
ECE 36800 Advanced C Programming This content is protected and may not be shared, uploaded, or distributed. © 2023 Alexander J. Quinn 1

Name: Login: HW04 Master theorem − v1.1

Case 1: 𝑇(𝑛) is Θ(𝑛log𝑏 𝑎) if 𝑓(𝑛) is 𝒪(𝑛𝑑) and 𝑑 < log𝑏 𝑎.

Algorithm − Give the name as shown in the assignment page.

Recurrence tree − Draw ≥3 levels, including the root. Root should be labelled T(n) = "running time to _______ of size n."

a = because .

b = because .

f(n) is the time to .

f(n) is because .

Express as O(…), Ω(…), or Θ(…) in terms of only n (not a, b, or d).

d = logb a = Recurrence relation:

"T(n) = ▒T(▒) + f(n), where f(n) is ▒(▒▒)." Express in terms of only n (i.e., not a, b, or d).

T(n) is Θ()

Simplified, in terms of only n (not a, b, or d).

ECE 36800 Advanced C Programming This content is protected and may not be shared, uploaded, or distributed. © 2023 Alexander J. Quinn 2

Name: Login: HW04 Master theorem − v1.1

Case 2: 𝑇(𝑛) is Θ(𝑛log𝑏 𝑎 log 𝑛) if 𝑓(𝑛) is Θ(𝑛𝑑) and 𝑑 = log𝑏 𝑎 (or any of the variants of Case 2).

Algorithm − Give the name as shown in the assignment page.

Recurrence tree − Draw ≥3 levels, including the root. Root should be labelled T(n) = "running time to _______ of size n."

a = because .

b = because .

f(n) is the time to .

f(n) is because .

Express as O(…), Ω(…), or Θ(…) in terms of only n (not a, b, or d).

d = logb a = Recurrence relation:

"T(n) = ▒T(▒) + f(n), where f(n) is ▒(▒▒)." Express in terms of only n (i.e., not a, b, or d).

T(n) is Θ()

Simplified, in terms of only n (not a, b, or d).

ECE 36800 Advanced C Programming This content is protected and may not be shared, uploaded, or distributed. © 2023 Alexander J. Quinn 3

Name: Login: HW04 Master theorem − v1.1

Case 3: 𝑇(𝑛) is Θ(𝑓(𝑛)) if 𝑓(𝑛) is Ω(𝑛𝑑) and 𝑑 > log𝑏 𝑎.

Algorithm − Give the name as shown in the assignment page.

Recurrence tree − Draw ≥3 levels, including the root. Root should be labelled T(n) = "running time to _______ of size n."

a = because .

b = because .

f(n) is the time to .

f(n) is because .

Express as O(…), Ω(…), or Θ(…) in terms of only n (not a, b, or d).

d = logb a = Recurrence relation:

"T(n) = ▒T(▒) + f(n), where f(n) is ▒(▒▒)." Express in terms of only n (i.e., not a, b, or d).

T(n) is Θ()

Simplified, in terms of only n (not a, b, or d).

ECE 36800 Advanced C Programming This content is protected and may not be shared, uploaded, or distributed. © 2023 Alexander J. Quinn 4

Name: Login: HW04 Master theorem − v1.1

Credits

List any resources you used and how you used them. Include links we gave you, as well as any that you found on your
own. If you used ChatGPT, give a link to the chat (if your account allows that) and describe how it helped you and/or what
you learned from it. This page is an exercise in academic integrity (i.e., giving attribution), and for our own understanding.

Case 1: (name of algorithm)

Case 2: (name of algorithm)

Case 3: (name of algorithm)

	a_2:
	b_2:
	d_2:
	logb a_2:
	a_3:
	b_3:
	fn is_3:
	d_3:
	logb a_3:
	Name_4:
	Login_4:
	name of algorithm:
	Case 1:
	name of algorithm_2:
	Case 2:
	name of algorithm_3:
	Case 3:
	fn_is_the_time_to_3:
	fn_because_3:
	recurrence_relation_3:
	algorithm_3:
	login_3:
	name_3:
	name_2:
	login_2:
	algorithm_2:
	fn_is_the_time_to_2:
	b_because_2:
	a_because_2:
	fn_is_2:
	fn_because_2:
	recurrence_relation_2:
	Tn_3:
	Tn_2:
	name_1:
	login_1:
	algorithm_1:
	a_1:
	a_because_1:
	b_because_1:
	b_1:
	fn_is_the_time_to_1:
	fn_is_1:
	fn_because_1:
	recurrence_relation_1:
	logb_a_1:
	d_1:
	Tn_1:
	tree_1:
	tree_2:
	tree_3:
	a_because_3:
	b_because_3:

