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Case 1: 𝑇(𝑛) is Θ(𝑛log𝑏 𝑎) if 𝑓(𝑛) is 𝒪(𝑛𝑑) and 𝑑 < log𝑏 𝑎.

Algorithm − Give the name as shown in the assignment page. 

Recurrence tree − Draw ≥3 levels, including the root.  Root should be labelled T(n) = "running time to _______ of size n." 

a =  because . 

b =  because . 

f(n) is the time to . 

f(n) is  because . 

Express as O(…), Ω(…), or Θ(…) in terms of only n (not a, b, or d). 

d =  logb a =  Recurrence relation: 

"T(n) = ▒T(▒) + f(n), where f(n) is ▒(▒▒)."   Express in terms of only n (i.e., not a, b, or d). 

T(n) is Θ(  ) 

Simplified, in terms of only n (not a, b, or d). 
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Case 2: 𝑇(𝑛) is Θ(𝑛log𝑏 𝑎 log 𝑛) if 𝑓(𝑛) is Θ(𝑛𝑑) and 𝑑 = log𝑏 𝑎 (or any of the variants of Case 2).

Algorithm − Give the name as shown in the assignment page. 

Recurrence tree − Draw ≥3 levels, including the root.  Root should be labelled T(n) = "running time to _______ of size n." 

a =  because . 

b =  because . 

f(n) is the time to . 

f(n) is  because . 

Express as O(…), Ω(…), or Θ(…) in terms of only n (not a, b, or d). 

d =  logb a =  Recurrence relation: 

"T(n) = ▒T(▒) + f(n), where f(n) is ▒(▒▒)."   Express in terms of only n (i.e., not a, b, or d). 

T(n) is Θ(  ) 

Simplified, in terms of only n (not a, b, or d). 
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Case 3: 𝑇(𝑛) is Θ(𝑓(𝑛)) if 𝑓(𝑛) is Ω(𝑛𝑑) and 𝑑 > log𝑏 𝑎.

Algorithm − Give the name as shown in the assignment page. 

Recurrence tree − Draw ≥3 levels, including the root.  Root should be labelled T(n) = "running time to _______ of size n." 

a =  because . 

b =  because . 

f(n) is the time to . 

f(n) is  because . 

Express as O(…), Ω(…), or Θ(…) in terms of only n (not a, b, or d). 

d =  logb a =  Recurrence relation: 

"T(n) = ▒T(▒) + f(n), where f(n) is ▒(▒▒)."   Express in terms of only n (i.e., not a, b, or d). 

T(n) is Θ(  ) 

Simplified, in terms of only n (not a, b, or d). 
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Credits 

List any resources you used and how you used them.  Include links we gave you, as well as any that you found on your 
own.  If you used ChatGPT, give a link to the chat (if your account allows that) and describe how it helped you and/or what 
you learned from it.  This page is an exercise in academic integrity (i.e., giving attribution), and for our own understanding. 
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