
This version corrects a small typo in #3 (main()  bike()) Page 1 of 2

Name: Login: CLOSED BOOK

Quiz 2 – October 5, 2016 – ECE 264 Fall 2016
The following code compiles correctly but may have one or more bugs.
 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 struct Node {
 4 int value;
 5 struct Node* prev;
 6 struct Node* next;
 7 };
 8 int main(int argc, char *argv[]) {
 9 struct Node* hop = malloc(sizeof(*hop));
10 hop -> value = 1;
11 hop -> prev = NULL;
12 hop -> next = malloc(sizeof(*(hop -> next)));
13 struct Node* oat = hop -> next;
14 oat -> value = 9;
15 oat -> prev = hop;
16 oat -> next = hop;
17 struct Node* yam = hop -> next -> prev;
18 printf("yam: %d\n", yam -> value);
19 for(struct Node* curr = hop; curr != NULL; curr = curr -> next) {
20 printf("%d", curr -> value);
21 }
22 free(hop -> next);
23 free(hop);
24 return EXIT_SUCCESS;
25 }

Fill in the blanks.

1. Line 18 prints .
2. The rest of the program (lines 19 to 25) prints .
3. Write the stack and heap contents as of just before line 18 is executed. Include the

type, name, and value of all four local variables (including curr); the value of any
heap memory (broken out by fields); a lock to mark any allocation blocks; and the
addresses of all data, including the address of the next blank slot (so we can see the
size of everything). For any uninitialized memory, write "garbage". There is an
example on the other side of this sheet.

 Stack Heap

addr.* type* name* value part

fn
addr.

*
value ┌ ┐

200 int argc 1
arguments m

ain

 400 .value=1
204 char** argv  {"./gum"} .prev=NULL
212 void* return addr. .next=420
220 struct Node* hop 400 local vars 420 .value=9
228 struct Node* oat 420 .prev=400
236 struct Node* yam 400 .next=400
244 struct Node* curr garbage 440
252
Assume sizeof(int)==4, sizeof(void*)==8, and the program is called "gum".

yam: 1
1919191919191919…

This version corrects a small typo in #3 (main()  bike()) Page 2 of 2

Example

This example is just to clarify any questions about notation.

You do not need to write anything on this side of the quiz.

1 #include <stdio.h>
 2 #include <stdlib.h>
 3 struct Point {
 4 int x;
 5 int y;
 6 };
 7 int main(int argc, char *argv[]) {
 8 struct Point* p1 = malloc(sizeof(*p1))
 9 p1 -> x = 10;
10 p1 -> y = 11;
11 struct Point* p2 = malloc(sizeof(*p2))
12 p2 -> x = 12;
13 p2 -> y = 13;
14 free(p1);
15 free(p2);
16 return 0;
17 }

The following shows the stack and heap contents as of just before line 14.
 Stack Heap

addr.* type* name* value part

fn
addr.

*
value ┌ ┐

200 int argc 1
arguments m

ain

 400 .x = 10
204 char** argv  {"./gum"} .y = 11
212 void* return addr. 408 .x = 12
220 struct Point* p1 400

local vars
 .y = 13

228 struct Point* p2 408 416
236
Assume sizeof(int)==4, sizeof(void*)==8, and the program is called "gum".

You do not need to write anything on this side of the quiz.

