
ECE 26400 Advanced C Programming, Spring 2022 This content is protected and may not be shared, uploaded, or distributed. © 2022 Alexander J. Quinn

Objectives - Thu 3/31/2022 ¹

 Unit testing
 Test code coverage
 How to think of test cases

--
¹ The date of this lecture might be incorrect.

ECE 26400 Advanced C Programming, Spring 2022

3 A's
 Arrange

 Act

 Assert

Also known as the "AAA (Arrange-Act-Assert)" pattern

ECE 26400 Advanced C Programming, Spring 2022

Unit testing

ECE 26400 Advanced C Programming, Spring 2022

Order
 Tests should be able to run in any order

◼ Ex: test_read(…) should not depend on test_write(…)
◼ It shouldn’t matter if you run…

mu_run(test_write);
mu_run(test_read);

… or …
mu_run(test_read);
mu_run(test_write);

 You should be able to comment out some
tests without affecting others
◼ Normally, you should be running all tests together
◼ Need enough support code so each test is indepdendent.

 Every test should start with a clean slate

ECE 26400 Advanced C Programming, Spring 2022

No manual inspection required
 The tests should be able to run on their own

◼ Running all tests should require no human effort.

 This is the foundation of regression testing
◼ Regression testing means running all tests whenever

something changes and/or periodically (e.g., nightly).

ECE 26400 Advanced C Programming, Spring 2022

Bugs vs. run-time error handling
 “Bugs” are flaws in your code.

◼ Ex: You forgot to check for something.

 “Run-time error handling” means ensuring
that the program behaves in a way that is
helpful to the user, even when it receives
unexpected or malformed inputs
◼ Ex: malformed BMP header

ECE 26400 Advanced C Programming, Spring 2022

Types of test code coverage
 “Line coverage” means every line of the code

being tested was executed at least once.

 “Branch coverage” means for every
conditional jump (If/While/For/Switch), we
took the jump (condition true) and did not
take the jump (condition false) at least once.

 “Path coverage” means we tested every
possible path through the code (unique
combination of branches). This can be hard.

line coverage ⊆ branch coverage ⊆ path coverage

ECE 26400 Advanced C Programming, Spring 2022

////// IMPLEMENTATION CODE //////
void report_weather(bool is_sunny, bool is_raining) {

if(is_sunny) {
printf("The sun is shining.\n");

}
else {

printf("The sun is not shining.\n");
}

if(is_raining) {
printf("It is raining.\n");

}
}

/////////// TEST CODE ///////////
void test_report_weather_1() { // LINE coverage

report_weather(true, true); // The sun is shining. It is raining.
report_weather(false, true); // The sun is not shining. It is raining.

}

void test_report_weather_2() { // BRANCH coverage
report_weather(true, true); // The sun is shining. It is raining.
report_weather(false, false); // The sun is not shining.

}

void test_report_weather_3() { // PATH coverage
report_weather(true, true); // The sun is shining. It is raining.
report_weather(true, false); // The sun is shining. It is raining.
report_weather(false, true); // The sun is not shining. It is raining.
report_weather(false, false); // The sun is not shining.

}

ECE 26400 Advanced C Programming, Spring 2022

“Support functions” vs. “Helper functions”

For purposes of HW12 in ECE 264 (Spring 2019):

 “Support function” is used much like a helper
function, but may be tested by external code
(i.e., for the homework)
◼ set_pixel(…) and create_bmp(…)
◼ Note: “Support function” is not standard terminology.

 “Helper function”
◼ _▒▒▒▒▒(…)
◼ Not expected to be accessed by any external code.
◼ This is standard terminology.

ECE 26400 Advanced C Programming, Spring 2022

Thinking of test cases
 Easy cases

◼ Answer is obvious (to you). If the test fails, you should have no doubt in your
mind about whether the test itself is correct or not.

◼ Ex: print_integer(5, 10)

 “Edge cases” (boundaries)
◼ Extreme values for inputs (e.g., parameters, input files, etc.).
◼ Ex: print_integer(INT_MIN, 10)

 “Corner cases” (turning points)
◼ Look for if(▒){…}, while(▒){…}, for(▒){…}, and ▒?▒:▒ in your code
◼ Will be captured whenever you have 100% branch coverage (hard)
◼ Ex: print_integer(0, 10); print_integer(10, 16); print_integer(9, 16);

 Special cases (look for "except" in spec)
◼ Look for words like “… except when…” or “Note: If …” in the specification.
◼ Ex: mintf("%")

Note: This is not standard terminology. These are the instructor's invented terms.

