of truncation errors and that a float cannot represent all possible values of int, a double cannot represent all possible values of long
 - Floating point operations may also add overhead
- Use median-of-three for the first pivot, and means of subarrays as subsequent pivots
- Pick a random pivot: O(n log n) with high probability
 - The rand function (or other pseudo-random number generator) may add substantial overhead