
 ECE 264 Reference Sheet – Fall 2022 v1.0.8 (8/22/2022)

command line

purpose command flags example(s)

view file(s) ls [-l] [] -l → verbose ls *.c

change directory cd cd ps1

make directory mkdir [-m] -m → set permissions mkdir tempdir

remove directory rmdir rmdir tempdir

delete (remove) files rm [-r] [-f] -r → recursive
-f → force (remove or

overwrite) without asking

rm mytester

copy files cp [-r] [-f] cp –r * backup/

move or rename files mv mv

view processes ps [uxw] uxw→ detailed output ps auxw

hex dump xxd [-g] -g → group by

edit file vim [-p] -p → open files in tabs vim –p *.c *.h

compile gcc [-o] -o → output executable gcc -o ps1 ps1.c

get starter files 264get is the short name of the
assignment (e.g., “hw01”)

264get hw02

pre-test submission 264test 264test hw02

submit 264submit is the file(s) or “*” for all 264submit hw02 *.{c,h}

Submit often and early—even when you are just starting. To restore your earlier submission, type 264get --help for further instructions.

vim

motion
within line

h l 0 $ ^ w e b

← → to beginning of

line

to end of line to first

non-blank in line

to beginning

of next word

to end of this

word

to beginning of

this or last word

motion
between lines

k j gg G G % m '

↑ ↓ to beginning of

file

to end of file line number to matching

({ [<

mark position go to mark

motion
search

* # / n N :noh
find word,

forward

find word,

backward

find pattern,

forward

. any char \w alphanum or _ to next

match

to previous

match

clear search

highlighting \d number \s whitespace

action
current line

dd cc yy >> << == gugu gUgU
delete line (cut) change line yank line (copy) indent line dedent line indent code

line

lowercase line Uppercase line

action
by motion

d c y > < = gu gU
delete (cut) change yank (copy) indent dedent indent code lowercase Uppercase

action
add text

i I a A o O p P
insert before

this character

Insert before

line beginning

append after

this character

Append after

line end

open line

below

Open line

above

put (paste) text

here/below

Put (paste) text

before/above

other
visual, undo, …

v V u ^R . q q @

visual select visual select

line

undo last action redo last

undone action

repeat last

action

record

quick macro

stop recording

quick macro

play

quick macro

commands
"ex" mode

:w :e :tabe :split :%s/ / /gc :h :q

write (save) file edit (open) file tab: edit file split window replace with help quit Vim

Press Esc to return to Normal mode. | Most normal mode commands can be repeated by preceding with a number (e.g., 3dd to delete 3 lines).

 may also include: ▒* (×0 or more) ▒\+ (×1 or more) ▒\= (×0 or 1) \<▒▒▒\> (word) | To rename a variable: :%s/\<▒\>/▒/gc

gdb

Start
In bash: gdb [--tui]

quit

set args []

Breakpoints
break
clear

delete []
info breakpoints

Watchpoints
watch

awatch

rwatch
info watchpoints

Automatic display
info display

display

undisplay []

Explore the stack frame
backtrace [full] [n]
down # toward current frame

frame []
info args
info frame
info locals

list
up # toward main()

whatis

Controlling execution
continue
finish

jump
next

return []
run []
set variable =

step

until

Reverse debugging
record
reverse-next
reverse-step # and so on…

View variables and memory
print[/]

• : a C expression

x/[][][]

• : how many units
• ∈ b (1 byte), h (2 bytes),
w (4 bytes), g (8 bytes)

• ∈d (decimal), x (hex),
s (string), f (float), c (character),
u (unsigned decimal), o (octal),
t (binary), z (zero-padded hex),
a (address)

For more info: help

Underlined letters indicate shortcuts (e.g., n for next, rn for reverse-next, etc.) | Brackets denote parameters that are optional.

path…

directory

directory permissions

directory

path…

to from…

to from…

of bytes # of bytes

path…

path… executable

asg asg

asg

path… asg path…

line# a-z a-z

pattern pattern

motion motion motion motion motion motion motion motion

a-z a-z

file file text pattern topic/cmd

text pattern

variable
name

variable
name

variable
name

breakpoint#

[file]:function | [file]:line#

[file]:function | [file]:line#

arglist…

file

variable
name

function | line#[,line#]

frame#

expression#

expression

line#

expr var

arguments…

expr

[file]:function | [file]:line#

command

format

unit

of units

address format unit # of units

expression

expression format

pattern

 course web site: engineering.purdue.edu/ece264/22au —or— aq.gs/264

memory

 Your code, compiled binary ········ text segment

void oat(char pie) { ·············· parameters ································· stack segment

 char ham; ··································· local variable ······························ stack segment

 char bun[4]; ···························· statically-allocated array·············· stack segment

 char* ice = ···························· local variable (even an address) · stack segment

 "pop"; ······································ string literals ······························· data segment, read-only

 char* yam = ····························· local variable (even an address) · stack segment

 malloc(sizeof(*yam)); ·· dynamic allocation block ············· heap segment

 static char egg = 1; ········· static variable, initialized ············ data segment, read-write

 static char nut; ··················· static variable, uninitialized ········ BSS segment

 free(yam);

}

char _g_jam = 2; ······················· global variable, initialized ··········· data segment, read-write

char _g_tea; ································· global variable, uninitialized ······· BSS segment

addresses (pointers)
int a = 10; // "a gets 10"

int* b; // "b is an address of an int"

b = &a; // "b gets the address of a"

int c = *b; // "c gets the value at b"

int* d = malloc(sizeof(*d));

// "d gets the address of a new allocation block
// sufficient for 1 int"

*d = 10; // "store 10 at address d"

All (a, *b, c, *d) equal 10.

char (*a_f)(int, int) = f;

// "a_f is the address of function f(…) taking 2
// arguments (int, int) and returning char."

arrays
int a1[2];

a1[0] = 7;

a1[1] = 8;

int a2[] = {7, 8};

int a3[2] = {7, 8};

int* a4 = {7, 8};

int* a5 = malloc(

 sizeof(*a5) * 2);

a5[0] = 7;

a5[1] = 8;

All (a1…a5) contain {7, 8}.

strings
char s1[3];

s1[0] = 'H'; // 'H' == 72

s1[1] = 'i'; // 'i' 1== 105

s1[2] = '\0'; // '\0' == 0

char s2[] = {'H', 'i', '\0'};

char s3[] = "Hi";

char* s4 = "Hi";

char s5[] = {72, 105, 0};

char s6[] = {0x48, 0x69, 0x00};

char s7[] = "\x48\x69";

char* s8 = malloc(sizeof(*s8)*3);

strcpy(s8, "Hi");

char* s9 = strdup("Hi"); // non-std

All (s1…s9) contain the string "Hi".

structs

 Basic syntax Basic syntax + typedef alias Concise syntax (popular)

Define struct type struct Point {

 int x, y;

};

struct _P {

 int x, y;

};

typedef struct _P Point;

typedef struct {

 int x, y;

} Point;

Declare + initialize struct Point p = { .x = 10,

 .y = 20 };

Point p = { .x = 10,

 .y = 20 };

Declare object struct Point p; Point p;

Initialize fields p.x = 10; p.y = 20;

Access fields int w = p.x; // p.x is the same as (&p) -> x

Address (pointer) struct Point* a_p = &p; Point* p = &p;

Access via address int w = a_p -> x; // a_p -> x is the same as (*a_p).x

linked lists
typedef struct _Node {

 int value;

 struct _Node* next;

} Node;

binary search tree (BST)
typedef struct _BSTNode {

 int value;

 struct _BSTNode* left;

 struct _BSTNode* right;

} BSTNode;

merge sort
Step 1: Partition the list in half.
Step 2: Merge sort each half.
Step 3: Merge the two sorted halves

into a single sorted list.

stack segment

heap segment

reserved

text segment

reserved

data segment

BSS segment

ASCII table

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

32 0x20 ' ' 44 0x2c , 56 0x38 8 68 0x44 D 80 0x50 P 92 0x5c \ 104 0x68 h 116 0x74 t

33 0x21 ! 45 0x2d - 57 0x39 9 69 0x45 E 81 0x51 Q 93 0x5d] 105 0x69 i 117 0x75 u

34 0x22 " 46 0x2e . 58 0x3a : 70 0x46 F 82 0x52 R 94 0x5e ^ 106 0x6a j 118 0x76 v

35 0x23 # 47 0x2f / 59 0x3b ; 71 0x47 G 83 0x53 S 95 0x5f _ 107 0x6b k 119 0x77 w

36 0x24 $ 48 0x30 0 60 0x3c < 72 0x48 H 84 0x54 T 96 0x60 ` 108 0x6c l 120 0x78 x

37 0x25 % 49 0x31 1 61 0x3d = 73 0x49 I 85 0x55 U 97 0x61 a 109 0x6d m 121 0x79 y

38 0x26 & 50 0x32 2 62 0x3e > 74 0x4a J 86 0x56 V 98 0x62 b 110 0x6e n 122 0x7a z

39 0x27 ' 51 0x33 3 63 0x3f ? 75 0x4b K 87 0x57 W 99 0x63 c 111 0x6f o 123 0x7b {

40 0x28 (52 0x34 4 64 0x40 @ 76 0x4c L 88 0x58 X 100 0x64 d 112 0x70 p 124 0x7c |

41 0x29) 53 0x35 5 65 0x41 A 77 0x4d M 89 0x59 Y 101 0x65 e 113 0x71 q 125 0x7d }

42 0x2a * 54 0x36 6 66 0x42 B 78 0x4e N 90 0x5a Z 102 0x66 f 114 0x72 r 126 0x7e ~

43 0x2b + 55 0x37 7 67 0x43 C 79 0x4f O 91 0x5b [103 0x67 g 115 0x73 s 127 0x7f DEL

preprocessor
#define #if #ifdef #else #pragma pack(1) __FILE__ __DATE__

#include #elif #ifndef #end # (stringify) __LINE__ __TIME__

files and streams
FILE* fopen(const char* filename,

const char* mode)

int fputc(int c, FILE* stream)

int fprintf(FILE* stream,

const char* fmt, ...)

int fseek(FILE* stream, long offset,

int whence)

long ftell(FILE* stream)

int fgetc(FILE* stream)

char* fgets(char* buf, int n, FILE* stream)

int feof(FILE *stream)

int ferror(FILE* stream)

int fclose(FILE* stream)

size_t fread(void* dest, size_t size,

size_t count, FILE* stream)

size_t fwrite(const void* src, size_t size,

size_t count, FILE* stream)

FILE* stderr

FILE* stdout

FILE* stdin

printf codes
%d decimal
%x hex
%c character
%p address
%s string
%zd size_t

integer constants
65 decimal
0x41 hex
0101 octal
'A' character
'\0' null terminator
NULL null address

bitwise operators

| bitwise or 0b1001 | 0b0011 == 0b1011

& bitwise and 0b1001 & 0b0011 == 0b0001

^ bitwise xor 0b1001 ^ 0b0011 == 0b1010

~ bitwise not ~ 0b00001111 == 0b11110000

>> bitshift right 0b00001111 >> 2 == 0b00000011

<< bitshift left 0b00001111 << 2 == 0b00111100

address operators
"address of v" &v

"value at a" *a

"write v at a" *a = v

other operators
?: ternary 3>4 ? 1 : 2 == 2

sizeof sizeof(v) == 4

equivalence of address operators

*a a[i] o.x a -> x

a[0] *(a+i) (&o) -> x (*a).x

effects of * and & on type
Adding * to a variable subtracts * from its type. Adding & to a variable adds * to its type

Example: If n is an int** … then …
 n is an int
 **n is an int

 Example: If a is an int … then &a is an int*
If b is an int* … then &b is an int**
If c is an int** … then &c is an int***

precedence of operators

                           

macro
argument

,

= += -=

*= /= %=

&= ^= |=

<<= >>=

░?░:░ || && | ^ &
==

!=

<

>

<=

>=

<<

>>

+

-

*

/

%

+expr ++expr expr++

-expr --expr expr--

! ~ *addr &expr

(type) sizeof(expr)

()

[]

->

.

unary operators assignment arithmetic comparison bitwise logical ternary bit
shift

how to write bug-free code

• DRY – Don't Repeat Yourself

• Learn to use your tools well.

• Fix "broken windows" (e.g., warnings)

• Get enough sleep and nutrition.

• Plan before you begin coding.

• Crash early, e.g., with assert(…).

• Use assert(…) to validate your code only.

• Free() where you malloc(), when possible.

• Design with contracts.

how to debug

• Test hypotheses systematically.

• Take notes to stop going in circles.

• Verify your assumptions.

• Use the right debugging tool(s).

• Write test code.

• Take a nap / walk / break.

• Trust the compiler.

• Do not trust Stack Overflow, friends, etc.

• Do not make random changes.

memory faults / Valgrind error messages

Segmentation fault – crash

Writing at NULL with *
int* a = NULL;

*a = 10;

Writing at NULL with ->
Node* a = NULL;

a -> value = 10;

Writing at NULL with […]
int* array = NULL;

array[0] = 1;

Reading from NULL with *
int* a = NULL;

int b = *a;

Reading from NULL with ->
Node* p = NULL;

int b = p -> value;

Reading from NULL with […]
int* array = NULL;

int b = array[0];

Not detecting malloc() failure
int* a = malloc(

100000000000000000);

*a = 1; // a is NULL

Stack overflow
void foo() {

 foo(); // !!!

}

Writing to read-only memory
char* s = "abc";

s[0] = 'A';

Calling va_arg too many times
while(a == 0) {

 b = va_arg(…);

}

"Conditional jump or move
depends on uninitialised
value(s)"

If with uninitialized condition
int a; // garbage!!!

if(a == 0) {

 // …

}

Loop with uninitialized condition
int a; // garbage!!!

while(a == 0) {

 // …

}

Switch with uninitialized condition
int a; // garbage!!!

switch(a) {

 // …

}

Printing unterminated string
char s[2];

s[0] = 'A'; // no '\0'

printf("%s", s);

"Use of uninitialized value"

Passing uninitialized value to fn
int a;

printf("%d", a);

"Syscall param … uninitialised
byte(s)"

Return uninitialized value from fn
void foo() {

 int a;

 return a;

}

Write uninitialized value to file
char c;

fwrite(&c, 1, 3, stdout);

"Definitely lost" – leak

Lose address of block
void foo() {

 int* a = malloc(…);

} // !!!

"Indirectly lost" – leak

Lose address of address of block
void foo() {

 void** a =

malloc(…);

 *a = malloc(4);

} // !!!

"Still reachable" – leak

Address of block still in memory
int main() {

 static void* a;

 a = malloc(…);

 return EXIT_SUCCESS;

}

"Invalid free()"
"glibc … free"

Double free
int* a = malloc(…);

free(a);

free(a); // !!!

Free something not malloc’d
int a = 0;

free(&a); // !!!

Free wrong part
int* a = malloc(…);

free(a + 3); // !!!

"silly arg (…) to malloc()"

Negative size to malloc(…)
void* a = malloc(-3);

free(a);

"Invalid write"

Buffer overflow – heap
int* a = malloc(

4 * sizeof(*a));

a[10] = 20; // !!!

Write dangling pointer – heap
int* a = malloc(…);

free(a);

a[0] = 1;

"Invalid read"

Buffer overread - heap
int* a = malloc(

4 * sizeof(*a));

int b = a[10]; // !!!

Read dangling pointer – heap
int* a = malloc(

4 * sizeof(*a));

free(a);

int b = a[0]; // !!!

Not detected by Valgrind

Buffer overread - stack
int a[4];

int b = a[10]; // !!!

Buffer overflow – stack
int a[4];

a[10] = 1; // !!!

© Copyright 2022 Alexander J. Quinn <aq@purdue.edu> except as noted. This content is protected and may not be shared, uploaded, or distributed. | Versions: This is v1.0.8 (8/22/2022) of this sheet. Content refers to

Vim v7.4, GDB v8.3, and Valgrind v3.8. Credits: Bug-avoidance tips inspired by The Pragmatic Programmer by Andy Hunt & Dave Thomas | Merge sort image is from Designing and Building Parallel Programs © Ian Foster.

To start Valgrind, run:

valgrind ./myprog

