\square
Case 1: $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$ if $f(n)$ is $\mathcal{O}\left(n^{d}\right)$ and $d<\log _{b} a$.
Algorithm - Give the name as shown in the assignment page.

Recurrence tree - Draw ≥ 3 levels, including the root. Root should be labelled $T(n)=$ "running time to of size n."
$\mathrm{a}=\square$ because \square.
\square
$f(n)$ is the time to

$T(n)$ is $\Theta\left(\square_{\text {Simplified, in terms of only } n \text { (not } a, b, \text { or } d) \text {. }}\right)$

Name: \square
\square
Case 2:T(n) is $\Theta\left(n^{\log _{b} a} \log n\right)$ if $f(n)$ is $\Theta\left(n^{d}\right)$ and $d=\log _{b} a_{\text {(or any of the variants o C Case 2). }}$.
Algorithm - Give the name as shown in the assignment page.

Recurrence tree - Draw ≥ 3 levels, including the root. Root should be labelled $T(n)=$ "running time to
\square
\square
$f(n)$ is the time to \square

$T(n)$ is $\Theta\left(\square_{\text {Simplified, in terms of only } n(\text { not } a, b, \text { or } d) \text {. }}\right)$
\square
Case 3:T(n) is $\Theta(f(n))$ if $f(n)$ is $\Omega\left(n^{d}\right)$ and $d>\log _{b} a$.
Algorithm - Give the name as shown in the assignment page.

Recurrence tree - Draw ≥ 3 levels, including the root. Root should be labelled $T(n)=$ "running time to
\square
\square
$f(n)$ is the time to

$T(n)$ is $\Theta\left(\square_{\text {Simplified, in terms of only } n(\text { not } a, b, \text { or } d) \text {. }}\right)$

Name:
 Credits

\square
\square

List any resources you used and how you used them. Include links we gave you, as well as any that you found on your own. If you used ChatGPT, give a link to the chat (if your account allows that) and describe how it helped you and/or what you learned from it. This page is an exercise in academic integrity (i.e., giving attribution), and for our own understanding.

