Nibble mnemonics

0	ob0000	0x0	-
1	ob0001	0×1	-
2	ob0010	0×2	-
3	ob0011	0×3	-
4	ob0100	0x4	a1000 ${ }_{2}=2^{2}=4$
5	ob0101	0x 5	${ }_{2}^{3}$
6	ob0110	0x6	\%
7	ob0111	0x7	

8	ob1000	0x8	010002 $=2^{3}=8$
9	ob1001	0×9	-
10		0xa	0
11	ob1011	0xb	
12	ob1100	0xC	T_{0}^{0}
13	ob1101	0xd	
14	ob1110	0x ${ }^{\text {e }}$	$=0$
15	ob1111	0x f	1

A nibble is a 4-bit value between 0 and 15 . It can be represented using four binary digits (0 b0000 to $0 b 1111$) or one hex digit (0×0 to $0 \times f$).

A byte is an 8 -bit value between 0 and 255 . It can be represented using eight binary digits (0 b 00000000 to 0 b 11111111) or two hex digits (0×00 to $0 \times \mathrm{ff}$).

