
ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Objectives − Tue 4/5/2022
 Testing
 Coverage
 Huffman coding

◼ What it does
◼ Building the Huffman tree structure
◼ Encoding a file

Whatever we do not finish today, we will
do on Thursday

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

3 A's

 Arrange

 Act

 Assert

Also known as the "AAA (Arrange-Act-Assert)" pattern

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Unit testing

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Order

 Tests should be able to run in any order
◼ Ex: test_read(…) should not depend on test_write(…)
◼ It shouldn’t matter if you run…

mu_run(test_write);
mu_run(test_read);

… or …
mu_run(test_read);
mu_run(test_write);

 You should be able to comment out some
tests without affecting others
◼ Normally, you should be running all tests together
◼ Need enough support code so each test is indepdendent.

 Every test should start with a clean slate

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

No manual inspection required

 The tests should be able to run on their own
◼ Running all tests should require no human effort.

 This is the foundation of regression testing
◼ Regression testing means running all tests whenever

something changes and/or periodically (e.g., nightly).

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Bugs vs. run-time error handling

 “Bugs” are flaws in your code.
◼ Ex: You forgot to check for something.

 “Run-time error handling” means ensuring
that the program behaves in a way that is
helpful to the user, even when it receives
unexpected or malformed inputs
◼ Ex: malformed BMP header

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Types of test code coverage

 “Line coverage” means every line of the code
being tested was executed at least once.

 “Branch coverage” means for every
conditional jump (If/While/For/Switch), we
took the jump (condition true) and did not
take the jump (condition false) at least once.

 “Path coverage” means we tested every
possible path through the code (unique
combination of branches). This can be hard.

line coverage ⊆ branch coverage ⊆ path coverage

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

////// IMPLEMENTATION CODE //////
void report_weather(bool is_sunny, bool is_raining) {

if(is_sunny) {
printf("The sun is shining.\n");

}
else {

printf("The sun is not shining.\n");
}

if(is_raining) {
printf("It is raining.\n");

}
}

/////////// TEST CODE ///////////
void test_report_weather_1() { // LINE coverage

report_weather(true, true); // The sun is shining. It is raining.
report_weather(false, true); // The sun is not shining. It is raining.

}

void test_report_weather_2() { // BRANCH coverage
report_weather(true, true); // The sun is shining. It is raining.
report_weather(false, false); // The sun is not shining.

}

void test_report_weather_3() { // PATH coverage
report_weather(true, true); // The sun is shining. It is raining.
report_weather(true, false); // The sun is shining. It is raining.
report_weather(false, true); // The sun is not shining. It is raining.
report_weather(false, false); // The sun is not shining.

}

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

“Support functions” vs. “Helper
functions”
For purposes of HW12 in ECE 264 (Spring 2019):

 “Support function” is used much like a helper
function, but may be tested by external code
(i.e., for the homework)
◼ set_pixel(…) and create_bmp(…)
◼ Note: “Support function” is not standard terminology.

 “Helper function”
◼ _▒▒▒▒▒(…)
◼ Not expected to be accessed by any external code.
◼ This is standard terminology.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Thinking of test cases

 Easy cases
◼ Answer is obvious (to you). If the test fails, you should have no doubt in your

mind about whether the test itself is correct or not.
◼ Ex: print_integer(5, 10)

 “Edge cases” (boundaries)
◼ Extreme values for inputs (e.g., parameters, input files, etc.).
◼ Ex: print_integer(INT_MIN, 10)

 “Corner cases” (turning points)
◼ Look for if(▒){…}, while(▒){…}, for(▒){…}, and ▒?▒:▒ in your code
◼ Will be captured whenever you have 100% branch coverage (hard)
◼ Ex: print_integer(0, 10); print_integer(10, 16); print_integer(9, 16);

 Special cases (look for "except" in spec)
◼ Look for words like “… except when…” or “Note: If …” in the specification.
◼ Ex: mintf("%")

Note: This is not standard terminology. These are the instructor's invented terms.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

huffman fluffs many mums

Next step: Make a frequency table

Goal: Make a Huffman code table for compressing the following string.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

huffman fluffs many mums

char frequency

f 5

m 4

u 3

‿ 3

s 2

a 2

n 2

y 1

h 1

l 1

Frequency
table

Next step: Start creating the Huffman tree.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

h 1 • •

• •

l 1 • •

• •

y 1 • •

• •

a 2 • •

• •

n 2 • •

• •

s 2 • •

• •

‿3 • •

• •

u 3 • •

• •

m4 • •

• •

f 5 • •

• •

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

We start by creating a priority queue where each list node
refers to a tree node containing a single character.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

y 1 • •

• •

a 2 • •

• •

n 2 • •

• •

s 2 • •

• •

‿3 • •

• •

u 3 • •

• •

m4 • •

• •

f 5 • •

• •• •

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

░2 • •

h 1 • • l 1 • •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • •

• •

n 2 • •

• •

s 2 • •

• •

‿3 • •

• •

u 3 • •

• •

m4 • •

• •

f 5 • •

• •• •

░2 • •

h 1 • • l 1 • •

░3 • •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • •

• •

n 2 • •

• •

s 2 • •

• •

‿3 • •

• •

u 3 • •

• •

m4 • •

• •

f 5 • •

• •

░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • • n 2 • •

• •

s 2 • •

• •

‿3 • •

• •

u 3 • •

• •

m4 • •

• •

f 5 • •

• •

░2 • •

h 1 • • l 1 • •

░3 • • ░4 • • ░5 • •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • •

n 2 • • s 2 • •

• •

‿3 • •

• •

u 3 • •

• •

m4 • •

• •

f 5 • •

• •

░2 • •

h 1 • • l 1 • •

░3 • •

░4 • • ░5 • • ░6 • •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • • n 2 • • s 2 • •

• •

‿3 • • u 3 • •

• •

m4 • •

• •

░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

░5 • • ░6 • • ░8 • •

• •

f 5 • •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • • n 2 • • s 2 • • ‿3 • •

u 3 • •

• •

m4 • •

• •

░2 • •

h 1 • • l 1 • •

░3 • • ░4 • • ░5 • •

░6 • • ░8 • •

f 5 • •

░10 • •

• •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

Next step: Join first two nodes

y 1 • • a 2 • • n 2 • • s 2 • •

‿3 • • u 3 • • m4 • •░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

░5 • • ░6 • • ░8 • •f 5 • •

░10 • •

• • • •

░14 • •

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Process
1. Take first two nodes from priority queue.
2. Combine them into a cluster. (Will require creating a new tree node.) The cluster will have the sum of the

frequencies of its children.
3. Insert the cluster into priority queue.
4. Repeat (from step 1) until there is only one node in the priority queue.

Priority queue compare function
• Order by the frequency.
• If frequency is same, then nodes with just a single character come before clusters.
• If frequency is same and both are single-character nodes (i.e., not clusters order by ASCII value of character.

This summary is not a substitute for reading the homework description. In case of any discrepancy, it takes precedence.

y 1 • • a 2 • • n 2 • • s 2 • •

‿3 • • u 3 • • m4 • •░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

░5 • • ░6 • • ░8 • •f 5 • •

░10 • •

• •

░14 • •

░24 • •

Next step: Remove head of
priority queue,
leaving only the
tree.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Next step: Create the code table

y 1 • • a 2 • • n 2 • • s 2 • •

‿3 • • u 3 • • m4 • •░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

░5 • • ░6 • • ░8 • •f 5 • •

░10 • • ░14 • •

░24 • •
10

1

1

111

1 1

10 0

000

0 0 0

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

char code # of bits frequency
f 00 2 5

m 110 3 4

‿ 011 3 3
u 100 3 3
s 1111 4 2
a 1011 4 2
n 1110 4 2
y 1010 4 1
h 0100 4 1
l 0101 4 1

Code table

Notice that no code
is a prefix of
another.

y 1 • • a 2 • • n 2 • • s 2 • •

‿3 • • u 3 • • m4 • •░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

░5 • • ░6 • • ░8 • •f 5 • •

░10 • • ░14 • •

░24 • •
10

1

1

111

1 1

10 0

000

0 0 0

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

char code # of bits frequency
f 00 2 5

m 110 3 4

‿ 011 3 3
u 100 3 3
s 1111 4 2
a 1011 4 2
n 1110 4 2
y 1010 4 1
h 0100 4 1
l 0101 4 1

Code table

y 1 • • a 2 • • n 2 • • s 2 • •

‿3 • • u 3 • • m4 • •░2 • •

h 1 • • l 1 • •

░3 • • ░4 • •

░5 • • ░6 • • ░8 • •f 5 • •

░10 • • ░14 • •

░24 • •
10

1

1

111

1 1

10 0

000

0 0 0

More frequently
occurring characters
get shorter codes.

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Code table

huffman fluffs many mums
h 0100

u 100

f 00

f 00

m 110

a 1011

n 1110

‿ 011

f 00

l 0101

u 100

f 00

f 00

s 1111

‿ 011

m 110

a 1011

n 1110

y 1010

‿ 011

m 110

u 100

m 110

s 1111

0100 100 00 00 110
h u f f m

1011 1110 011 00 0101
a n ‿ f l

100 00 00 1111 011
110
u f f s ‿ m

1011 1110 1010 011
110
a n y ‿ m

100 110 1111

Encoded string

char code # of bits frequency
f 00 2 5

m 110 3 4

‿ 011 3 3
u 100 3 3
s 1111 4 2
a 1011 4 2
n 1110 4 2
y 1010 4 1
h 0100 4 1
l 0101 4 1

ECE 26400 Advanced C Programming, Spring 2020 © 2020 Alexander J. Quinn This content is protected and may not be shared, uploaded, or distributed.

Code table

huffman fluffs many mums

01001000 00011010
h u f f m a

11111001 10001011
n ‿ f l u

00000011 11011110
f f s ‿ m

10111110 10100111
a n y ‿ m

10100110 11110000
u m s

char code # of bits frequency
f 00 2 5

m 110 3 4

‿ 011 3 3
u 100 3 3
s 1111 4 2
a 1011 4 2
n 1110 4 2
y 1010 4 1
h 0100 4 1
l 0101 4 1

Encoded string
10 bytes

h 0100

u 100

f 00

f 00

m 110

a 1011

n 1110

‿ 011

f 00

l 0101

u 100

f 00

f 00

s 1111

‿ 011

m 110

a 1011

n 1110

y 1010

‿ 011

m 110

u 100

m 110

s 1111

