
1

Evaluation-Free Time-Series Forecasting Model Selection via
Meta-Learning

MUSTAFA ABDALLAH, Indiana University-Purdue University Indianapolis, USA
RYAN A. ROSSI, Adobe Research, USA
KANAK MAHADIK, Adobe Research, USA
SUNGCHUL KIM, Adobe Research, USA
HANDONG ZHAO, Adobe Research, USA
SAURABH BAGCHI, Purdue University, USA

Time-series forecasting models are invariably used in a variety of domains for crucial decision-making.
Traditionally these models are constructed by experts with considerable manual effort. Unfortunately, this
approach has poor scalability while generating accurate forecasts for new datasets belonging to diverse
applications. Without access to skilled domain-knowledge, one approach is to train all the models on the new
time-series data and then select the best one. However, this approach is nonviable in practice. In this work, we
develop techniques for fast automatic selection of the best forecasting model for a new unseen time-series
dataset, without having to first train (or evaluate) all the models on the new time-series data to select the best
one. In particular, we develop a forecasting meta-learning approach called AutoForecast that allows for the
quick inference of the best time-series forecasting model for an unseen dataset. Our approach learns both
forecasting models performances over time horizon of the same dataset and task similarity across different
datasets. The experiments demonstrate the effectiveness of the approach over state-of-the-art (SOTA) single
and ensemble methods and several SOTA meta-learners (adapted to our problem) in terms of selecting better
forecasting models (i.e., 2X gain) for unseen tasks for univariate and multivariate testbeds. AutoForecast
has also significant reduction in inference time compared to the naïve approach (doing inference using all
possible models and then selecting the best one), with median of 42X across the two testbeds. We release our
meta-learning database corpus (348 datasets), performances of the 322 forecasting models on the database
corpus, meta-features, and source codes for the community to access them for forecasting model selection and
to build on them with new datasets and models which can help advance automating time-series forecasting
problem. In our released database corpus, we unveil new traces of Adobe computing cluster usage for
production workloads.

CCS Concepts: • Computing methodologies→Machine learning; Feature selection;

Additional KeyWords and Phrases: Time-series forecasting, Model selection, AutoML, Meta-learning, Inference.

ACM Reference Format:

Mustafa Abdallah, Ryan A. Rossi, Kanak Mahadik, Sungchul Kim, Handong Zhao, and Saurabh Bagchi. 2023.
Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning. ACM Trans. Knowl. Discov. Data.
37, 4, Article 1 (January 2023), 40 pages. https://doi.org/10.1145/1122445.1122456

Authors’ addresses: Mustafa Abdallah, mabdall@iu.edu, Indiana University-Purdue University Indianapolis, Indianapolis,
IN, USA; Ryan A. Rossi, ryrossi@adobe.com, Adobe Research, San Jose, CA, USA; Kanak Mahadik, mahadik@adobe.com,
Adobe Research, San Jose, CA, USA; Sungchul Kim, sukim@adobe.com, Adobe Research, San Jose, CA, USA; Handong Zhao,
hazhao@adobe.com, Adobe Research, San Jose, CA, USA; Saurabh Bagchi, sbagchi@purdue.edu, Purdue University, West
Lafayette, IN, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
1556-4681/2023/1-ART1 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

1: Mustafa Abdallah et al.

1 INTRODUCTION
Accurate time-series forecasting at scale is critical for a wide range of industrial domains such
as cloud computing [59], supply chain [1], energy [15], and finance [55]. Most of the current
time-series forecasting solutions are built by experts and require significant manual effort in model
construction, feature engineering, and hyper-parameter tuning [8]. Hence, they do not scale to
generate high-quality forecasts for a wide variety of applications. Moreover, there is no learning
scheme that is uniformly better than all other learning schemes for all problem instances [85]. For
example, from our experiments (see Figure 3), we find empirically that no single forecasting model
triumphs in more than 0.7% of the datasets in our two training testbeds comprising 625 time series
(details in Section 6), i.e., there is no unique single model that works well on all datasets. A naïve
approach would be, given a new dataset, to evaluate the performance of thousands of available
models on the dataset to select the best forecasting model for the problem at hand. However, this
approach is practically infeasible due to the untenable time burden for every new problem.
In this work, we formulate the problem of automatic and fast selection of the best time-series

forecasting model as a meta-learning problem. Our solution avoids the infeasible burden of first
training each of the models and then evaluating each one to select the best model for a new unseen
time-series dataset, or even a new time window within a non-stationary dataset. A practically
important desideratum for any solution to this problem is that once the meta-learner L is trained
in an offline manner using a large corpus of time-series data, then we can use it to quickly infer the
best forecasting model. The quick inference requirement of this new problem, makes it challenging
to solve, yet practically important. Our meta-learner L is trained on the models’ performances on
historical datasets and the time-series meta-features of these datasets.

We emphasize that our time-series forecasting model selection meta-learning problem has several
unique characteristics and challenges compared to previous relatedmeta-learning problems, e.g., [25,
65, 84]. First, existing time-series forecastingmodels have different designs and different assumptions
around the characteristics of time-series (e.g., probabilistic, seasonal, traditional, etc.). Therefore,
different models perform differently depending on the characteristics that each dataset exhibits.
Thus, capturing the similarity among different datasets needs careful selection of representative
time-series meta-features. Second, the new meta-learning approach should capture the temporal
variations of the models’ performances over different time windows of the dataset. This is borne out
of our observation that the best time-series forecasting model for time window𝑤𝑡 is not necessarily
the best model for a subsequent time window𝑤𝑡+𝑘 (see Figure 4 in Section 5.3). Third, the number
of available time-series forecasting models is large (in thousands) and thus training each forecasting
model and then evaluating the suitability of each in inference leads to an unacceptable time burden
for most real-world scenarios. These challenges motivate the need for our approach.
Our solution. To solve the problem of automatic time-series forecasting model selection, we
propose a temporal meta-learning approach, called AutoForecast that selects the best time-series
forecasting model without a heavy evaluation burden. The schematic of AutoForecast with the
main components and their interactions is shown in Figure 1. There are two key intuitions behind
our approach. First, we learn the similarity across datasets through meta-features that capture key
characteristics of the datasets and then develop our “general meta-learner” that learns to predict the
performance of a model for a time window within a dataset. Second, we learn a model’s performance
evolution over successive time windows for the same dataset via our “temporal meta-learner”. We
train our meta-learner using a large model space which has over 320 forecasting models (Section 5.1).
We also generate more than 800 meta-features that represent five different types of meta-features
(simple, statistical, information theoretic, spectral-based, and landmarker), which reflect various
characteristics of the time-series datasets (see Table 13 for the full list of our meta-features and

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

Performance Tensor
𝑷 = 𝑃!, 𝑃", … , 𝑃#

(𝑇×𝑛×𝑚)

Training Datasets
𝒟$%&'(= 𝐷!, 𝐷", … , 𝐷(

Model Space

𝓜

𝝍

Meta-features
Extraction

Time Windows

𝓌
Meta-features

Tensor

(Offline) Meta-learner(s) Training

𝑭

(Online) Forecasting Model Selection
Meta-features

Extraction

𝝍

Testing Dataset
𝒟$)*$

𝑭𝒕𝒆𝒔𝒕

Time-series Meta-learner
𝜽

General Meta-learner
𝝓

𝑰

Selected
Model
"𝒎

Loss Function
(𝑴𝑺𝑬,𝑴𝑨𝑷𝑬,
𝐬𝑴𝑨𝑷𝑬)

General Meta-learner
𝚽

(Multi-Output Regression)

Feature-
Embedding

(PCA)

𝝓 𝜽

Model
Inference

Feature-
Embedding

(PCA)

Time-series Meta-learner
𝚯

(Time-series Regression)

Meta-learner (𝑳)

𝑳

Fig. 1. An overview of AutoForecast; components that transfer from offline to online (model selection)
phase are shown in blue. Given the two main inputs, the performance tensor P and the meta-features tensor
F, the meta-learner L learns two main components: general meta-learner (Φ) and time-series meta-learner
(Θ). These are then used online to quickly predict the performance of available models on the new test dataset
and pick the expected best model.

Section 3.4 for categories). We also consider diverse datasets so our meta-learning model becomes
generalizable to new time series datasets (Section 5.1).

To stimulate reproducible research on this topic, we publicly release the corpus of datasets, along
with their meta-features and the performances across hundreds of models, plus our source codes for
training and evaluation1. In particular, we are unveiling new traces of Adobe’s computing cluster
usage for production workloads in this corpus. Given a new (unseen) dataset, AutoForecast
automatically determines, using the meta-features and the meta-learners, the best forecasting
model among a large space of models, without the need to train and evaluate any of the different
forecasting models on this new dataset. AutoForecast is an important step towards automating
time-series forecasting pipeline.

The experiments demonstrate the effectiveness of our proposed approach where we validate our
meta-learning approach on both univariate and multivariate testbeds. In particular, we show the
superiority of our approach over the state-of-the-art (SOTA) time series forecasting models [46, 51,
66, 77, 81] (including DeepAR [66], DeepFactors [81], and Prophet [77]) and different meta-learning
approaches [37, 54, 88] (including simple and optimization-based meta-learners). Across all datasets,
AutoForecast is at least 2× better in selecting the best forecasting model, compared to the closest
baseline. Moreover, AutoForecast yields a significant reduction in inference time over the naïve
approach — AutoForecast has a 42×median inference time reduction averaged across all datasets.
This shows the prospect of AutoForecast as a possible solution to the challenging forecasting
model selection.

1The URL for our database and source codes is:
https://drive.google.com/drive/folders/1K1w1Ida5Cr15b5Fhidax-i-fNpWZjvet.
The Adobe traces are available from:
https://github.com/adobe-research/AutoForecast_ResourceUsageData.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

https://drive.google.com/drive/folders/1K1w1Ida5Cr15b5Fhidax-i-fNpWZjvet
https://github.com/adobe-research/AutoForecast_ResourceUsageData

1: Mustafa Abdallah et al.

Summary of Main Contributions. The key contributions of this work are as follows:
(1) Problem Formulation: We formulate time-series forecasting model selection in a novel light,

as a meta-learning problem.
(2) Temporal Learning of Performances: We propose a meta-learner that learns the models’

performances evolution over time windows of the datasets. Our meta-learner has two
sub-learners — the time-series meta-learner and the general meta-learner that are designed for
different data types with different time dependencies.

(3) Specialized Meta-features for Time-series Forecasting: We design novel time-series
landmarker meta-features to capture the unique characteristics of a time-series dataset toward
effectively capturing task similarity.

(4) Efficiency and Effectiveness: Given a new time-series dataset, AutoForecast selects the
best performing forecasting algorithm and its associated hyperparameters without requiring
any model evaluations, incurring negligible run-time overhead. Through extensive experiments
on our benchmark testbeds, we show that selecting a model by AutoForecast outperforms
SOTA meta-learners and popular forecasting models.

(5) Benchmark Data: We release our meta-learning database corpus (348 datasets), performances
of the 322 forecasting models, meta-features, and source codes for the community to access it
for forecasting model selection and to build on it with new datasets and models. As part of this,
we are unveiling new traces of Adobe’s computing cluster usage for production workloads.

Extensions over the Conference Version of the Work: This paper extends the conference
version of this work [3] in the following manner:

(1) We perform a detailed data-wise performance evaluation for each dataset in the two studied
testbeds (Section 5.3.4). Such evaluation shows the effect of dependency among the dataset
on the performance of our meta-learners.

(2) We collect the performances of additional conventional forecasting models (Trigonometric,
Box-Cox transform, ARMA errors, Trend, and Seasonal components (TBATS) [20],
Holt-Winters [14], Exponential Smoothing [28], and ESRNN [72]) for our meta-learning
problem. We also include few AutoML solutions (AutoArima [35], AutoETS [36], and
Auto-AI-TS [69]) in our evaluation.

(3) We add several interpretable input meta-feature values for all datasets in our testbed (e.g.,
mean, median, variance, skeweness, kutosis, absolute energy, and benford correlation) for
each of the individual time series in that testbed (Section 5.3.8). Such features values show
the diversity in the datasets of our testebds.

(4) We explain in details the generation of our novel landmarker meta-features (Appendix B.3)
and provide a full list of the meta-features we used in our work (Table 13). This can help
further the replication of our results.

(5) We perform an experiment to evaluate the consistency and stability of AutoForecast against
the brute force approach that ranks all forecasting algorithms (Section 5.3.7).

(6) We provide the implementation details of the forecasting models in our model space used to
study the meta-learning problem formulated in our current work (Appendix C).

(7) We add the following micro evaluations in our current version
(a) Tuning of Time-series Meta-learner: We show the effect of different hyper-parameters used
in the training of the time-series meta-learner Θ on the performance of the selected model
by Θ (Appendix E.1).
(b) Time overhead of AutoForecast relative to training of selected model: We show via
aggregate statistics that AutoForecast incurs only negligible overhead relative to actual
training of the selected model (Appendix E.2).

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

(c) Dataset-wise inference time comparison: We pick several random groups of datasets and
show the time (in seconds) that AutoForecast takes versus the naïve approach for forecasting
model selection (Appendix E.3).

(8) For better readability of our work, we add the following material
(a) A table summarizing the main notations used in our work (Table 12).
(b) A table summarizing the statistics of our two time-series data testbeds (Table 14).

The rest of the paper is organized as follows. Section 2 presents the related literature. Section 3
introduces the problem formulation. The proposed framework of AutoForecast is presented in
Section 4. The experimental setup and experiments on our testbeds is conducted in Section 5. A
discussion about the applicability of our work and possible extensions is presented in Section 6.
Section 7 concludes our paper.

2 RELATEDWORK
2.1 Meta-learning in Time-series Forecasting
There are several works that considered meta-learning for time-series analysis [32, 43, 57, 64, 80].
The work [19] presented 99 rules utilizing 18 time series features to make forecasts for economic and
demographic time series. The work [60] introduced the term “meta-learning” in the context of time
series model selection. The work [43] explored different meta-learning approaches for time series
forecasting where they used ARIMA models, exponential smoothing models, random walk model,
and a neural network model as the main forecasting models for performance collection for their
meta-learning approaches. The work [83] developed a meta-learning framework for forecast-model
selection and reduced time series dimensionality through principal component analysis. The
work [42] proposed a neural network-based meta-learning framework for forecast-model selection.
Among these, a few works considered simple ranking-based [43, 49] and rule-based [6, 80]
meta-learners. The works [32, 64] applied a neural network time-series forecasting model trained
on a source (energy) dataset and fine-tuned it on the target (energy) dataset. However, these works
did not consider using meta-learning for the general problem of forecasting model selection that
we consider in our current work.

There also exist a few works that have explored model selection problem using model
combination [23, 75, 78]. However, their problem domain of ensemble learning is different from
our problem of model selection. This is due to the fact that ensemble learning constitutes building
multiple models for the same task and does not in itself involve learning from prior experience
on other tasks. In contrast to those works, AutoForecast can select among any (heterogeneous)
set of methods. Finally, there is a line of work that considered empirical analysis for performance
estimation [7, 12, 69] and model selection [13, 76] in time-series forecasting. However, these works
have several distinctions from our work: (i) the need for evaluating all forecasting models in
inference and (ii) providing an analysis of the ranking ability of performance estimators without
having a meta-learner. In contrast, our meta-learner learns how to automatically select the best
model and can capture the dependence within the same dataset.

There exist several works that have exploredmodel selection problem using ensemble learning [23,
51, 75, 87], parameter-tuning transfer learning [82], and in-sample model selection [61]. In particular,
the work [51] (officially known as FFORMA) is the successor of the work [76] (officially known as
FFORMS [74]). The main insight leading to developing FFORMA from FFORMS was that model
combination is better than model selection. While FFORMS [76] selects a single model, FFORMA
learns weights for the models and then combines (or ensembles) the predictions according to these
weights. This FFORMA framework earned the second place in the popular M4 competition. However,
those works apply only to this specific model class and not for the general model selection case. For

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

example, ensemble learning constitutes building multiple models for the same task and does not
in itself involve learning from prior experience on other tasks. In contrast to those lines of work,
our proposed AutoForecast can select among any (heterogeneous) set of methods. Furthermore,
FFORMA considers a base model pool that nowadays seems dated, with only local forecasting
methods, and most of them not suitable for series with multiple seasonalities. Recent works have
built on FFORMA via using different base model pools and leveraging different meta-learning
methods [10, 30]. In particular, the work [30] considered global forecasting methods along with
traditional univariate forecasting algorithms. The goal of global forecasting algorithms is to train
across different time series, but they have the limitation of lower time efficiency (i.e., they need
huge computational time for training and testing).

2.2 Few-shot Learning & Transfer Learning
Few-shot learning has been recently leveraged for automating machine learning pipeline [55, 63,
73, 89]. In particular, the works [63, 73, 89] investigated different problems outside the domain
of time-series forecasting. The work [55] applied meta-learning for zero-shot univariate time
series forecasting. However, that work has the limitations of focusing on solving the cold start
problem (learning model parameter initialization that generalizes better to similar tasks) which is
different from our forecasting model selection problem, considering different models from the same
N-BEATS architecture [56], and tackling only univariate time-series datasets. We emphasize that our
framework can use N-BEATS as one forecasting algorithm in our model space. Finally, there exist
few works that applied transfer learning for time series classification (TSC) [2, 21, 53, 82]. These
works however have two distinctions from our work. First, they transfer the learned network’s
weights to another network that is also trained on a target dataset. Second, the TSC problem is
different from our forecasting problem.

2.3 Hyperparameter Optimization
Automated hyperparameter optimization (HPO) has received a surge of attention in the machine
learning domain in the last decade [22]. In particular, decision-theoretic [9], bandit-based [45],
meta-heuristic [47] and Bayesian optimization (BO) techniques [70] are various SOTA approaches
for doing HPO. We emphasize that all of these approaches rely on multiple model evaluations (i.e.,
performance queries) which are computationally expensive and typically start from scratch for
every new dataset and hence lead to huge overhead when applied to the time-series forecasting
model selection problem.

2.4 Meta-learning in ML Pipelines
Meta-learning has recently received significant attention for automating ML pipelines for a
variety of different problems outside the domain of time-series forecasting including supervised
learning [24, 84], classification and regression [25, 65], unsupervised learning [4], and among other
applications [50]. In particular, meta-learning has been leveraged for such automation by designing
models for new tasks based on prior experience [62, 79]. These meta-learners are very different
from ours and prior works in meta-learning for time series forecasting model selection.

3 PROBLEM FORMULATION
We address the problem of model selection for time-series forecasting via the meta-learning
approach. We start by introducing our main meta-learning components, which are historical
datasets, forecasting model space, and time windows.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

3.1 Meta-learning Components
Our proposed meta-learner AutoForecast depends on:

• Historical Datasets: A collection of historical time-series forecasting datasets D𝑡𝑟𝑎𝑖𝑛 =

{𝑫1,𝑫2, · · · ,𝑫𝑛}, namely, a training database, where 𝑛 is the number of the historical datasets
in D𝑡𝑟𝑎𝑖𝑛 . Note that 𝑫𝑖 ∈ R𝑛𝑖×𝑣𝑖 , where 𝑛𝑖 is the number of observations of the dataset 𝑫𝑖

and 𝑣𝑖 is the number of variables in 𝑫𝑖 .
• Forecasting Model Space: The forecasting models that define the model space (set), denoted
as M = {𝑀1, 𝑀2, · · · , 𝑀𝑚}, where𝑚 is the size of the model space. We show the details of
the implementations of our forecasting models in the model space in Appendix C.

• Time Windows: For each dataset 𝑫𝑖 ∈ D𝑡𝑟𝑎𝑖𝑛 , we sample random 𝑇 windows from 𝑫𝑖 ,
where each sample window 𝑤𝑡 from dataset 𝑫𝑖 has length |𝑤𝑡 | (smaller than the dataset
length).

Window Notation: Time window represents a sequence of time observations in the time series.
In particular, 𝑤𝑡 denotes the 𝑡-th time window, and |𝑤𝑡 | is the length of that time window (e.g.,
|𝑤10 | = 16 means that the 10th time window of the dataset has a length of 16 observations).

3.2 Model Design and Performance Tensor
Model Design: Now, we explain the model space design in our solution (AutoForecast). For our
forecasting model selection problem, we define our model as follows.

Definition 1. A model 𝑀𝑖 ∈ M is given by the tuple 𝑀𝑖 = (𝑎𝑖 , h𝑖 , 𝑔𝑖 (·)), where 𝑎𝑖 is the
forecasting algorithm, h𝑖 is the hyperparameter vector for the forecasting algorithm 𝑎𝑖 , and 𝑔𝑖 (·) :
R𝑛𝑖×𝑣𝑖 → R𝑛𝑖×𝑣𝑖 is the time-series data representation.

We emphasize that h𝑖 consists of hyper-parameters of the forecasting algorithm (e.g., number
of RNN layers in DeepAR [66]) and that 𝑔𝑖 (·) represents optional transformations of the original
time-series data (e.g., exponential smoothing [39]; see Table 1).
Performance Tensor: Now, we introduce the performance tensor:

Definition 2. Given a training databaseD𝑡𝑟𝑎𝑖𝑛 and a model spaceM, we define the performance
tensor P ∈ R𝑇×𝑛×𝑚 as

P = {𝑷1, 𝑷2, · · · , 𝑷𝑇 },
where 𝑇 is the number of the time windows, 𝑷𝑘 = (𝑝𝑖, 𝑗

𝑘
) ∈ R𝑛×𝑚 and the element 𝑝𝑖, 𝑗

𝑘
= 𝑀 𝑗 (𝑤𝑘 (𝑫𝑖))

denotes the 𝑗𝑡ℎ model 𝑀 𝑗 ’s performance on the time window 𝑤𝑘 of the 𝑖𝑡ℎ training dataset 𝑫𝑖 . We
denote 𝒑𝑖

𝑘
=
[
𝑝
𝑖,1
𝑘

· · · 𝑝
𝑖,𝑚

𝑘

]
as the performance vector of all models inM on time window𝑤𝑘 of

the dataset 𝑫𝑖 .

Note that𝑀 𝑗 (𝑤𝑘 (𝑫𝑖)) denotes the performance of a model𝑀 𝑗 ∈ M on a time window𝑤𝑘 which
is given by the forecasting error (i.e., mean square error “MSE”) of that model on that window. The
performance tensor represents the prior experience that the meta-learner will leverage to perform
efficiently on the new unseen task (time-series).
Illustrating Example: Figure 2 illustrates the different components in our Tensor in which

each component 𝑷𝑘 represents the performance matrix on a time window 𝑡𝑘 . For 𝑷𝑘 , each row
represents a different dataset in the training database and each column represents one model in the
mode space. Thus, the element 𝑝𝑖, 𝑗

𝑘
= 𝑀 𝑗 (𝑤𝑘 (𝑫𝑖)) denotes the 𝑗𝑡ℎ model𝑀 𝑗 ’s performance on the

time window𝑤𝑘 of the 𝑖𝑡ℎ training dataset 𝑫𝑖 . Note that𝑀 𝑗 (𝑤𝑘 (𝑫𝑖)) is given by the forecasting
error (i.e., mean square error “MSE”) of that model on that window.

This motivates us to define our problem formally, as shown below.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

t1 tn

0.3 0.2 0.1
0.4 0.5 0.6
0.9 0.3 0.8

… …

Models Performances
(MSE)

Da
ta

se
ts 0.4 0.7 0.1

0.9 0.3 0.4
0.2 0.7 0.6

𝐏𝐏𝟏𝟏 𝐏𝐏𝐧𝐧

tT

𝐏𝐏𝐓𝐓

0.1 0.5 0.3
0.4 0.6 0.9
0.2 0.7 0.2

Time Window
Index

……

Fig. 2. An illustrating Example ofModel Selection and Tensor concept inAutoForecast. The best performance
(lowest error) is given in bold text.

3.3 Forecasting Model Selection Problem Statement
We now give the main statement of our time-series forecasting model selection problem.

Definition 3. Time-series forecasting model selection problem. Given a new input task
(dataset) 𝑫𝑡𝑒𝑠𝑡 (i.e., unseen time-series forecasting task), the time-series forecasting model selection
problem is then stated as follows: for each time window𝑤𝑡 in 𝑫𝑡𝑒𝑠𝑡 , select the best model 𝑀̂𝑡 ∈ M to
employ on that window. Formally, such selection problem is given by

𝑀̂𝑡 ∈ arg max
𝑀𝑗 ∈M

𝑀 𝑗 (𝑤𝑡 (𝑫𝑡𝑒𝑠𝑡)), 𝑡 ∈ {1, 2, . . . ,𝑇 }. (1)

Our problem can be described as follows. We are given a new time series dataset and we have to
select the best model to perform forecasting on it. We have a prior bag of models from which we
have to select the best candidate for the forecasting task. An additional subtlety is that within the
new time series, we may have to select different best models for different time windows.

3.4 Time-series Meta-Features
A key component of AutoForecast is the extraction of meta-features that aims to capture the
important characteristics of a time-series dataset. To achieve such a goal, we extract meta-features
(defined below) for each time-series dataset.

Definition 4. Given a time-series dataset 𝑫𝑖 , we define the meta-features tensor F𝑖 =

{𝑭 𝑖
1, · · · , 𝑭 𝑖

𝑇
} ∈ R𝑇×𝑑×𝑣𝑖 , where the meta-features matrix 𝑭 𝑖

𝑘
∈ R𝑑×𝑣𝑖 denotes the set of the meta

features for the time window𝑤𝑘 of the dataset 𝑫𝑖 , given by

𝑭 𝑖
𝑘
≜ {𝜓 (𝑤𝑘 (𝑫𝑖)) :𝜓 : R |𝑤𝑖 |×𝑣𝑖 → R𝑑×𝑣𝑖 }, (2)

where𝜓 (·) : R |𝑤𝑖 |×𝑣𝑖 → R𝑑×𝑣𝑖 defines feature extraction module in AutoForecast and 𝑑 denotes
the number of the meta-features.2
The Meta-feature Extractor Ψ: In words, the meta-feature extractor Ψ takes the row data of

each time series window𝑤𝑘 , which has length |𝑤𝑘 |, as input. Then, it generates all meta-features
for that window. For Univariate datasets we have 𝑣𝑖 = 1, where we have one variable for the
time-series. This kind of datasets is the traditional single time-series which usually consists of
single variable that need to be predicted. Formally, a time-series dataset 𝑫𝑖 is single-variate if
𝑣𝑖 = 1. For Multivariate Time-series Datasets, we consider two main types (subcategories) of the
Multivariate datasets which are (i) Multivariate Homogeneous dataset that consists of multiple
time-series in which each time-series represents the same metric (e.g.,, collection of 𝑟 time-series
2Note that we do feature embedding (PCA), shown in Figure 1, to get the final meta-features tensor 𝑭𝑖 . Such embedding
eliminates redundancy among features.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

representing CPU usage of 𝑟 different machines). In this type, 𝑣𝑖 = 𝑟 (the number of different
time-series for that same measurement), (ii) Multivariate Heterogeneous dataset in which each
time-series column represents a different measurement (e.g.,, wind speed, humidity, temperature).
In this type, 𝑣𝑖 = |𝑐𝑜𝑙𝑢𝑚𝑛𝑠 (𝑫𝑖) | which is the number of the different variables for the time-series
dataset. For the multi-variate dataset, the output of Ψ is a matrix that has 𝑑 rows and 𝑣𝑖 columns.
Meta-Features Categories: The set of meta-features in our work that capture the main

characteristics of a dataset can be organized into five categories [79]: simple (general task properties),
statistical (properties of the underlying dataset distributions), information-theoretic (entropy
measures), spectral (frequency domain properties), and landmarker (forecasting models’ attributes
on the task) features. The idea of our proposed landmarker features is to apply a few of the fast,
easy-to-construct time-series forecasting models on a dataset and extract features from (i) the
structure of the estimated forecasting model, and (ii) its output performance scores. The complete
meta-features list in AutoForecast are explained in Section 5.1 and Appendix B. In particular, the
full list of our meta-features are shown in Table 13.

We summarize our notations in Table 12 (Appendix A).
Having introduced the problem statement and the main components of our meta-learner, we

next present our solution framework, AutoForecast.

4 AUTOFORECAST
AutoForecast consists of two-phases: offline training of the meta-learner and online inference
that aims at selecting the appropriate model at test time. We argue that running time of the offline
training phase is not critical since it is done only once. On the contrary, forecasting model selection
for a new time-series dataset should incur small run-time overhead since it is critical for quick
selection of the forecasting model. We now explain our meta-learning approach and its components.

4.1 Meta-Learning Objective and Training
We show the overview of the major components of AutoForecast in Figure 1. We highlight the
components transferred from offline to online stage (model selection) in blue; namely, meta-feature
extractors 𝜓 , feature embedding, time-series meta-learner Θ, and general meta-learner Φ. The
meta-learner L has three main inputs; the performance tensor P, the meta-features tensor F, and
the loss function. In the offline training of the meta-learner L, it learns two components Θ and Φ.
The time-series meta-learner Θ captures the temporal relationship between the meta-features of
the consecutive time windows within the same dataset and the evolution of the performances of the
models on these windows. On the other hand, the general meta-learner Φ predicts the best model
for each task (window) without taking into account the temporal relationship among different time
windows within the same dataset.
Rationale for Having both General and Time-series Meta-learners: The rationale of having
both meta-learners is the fact that the temporal dependency among different time windows depends
on the dataset type. Some datasets have strong temporal dependency which would be predicted
efficiently by the time-series meta-learner Θ while others datasets would have weak temporal
dependence among different windows performances inwhich the general meta-learnerΦ is expected
to perform better. We show the results of such different datasets for our two testbeds in performance
benchmark folder within our anonymized link (provided in Section 1).
General Meta-learner Φ: We propose multi-output regression model for training our general
meta-learner Φ. From running all the models inM on different time windows𝑤𝑡 with 𝑡 ∈ {1, . . . ,𝑇 }
for all datasets in the training databaseD𝑡𝑟𝑎𝑖𝑛 , we collect a set of 𝑁 = 𝑇 ×𝑛 distinct training samples
of the meta-features matrix and the performance vector (𝑭 𝑖

𝑡 ,𝒑
𝑖
𝑡), with 𝑡 ∈ [1,𝑇] and 𝑖 ∈ [1, 𝑛].

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

Thus, the multi-output regression model is given by

𝒑̂𝑖
𝑡 = Φ

(
𝑭 𝑖
𝑡 , 𝜷

)
; 𝑡 ∈ [1,𝑇], 𝑖 ∈ [1, 𝑛], (3)

where Φ denotes the regression function (e.g., linear, NN) and 𝜷 are the unknown regression
parameters. Thus, the general meta-learner’s objective, denoted by loss function 𝐿Φ, is given by

𝐿Φ =

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

𝐿(𝒑̂𝑖
𝑡 ,𝒑

𝑖
𝑡), (4)

where 𝐿 is the loss metric (e.g., MSE, MAPE, etc). Therefore, Φ learns the mapping between the
meta-features of a time window in a dataset and the corresponding best model in the model space.
LSTM-based Time-series Meta-learner Θ: The goal of the time-series meta-learner Θ is to learn
how the models’ performances evolve with the time-series meta-feature matrices over time. For
this purpose, we propose time-series multi-regression model to learn such performance evolution.
For any dataset 𝑫𝑖 , given the time-series meta-feature matrices 𝑭 𝑖

1, 𝑭
𝑖
2, . . . , 𝑭

𝑖
𝑡 and the history of the

performance vectors 𝒑𝑖
1, . . . ,𝒑

𝑖
𝑡−1, we aim to predict performance vector 𝒑𝑖

𝑡 of current time window
𝑤𝑡 . The time-series regression equation would be

𝒑̂𝑖
𝑡 = Θ

(
𝑭 𝑖

1, . . . , 𝑭
𝑖
𝑡−1, 𝑭

𝑖
𝑡 ,𝒑

𝑖
1, . . . ,𝒑

𝑖
𝑡−1

)
, 𝑖 ∈ [1, 𝑛], 𝑡 ∈ [1,𝑇], (5)

where Θ denotes the time-series regression function.
We address such issue of the increasing length of LSTM input in equation 5 via adapting long-short

term memory (LSTM) inputs for our time-series meta-learner Θ. In particular, we denote 𝑿𝑡 as the
input at the time window𝑤𝑡 which is given by

𝑿𝑡 =
[
𝑭 𝑖

1,𝒑
𝑖
1, 𝑭

𝑖
2,𝒑

𝑖
2, · · · , 𝑭 𝑖

𝑡−1,𝒑
𝑖
𝑡−1, 𝑭

𝑖
𝑡

]
. (6)

Note that the length of an LSTM’s input (which is 𝑿𝑡 in equation 6) will be different depending on
the time window index 𝑡 of such LSTM. For instance, for the LSTM for the first time window𝑤0
we have 𝑿0 =

[
𝑭 𝑖

0
]
. In other words, the input of the LSTM of the first window𝑤0 is given by the

feature vector of that window 𝑭 𝑖
0 . On the other hand, for the second time window𝑤1 we have

𝑿1 =
[
𝑭 𝑖

0,𝒑
𝑖
0, 𝑭

𝑖
1
]
.

In other words, the input of the LSTM of the second window𝑤1 is given by the feature vector of
that window 𝑭 𝑖

1 , the feature vector of prior window 𝑭 𝑖
0 , and the performance vector of the prior

window 𝑭 𝑖
0 . For the later time window (as 𝑡 advances to 𝑇), the input sequence 𝑿𝑡 in equation 6 in

which both Ft’s and pt’s keep increasing, and reaching 2*(T-1)+1 at its maximal length.
The predicted LSTM’s output denoted by 𝒑̂𝑖

𝑡 is a function of 𝑿𝑡 . We now provide the detailed
equations of such relation between 𝒑̂𝑖

𝑡 and 𝑿𝑡 . The LSTM cell at time 𝑡 has two recurrent features,
denoted by 𝒉𝑖𝑡 and 𝒄𝑖𝑡 , called the hidden state and the cell state, respectively. The LSTM cell consists
mainly of three layers (the forget gate layer, the input gate layer, and the output gate layer). The
activation of those layers is given by

𝒇 𝑖𝑡 = 𝜎
(
𝑾𝑓 · [𝒉𝑖𝑡−1,𝑿𝑡] + 𝒃𝑓

)
,

𝒍𝑖𝑡 = 𝜎
(
𝑾𝑙 · [𝒉𝑖𝑡−1,𝑿𝑡] + 𝒃𝑙

)
,

𝒐𝑖𝑡 = 𝜎
(
𝑾𝑜 · [𝒉𝑖𝑡−1,𝑿𝑡] + 𝒃𝑜

)
.

where 𝑾𝑓 ,𝑾𝑙 ,𝑾𝑜 and 𝒃𝑓 , 𝒃𝑙 , 𝒃𝑜 ∈ R𝑚 denote the weights matrices and the biases of the three
layers, respectively. These are the parameters to be learned during the training of the time-series
meta-learner. Moreover, the cell update u𝑖𝑡 is constructed with a tanh activation function as follows.

u𝑖
𝑡 = tanh

(
𝑾𝑢 · [𝒉𝑖𝑡−1,𝑿𝑡] + 𝒃𝑢

)
,

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

where𝑾𝑢 and 𝒃𝑢 ∈ R𝑚 are further weight and bias parameters to be learned. Thus, the new cell
and hidden states at time 𝑡 are

𝒄𝑖𝑡 = 𝒇 𝑖𝑡 · 𝒄𝑖𝑡−1 + 𝒍𝑖𝑡 · u𝑖
𝑡

𝒉̂𝑖𝑡 = 𝒐𝑖𝑡 · tanh(𝒄𝑖𝑡)

Finally, the output equations of the LSTM cell are given by

V𝑖
𝑡 =𝑾𝑣𝒉̂

𝑖
𝑡 + 𝒃𝑣

𝒑̂𝑖
𝑡 = 𝜎 (V𝑖

𝑡),

with𝑾𝑣 and 𝒃𝑣 ∈ R𝑚 are learned weight and bias parameters. This gives the relationship between
the input 𝑿𝑡 and the predicted performance output vector 𝒑̂𝑖

𝑡 .
During training, Θ learns the parameters 𝑾𝑓 , 𝒃𝑓 ,𝑾𝑙 , 𝒃𝑙 ,𝑾𝑜 , 𝒃𝑜 ,𝑾𝑢, 𝒃𝑢,𝑾𝑣, 𝒃𝑣 which are the

weights and biases of the forget, input, and output layers and cell updates, respectively. Thus,
the objective of the LSTM time-series meta-learner Θ, is to minimize the loss denoted by 𝐿Θ, given
by

𝐿Θ =

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

𝐿(𝒑̂𝑖
𝑡 ,𝒑

𝑖
𝑡). (7)

We emphasize that Θ learns the appropriate current model (from the model space) given both the
history of the meta-features and performance vectors over time windows.
Meta-learner Objective: Having established the two main components, the general meta-learner
Φ and the time-series meta-learner Θ, we now define the objective of our meta-learner L, given by
a linear combination of the two components as follows:

min
𝜷,𝑾𝑓 ,𝑾𝑙 ,𝑾𝑜 ,𝒃𝑓 ,𝒃𝑙 ,𝒃𝑜 ,𝑾𝑢 ,𝒃𝑢 ,𝑾𝑣 ,𝒃𝑡

𝑎𝐿Φ (F,P) + (1 − 𝑎)𝐿Θ (F,P), (8)

The parameter 𝑎 defines the relative weight of the two meta-learners. In our experiments, we chose
𝑎 = 0.5 for training our meta-learner. The meta-learner L learns jointly general meta-learner Φ
(Equation 4) and time-series meta-learnerΘ (Equation 7) givenmeta-learner inputs, the performance
tensor P and the meta-features tensor F. By definition, this meta-learner L optimizes the loss over
all datasets and all time windows.

4.2 Online Inference And Model Selection
In the online mode of AutoForecast, we aim to make use of the trained meta-leaner L to quickly
infer the best model for the current task. Given a new time-series dataset 𝑫𝑡𝑒𝑠𝑡 , AutoForecast first
computes the corresponding meta-features tensor F̂𝑡𝑒𝑠𝑡 = 𝜓 (𝑫𝑡𝑒𝑠𝑡). Those time-series meta-features
are then embedded (using PCA) to obtain the final meta-features tensor 𝑭𝑡𝑒𝑠𝑡 . Then, in the model
inference, as shown in Figure 1, the model set performances are predicted for each available model
in M. The model 𝑀̂𝑡 with the lowest predicted (by L) error score on the time window𝑤𝑡 of 𝑫𝑡𝑒𝑠𝑡

is chosen as the selected model for that window𝑤𝑡 . Such a process is repeated for all time windows
𝑤0,𝑤1, . . . ,𝑤𝑇 of 𝑫𝑡𝑒𝑠𝑡 .

Now, we explain such model selection process for each time window across the time windows
𝑤0,𝑤1, . . . ,𝑤𝑇 of 𝑫𝑡𝑒𝑠𝑡 as follows. For the first window (𝑤0), the inference is given by 𝑀̂0 ∈
arg min𝑀̄∈M L(𝑭 𝑡𝑒𝑠𝑡

0). For any other window𝑤𝑡 (𝑡 > 0), the time-series meta-learner Θ inference
depends on the history of the meta-features and the history of the models’ performances as
follows 𝑀̂Θ

𝑡 ∈ arg min𝑀̄∈M Θ(𝑭 𝑡𝑒𝑠𝑡
0 , . . . , 𝑭 𝑡𝑒𝑠𝑡

𝑡−1 , 𝑭
𝑡𝑒𝑠𝑡
𝑡 , 𝒑̂𝑡𝑒𝑠𝑡

0 , . . . , 𝒑̂𝑡𝑒𝑠𝑡
𝑡−1). On the other hand, the general

meta-learner Φ inference depends on the predicted (regression) output on the meta-features of

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

current time window where 𝑀̂Φ
𝑡 ∈ arg min𝑀̄∈M Φ(𝑭 𝑡𝑒𝑠𝑡

𝑡). Thus, the final selected model is given by

𝑀̂𝑡 ∈ arg min
𝑀̄∈{𝑀̂Φ

𝑡 ,𝑀̂
Θ
𝑡 }

𝒑̂𝑡𝑒𝑠𝑡
𝑡 (𝑀̄). (9)

We emphasize that tie between models can happen in online inference (i.e., two or more models
can have an identical predicted performance). We built upon the several tie breaking techniques
that have been examined in the literature [11, 40], but usually such a choice does not have a strong
influence on the performance of AutoForecast. For making the decision between the model
selected by the general meta-learner Φ and that selected by the time-series meta-learner Θ, we
choose the model with the best performance (i.e., least predicted error score) (Equation 9).

4.3 Inference Time Complexity
Recall that the number of meta-features is 𝑑 and the number of models in our model space M is𝑚.
The time complexity for the inference part of the general meta-learner Φ is O(𝑑). On the other
hand, the time complexity of the time-series LSTM meta-learner Θ is given by O(𝑑 × |𝑋𝑡 |), where
|𝑋𝑡 | is the length of the input sequence. Therefore, AutoForecast’s inference time is given by
O(𝑑 × |𝑋𝑡 |). We emphasize that the inference times of the naïve method is much larger since it is
given by O(∑𝑚

𝑖=1 𝐼𝑖) (summation of inference time of all algorithms), where 𝐼𝑖 is the inference times
of forecasting algorithm 𝑎𝑖 . Notice that we provide quantitative measurements for the difference
in inference time between our approach, AutoForecast, and other approaches including naïve
method and baseline meta-learners in Section 5.3.5.

4.4 Intuition of Selecting Different Forecasting Models within the Same Dataset
We now provide details about the applicability of our meta-learning approach in which we may
select different forecasting models for different time windows within the same dataset. First,
we reemphasize that there are temporal variations of the models’ performances over different
time windows of the same dataset (e.g., Figure 4 in Section 5.3 shows that the best time-series
forecasting model for time window 𝑤𝑡 is not necessarily the best model for a subsequent time
window𝑤𝑡+1). Such point can also be explained due to the fact that each time window of the dataset
may have different characteristics (e.g., the time series of the status of a financial company can
have such difference in which a healthy condition would be different from financially distressed
condition). Therefore, our meta-learning approach capture such variation within the dataset using
our time-series meta-learner Θ. On the other hand, sticking to one forecasting model and using it
for the entire dataset may lead to higher forecasting error (e.g., we refer to our Average Rank and
Hit-at-𝑘 accuracy in Section 5.3 where our meta-learner outperforms the performance of Global
best and other SOTA forecasting models).

From the user perspective, there are two possible scenarios for implementing our framework on
real-world applications which are: (i) The user may not know such low-level best model selection
and our algorithm selects the best forecasting model under-the-hood and then generates the
required future forecasting for the user, or (ii) The user selects a specific time window in the dataset
and then receives from our framework a list which generates a list with the top-𝑘 forecasting models
along with associated expected error (MSE); generated from our meta-learning inference. The first
solution (i) would be more appropriate for high-level users while the second solution (ii) can help
scientists in enterprises that have background about different designs of such forecasting models.
Note that both solutions can work in real-time (i.e., we refer to our inference time evaluation results
in Section 5.3.5).

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

Table 1. Time-Series Forecasting Model Space. See hyperparameter definitions for various algorithms from
GluonTS [5] and statsmodels [68]. The number of models (last column) is all possible combinations of
hyperparameters and data representations. It also provides the main hyperparameters tuned for the baseline
forecasting algorithms in our evaluation.
Forecasting Algorithm HyperParameter 1 HyperParameter 2 Data Representation Total

DeepAR (local) num_cells = [10,20,30,40,50] num_rnn_layers = [1,2,3,4,5] {Exp_smoothing, Raw} 50
DeepFactors (local) num_hidden_global = [10,20,30,40,50] num_global_factors = [1,5,10,15,20] {Exp_smoothing, Raw} 50

Prophet changepoint_prior_scale = [0.001, 0.01, 0.1, 0.2, 0.5] seasonality_prior_scale = [0.01, 0.1, 1.0, 5.0, 10.0] {Exp_smoothing, Raw} 50
Seasonal Naive season_length = [1,5,7,10,30] N/A {Exp_smoothing, Raw} 10
Gaussian Process cardinality = [2,4,6,8,10] max_iter_jitter = [5,10,15,20,25] {Exp_smoothing, Raw} 50

Vector Auto Regression cov_type= {“HC0”,“HC1”,“HC2”,“HC3”,“nonrobust”} trend = {‘n’, ‘c’, ‘t’, ‘ct’ } {Exp_smoothing, Raw} 40
Random Forest Regressor n_estimators = [10,50,100,250,500,1000] max_depth = [2,5,10,25,50,’None’] {Exp_smoothing, Raw} 72

322
Baseline Algorithm HyperParameter 1 HyperParameter 2 Data Representation Total

Auto Arima n_fits = [10,20,30,40,50] max_d = [1,2,3,4,5] {Exp_smoothing, Raw} 50
AutoETS model = {‘ZMZ’, ‘AZZ’ } season_length = [1,5,7,10,30] {Exp_smoothing, Raw} 20

Auto-AI-TS score_type = [‘rmse’, ’normalized_rmse’] model_type= [‘best’, ‘prophet’, ‘stats’, ‘ARIMA’, ‘SARIMAX’, ‘VAR’] {Exp_smoothing, Raw} 24
ESRNN dilations = [1, 4, 24, 168] seasonality = [24, 168] {Exp_smoothing, Raw} 16

Holt-Winters season_length = [1,2,7,10,30] error_type = [‘A’,’m’] {Exp_smoothing, Raw} 20
Exponential_Smoothing smoothing_level =[0.2,0.5,0.8,1] smoothing_slope = [0.2,0.5,0.8,1] {Exp_smoothing, Raw} 32

TBATS use_box_cox = {False, True} use_trend= {False, True} {Exp_smoothing, Raw} 8

5 EXPERIMENTS
We evaluate AutoForecast by designing experiments to answer the following research questions:
(1) Does employing AutoForecast for time-series forecasting model selection yield improved

performance, as compared to no model selection, as well as other selection techniques (such as
meta-learners adapted from the AutoML domain)?

(2) How much reduction in inference time does AutoForecast give over the naïve method?
(3) How does performance change with different datasets with different temporal dependencies?
(4) How much run-time overhead does AutoForecast incur preceding training of selected model?

5.1 Experimental Setup
Models and Performance Collection: By pairing seven SOTA time-series forecasting algorithms
(which are DeepAR [66], Deep Factors [81], Prophet [77], Seasonal Naive [34], Gaussian Process [86],
Vector Auto Regression3 [44], and Random Forest Regressor [46]) and their corresponding
hyperparameters, and using different data representation methods, we compose a model set M
with 322 unique models (see Table 1 for the complete list).4 For our testbeds, we first generate
the performance tensor P, by evaluating the models fromM against the benchmark datasets in
each testbed. For consistency, all models are built using the GluonTS [5], Scikit-learn [58], and
Statsmodels [68] Python libraries on an Intel i7 @2.60 GHz, 16GB RAM, 8-core workstation.
Time-series Meta Features: There are prior works that generated standard time-series

features [26], tsfresh [16] (that we used for generating part of our meta-features).
We now provide details of our meta-features (shared with our database and source codes in the

link provided in Section 1). For each dataset, we generate a meta-feature vector that consists of
more than 800 meta-features where some of them are based on [79]. Specifically, our meta-features
can be categorized into (1) simple features, (2) statistical features, (3) information-theoretic features,
(4) spectral features, and (5) landmarker features. Broadly speaking, the statistical features captures
statistical properties of the underlying data distributions; e.g., min, max, variance, skewness,
covariance, etc. of the features and feature combinations. The information-theoretic features
3The Vector Auto Regression was used for Multivariate tesbed while Auto Regression (AR) was used for Univariate testbed.
4For ESRNN baseline, we have followed the Pytorch implementation of the ESRNN. After hyper-parameter tuning,
the hyperparameters that gave us this performance were as follows: freq_of_test = 1, batch_size = 4, learning_rate
= 0.02, per_series_lr_multip = 0.5, lr_decay = 0.5, lr_scheduler_step_size = 7, max_epoch = 5, random_seed = 1,
gradient_clipping_threshold = 50, noise_std = 0.001, level_variability_penalty = 30, ensemble = True, seasonality = [24,
168], input_size = 24, output_size = 48, dilations = [1, 4, 24, 168], add_nl_layer=False, cell_type = ‘LSTM’, and state_hsize =
40. We shared the codes (link given in the Introduction) for all baselines in our folder so future works can further tune
hyperparameters for different forecasting methods and baseline algorithms and reproduce our results.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

capture information-theoretic underlying characteristics in the time-series; e.g., entropy, trend,
non-linearity, change statistics, etc. Most of those meta-features have been commonly used in the
AutoML literature [79]. Our meta-features vector also includes landmarker features, which are
problem-specific, and aim to capture the unique characteristics of a dataset. The idea is to apply a
few of the fast, easy-to-construct time-series forecasting models on a dataset and extract features
from (i) the structure of the estimated forecasting model, and (ii) its output performance scores. We
emphasize that our landmarker meta-features are novel and that some components of the spectral
meta-features have not been used in any related work.

Training Testbed Sources: Meta-learning works if the new task can leverage prior knowledge.
Our testbeds are built to simulate the case when meta-train comes frommany different distributions.
This diversity enhances the training of the meta-learning model. Model selection on test data can
thus benefit from the prior experience on the train set. We thus have created a repository of 348
forecasting datasets including two hitherto unreleased ones from Adobe’s production compute
clusters. In particular, most of the datasets are from different application domains (e.g., finance, IoT,
energy, storage, etc.) where we use benchmark datasets from Kaggle [38], Adobe real traces, and
other open source repositories. The Adobe trace datasets records CPU and Memory usage for 50
different services running in Adobe production clusters collected for 15 days from May 1 to May 15
in 2021. Such traces are shared for the first time in our current work.
Dataset Types in AutoForecast: We consider two general types of time-series datasets

depending on the number of the variables 𝑣𝑖 in the time-series dataset. (1) Univariate Datasets with
single time-series (𝑣𝑖 = 1) and (2) Multivariate Datasets with several time-series (variables) (i.e.,
𝑣𝑖 > 1) that need to be predicted. In particular, we collect 308 univariate time-series datasets for
the first testbed (Table 17 in Appendix D) and 40 multivariate datasets with 317 time-series for the
second testbed where each multivariate dataset has multiple time-series (e.g., multivariate dataset
of Adobe traces have 98 time-series for memory and cpu usages for different production workloads).
We refer to our shared datasets for all time-series we used in our work (Table 16 in Appendix D). In
total, we have 625 time-series in our testbeds. For each dataset in the testbeds, we use different
time windows selected randomly from the dataset, where each time window has a length of 16
(i.e., |𝑤𝑡 | = 16 ∀𝑡 ∈ {1, . . . ,𝑇 }).5 Note that our approach has no restriction on the length of the time
window nor any assumption of the homogeneity of windows duration.

Evaluation: For evaluating AutoForecast, for robustness, we split each testbed into 5 folds for
cross-validation. We followed standard 5-fold cross validation done in [7]. In particular, we applied
blocked cross-validation scheme on the time-series datasets where the datasets are not partitioned
randomly, but sequentially into five sets. We build the train/test testbed by each time selecting
four folds from the datasets for training and the remaining fifth fold for testing (i.e., after training
the meta-learning approach, we use it to infer the best forecasting model for the new unseen test
datasets of that fifth fold). Finally, we take the average performance of these five folds. We mainly
compare the Hit-at-𝑘 accuracy of AutoForecast against different meta-learners baselines. This
metric indicates whether the selected model fits within the top-𝑘 models from ground truth data.
We also compare using the metric, mean square error (MSE) and the average rank. For each testbed,
the meta-learners are first ranked by the corresponding forecasting MSE under the selected model
for each dataset and then the rank is averaged across all datasets.
Time-series Meta-learner Setup: For our time-series meta-learner Θ explained in Section 4,

we used LSTM with 4 layers where each layer has 50 units. The training was with 50 epochs with

5Our choice of such value was related to the “lag parameter”, which was suggested to be multiple of four in the “GluonTS”
library. However, we set that as a general parameter for the research community in our codes. Moreover, our codes support
the case of training using specific window length and testing on another window length.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

the Adam optimizer with a batch size of 25 and dropout rate of 0.2 to prevent over-fitting. A detailed
evaluation of the effect of such parameters on Θ’s performance is shown in Appendix E.1.

5.2 Baselines
We adapt recent meta-learning approaches to our specific problem setting, and also include a few
methods that do not perform model selection.
No model selection: This category always employs either the same single model or the ensemble
of all the models:
• Random Forest (RF) [46]: It is a SOTA tree ensemble that combines the predictions made by
many decision trees into a single model. In prediction, the RF regression model takes the average
of all the individual decision tree estimates.

• SOTA Forecasting Algorithms: We selected seven popular time series forecasting models,
including the recent works DeepAR [66], DeepFactors [81],6 and Prophet [77]. For each
model, we generated multiple variants by varying the values of hyperparameters and data
representations (10-72 variants, details in Table 1) and we chose the model variant with the best
average performance across all training datasets. We also collected overall performances for
Trigonometric, Box-Cox transform, ARMA errors, Trend, and Seasonal components (TBATS) [20],
Holt-Winters [14], ESRNN [72], and Exponential Smoothing [28].
For ESRNN baseline, we have considered two versions of it. The first one which we name “ESRNN
(global)” is trained globally on many datasets for each testbed. The second one which we name as
“ESRNN (local)” is trained locally for windows of each dataset and tested on the unseen windows.

Simple meta-learners: Meta-learners in this category pick the generally well-performing
forecasting model, globally or locally:

• Global Best (GB): It selects the forecasting model with the largest average performance across
all train datasets (across all time windows), without using any meta-features.

• ISAC [37]: This baseline clusters the training datasets based on meta-features. Given a new test
time-series dataset, it identifies its closest cluster and selects the best model with largest average
performance on the cluster’s datasets.

• ARGOSMART (AS) [54]: It finds the closest training time-series dataset to a given test
time-series dataset, based on meta-feature similarity, and selects the model with the best
performance on that nearest neighbor training dataset.

Optimization-based meta-learners: Meta-learners in this category learn meta-feature by task
similarities toward optimizing performance estimates:

• Multi-layer Perceptron (MLP): Given the training datasets and selected time window, the
MLP regressor directly maps the meta-features onto model performances by regression. However,
this does not learn temporal dependence within datasets.

• AUTOFORECAST-TSL: is a variant of our solution in which the meta-learner L consists only
of the time-series learner Θ.

AutoML solutions:We also compare the performance of AutoForecast with different popular
AutoML solutions:

6We train DeepAR and DeepFactors in a local manner, i.e., we built a separate model for each window of each series. Recall
that our goal is to use all of these baseline time-series forecasting models (with different representations and different
hyper-parameters) to design a a meta-learner that learns the models’ performances evolution over time windows of the
same dataset and across different time series datasets where the meta-learner is designed for different data types with
different time dependencies. Thus, in our experimental results we would call them DeepAR (local) and DeepFactors (local).

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

• AutoARIMA [35]: In the basic ARIMA model, we need to provide the 𝑝 , 𝑑 , and 𝑞 values
which is time consuming process. In AutoARIMA, the model itself will generate the optimal
𝑝 , 𝑑 , and 𝑞 values which would be suitable for the dataset to provide better forecasting.

• Automatic Exponential Smoothing (AutoETS) [36]: This statistical forecasting method
represents a variation of the exponential smoothing technique where AutoETS can
automatically selects the optimal parameters for the forecasting model.

• Auto-AI-TS [69]: the Auto-AI-TS automatically train multiple time series models such as
SARIMAX, Prophet, and VAR. Then, it comes up with the best performing model which is
suitable for our problem statement. Its performance depends on the size of the dataset.

5.3 Results
5.3.1 Variation of Best Model across Time. Figure 3 shows that no single forecastingmodel triumphs
in more than 0.7% of the datasets. Figure 4 shows the aggregate statistics on all datasets of the
univariate testbed. This contradicts the claims that one forecasting algorithm can work best for
different datasets andmotivates the need for an effective approach for learning such both dimensions,
which we propose in our current work.

0 50 100 150 200 250 300
Forecasting Model Index

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Pr
ob

ab
ilit

y
of

 b
ei

ng
 B

es
t M

od
el

Histogram of Best Models for Training Dataset

Fig. 3. A histogram of the best forecasting model’s probability distribution across datasets of our two testbeds.
Different datasets have different best models and no single model triumphs in more than 0.7% of the datasets.

Windows 1 and 2 Windows 1 and 3 Windows 2 and 3

Time Window Pair

0

50

100

150

200

250

300

N
u
m

b
e
r

o
f
B

e
s
t
M

o
d
e
l
S

im
ila

ri
ti
e
s Same Forecasting Models and Same Hyper-parameters

Same Forecasting Models and Different Hyper-parameters

Different Forecasting Models

Fig. 4. The aggregate statistics for similarity in the best forecasting model across three consecutive time
windows for univariate testbed. Most different time windows have different (best) models.

5.3.2 Univariate Testbed Results. To investigate the impact of the train/test similarity on
meta-learning performance, we build the univariate testbed that consists of 308 diverse datasets.
Superiority of AutoForecast compared to all baseline methods w.r.t. the Hit-at-𝑘 ,

average rank, and MSE: The different results are provided in Tables 2-4 where the best result

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

Table 2. Hit-at-𝑘 Accuracy (the higher the better) comparison of AutoForecast against the different baseline
meta-learners for both univariate and multivariate testbeds. AutoForecast outperforms all baselines for
both testbeds.

Dataset Testbed k Global Best AS ISAC MLP AutoForecast-TSL AutoForecast

Univariate 1 2.46 2.15 0.82 0.62 2.67 3.95

5 7.18 4.92 2.67 1.13 9.04 14.57

10 11.97 7.89 4.10 4.51 14.15 21.45

50 37.40 28.00 11.45 22.25 35.28 52.05

Multivariate 1 6.78 2.26 4.19 0.43 5.16 5.87
5 12.18 4.73 5.69 1.51 9.03 13.86

10 16.21 9.03 7.31 4.06 11.39 20.91

50 41.72 24.73 14.64 20.86 35.06 51.67

Table 3. Average rank (the lower the better) comparison of AutoForecast against the different baseline
meta-learners for both testbeds. AutoForecast outperforms all baselines.

Dataset Testbed Global Best AS ISAC MLP AutoForecast-TSL AutoForecast

Univariate 2.5161 2.7965 2.9096 3.7072 2.5202 2.0571

Multivariate 2.3191 3.0851 2.3191 3.8723 2.3404 1.3191

for every testbed is highlighted in bold. We observe that AutoForecast outperforms previous
SOTA meta-learning methods adapted to our problem. For example, AutoForecast has 79.20%,
171.86%, 423.17%, 375.61%, and 51.59% higher Hit-at-10 accuracy than GB, AS , ISAC, MLP, and
AutoForecast-TSL, respectively. Note that with our model selection, some accuracy in selecting
best forecasting models is lost to achieve much faster processing at inference time (e.g., see the
Hit-at-10 accuracy compared to Hit-at-50 accuracy).
Statistical Significance of AutoForecast: To compare two methods statistically, we use

the pairwise Wilcoxon rank test on performances (i.e., MSE of selected models) across datasets
(significance level 𝑝 < 0.05). Table 5 shows that AutoForecast is significantly better than most of
the baseline meta-learners, i.e., including GB (9.07×10−5), AS (1.07×10−37) and AutoForecast-TSL
(8.16 × 10−15). However, there is no significant statistical difference between AutoForecast and
FFORMA for both Univariate and Multivariate testbeds (as shown in last row in Table 5).
Meta-learners perform better than methods without model selection: Table 4 shows
that meta-learners outperform almost all models with no model selection. In particular, three
meta-learners (AutoForecast, Global Best, ISAC) significantly outperform baseline time-series
forecasting models. For instance, AutoForecast has 92.58%, 84.39%, 88.20%, 87.14%, 83.48%, 98.45%,
and 95.75% lower MSE over Seasonal Naive, DeepAR (local), DeepFactors (local), Random Forest,
Prophet, Gaussian Process, and VAR, respectively. These results signify the benefits of using
meta-learning for model selection, specifically using AutoForecast. We emphasize that one
important intuition of our framework is that it generates the meta-features for the test time-series
and such meta-features will guide the meta-leaner in doing inference on this test time-series by
predicting the best performance via leveraging the performance of different models on similar
datasets (that have similar meta-features) on the training.
Optimization-based meta learners generally perform better than simple meta learners:

Two of the top-3 meta learners by average rank and MSE (AutoForecast and AutoForecast-TSL)
are all optimization-based and significantly outperform simple meta-learners such as ISAC and AS
as shown in Table 2 and Table 4. The interpretation is that simple meta-learners weigh meta-features

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

Table 4. Results for one-step ahead forecasting (MSE; the lower the better) for both testbeds. The selected
model by AutoForecast yields better performance compared to baseline meta-learners, autoML, and SOTA
methods. For each SOTA, we choose the model with the best average performance from all its model variants.

Method Univariate Testbed Multivariate Testbed

Seasonal Naive 0.0345 ± 0.0382 0.0149 ± 0.0408
DeepAR (local) 0.0164 ± 0.0506 0.0085 ± 0.0197

DeepFactors (local) 0.0217 ± 0.0415 0.0135 ± 0.0232
Random Forest 0.0199 ± 0.0398 0.0071 ± 0.0365

Prophet 0.0155 ± 0.0295 0.0065 ± 0.0153
Gaussian Process 0.1661 ± 0.2104 0.2576 ± 0.1344

VAR 0.0602 ± 0.1260 0.9865 ± 0.2988
Global Best 0.0065 ± 0.0199 0.0046 ± 0.0099

AS 0.0158 ± 0.0556 0.0139 ± 0.0563
ISAC 0.0071 ± 0.0145 0.0046 ± 0.0099
MLP 0.0351 ± 0.1186 0.0121 ± 0.2462

AutoArima 0.0563 ± 0.1388 0.0585 ± 0.1340
AutoETS 0.0323 ± 0.0773 0.0273 ± 0.1092

Auto-AI-TS 0.0157 ± 0.0409 0.0211 ± 0.0742
ESRNN (local) 0.0398 ± 0.0444 0.0410 ± 0.0643
ESRNN (global) 0.0401 ± 0.0963 0.0881 ± 0.1319
Holt-Winters 0.0182 ± 0.0436 0.0118 ± 0.0309

Exp. Smoothing 0.0198 ± 0.0417 0.0131 ± 0.0383
TBATS 0.0148 ± 0.1092 0.0118 ± 0.0337
FFORMA 0.0030 ± 0.0116 0.0043 ± 0.0830

AutoForecast-TSL 0.0046 ± 0.0138 0.0054 ± 0.0186
AutoForecast 0.0026 ± 0.0090 0.0012 ± 0.0051

Table 5. Pairwise statistical test results between every pair of methods by Wilcoxon signed rank test.
Statistically better method (𝑝 = 0.05) shown in bold (both marked bold if no significance). In the left,
Univariate testbed is shown. In the right, Multivariate testbed is shown. For both testbeds, AutoForecast is
statistically better than most of the baseline meta-learners.

Method 1 Method 2 p-value

AutoForecast GB 9.0712 × 10−5

AutoForecast AS 1.0726 × 10−37

AutoForecast ISAC 0.1349
AutoForecast MLP 0.0657
AutoForecast AutoForecast-TSL 8.1683 × 10−15

AutoForecast-TSL GB 2.2611 × 10−8

AutoForecast-TSL AS 1.5760 × 10−14

AutoForecast-TSL ISAC 2.3843 × 10−16

AutoForecast-TSL MLP 1.1658 × 10−26

GB AS 9.4952 × 10−33

GB ISAC 0.0322
GB MLP 4.5489 × 10−9

AS ISAC 1.7842 × 10−37

AS MLP 4.4658 × 10−54

ISAC MLP 2.2062 × 10−31

AutoForecast FFORMA 0.9868

Method 1 Method 2 p-value

AutoForecast GB 1.0
AutoForecast AS 3.9399 × 10−7

AutoForecast ISAC 0.8240
AutoForecast MLP 0.0004
AutoForecast AutoForecast-TSL 0.0025
AutoForecast-TSL GB 0.00254
AutoForecast-TSL AS 5.8013 × 10−7

AutoForecast-TSL ISAC 1.5598 × 10−5

AutoForecast-TSL MLP 3.4572 × 10−8

GB AS 3.9399 × 10−7

GB ISAC 0.8240
GB MLP 0.0004
AS ISAC 1.4217 × 10−7

AS MLP 6.6612 × 10−8

ISAC MLP 3.7789 × 10−8

AutoForecast FFORMA 0.7764

equally for task similarity, whereas optimization-based methods learn which meta-features matter
(e.g., time-series regression on meta-features in AutoForecast-TSL), leading to better results.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

Performance of FFORMA: For FFORMA, we followed the Python implementation of FFORMA
in [17]. We emphasize that after producing FFORMA predictions using trained ensemble method,
we report the MSE on test data to be consistent with our other experimental metrics. Table 4 shows
that the FFORMA method has better performance compared to most other baseline methods.
Performance of ESRNN: Surprisingly, our evaluation results show that ESRNN (local) has lower
MSE compared to ESRNN (global). Table 4 shows such a finding in our evaluation where the
difference in MSE of ESRNN (local) and ESRNN (global) is higher for the multivariate testbed
compared to that for the univariate testbed.
Dataset-wise Performance:We present the detailed performances for each dataset by comparing
AutoForecast with all baseline methods in our link (provided in the Introduction as footnote). We
note that these results are averaged across the different time windows for each dataset. The results
show that AutoForecast achieves the best average MSE and average rank among all meta-learners.
We note that AutoForecast and AutoForecast-TSL have same performance for datasets with
higher temporal dependency.
5.3.3 Multivariate Testbed Results. In this testbed, we choose some time series within one dataset
for training and a disjoint set of time series within the same dataset for testing. Our multivariate
testbed consists of 40 datasets.

For the Multivariate testbed, AutoForecast still outperforms all baseline methods w.r.t.

average rank, MSE, and Hit-at-𝑘 accuracy as shown in Tables 2-4. Moreover, Figure 5 shows
that for the pool of multivariate datasets (across all time windows), AutoForecast gives a gain of
2X and higher compared to other meta-learning baselines. Dataset-wise benchmark performance
for the datasets in the multivariate testbed is shown in our anonymized link. AutoForecast has
the lowest average MSE on most of the multivariate datasets.

0 50 100 150 200 250 300 350 400 450

Number of Best Model Selections

GB

ISAC

AS

MLP

AutoForecast-TSL

AutoForecast

Fig. 5. The number of best model selections by each
meta-learning approach. AutoForecast has 2× gain
in the selection of best model compared to the closest
baselines (ISAC and GB).

Univariate Multivariate

40

50

60

70

80

90

R
e
d
u
c
ti
o
n
 i
n
 I
n
fe

re
n
c
e
 T

im
e

Fig. 6. The inference time reduction of
AutoForecast over the naïve approach.
AutoForecast gives a median reduction of
42X over naïve approach for both testbeds.

Table 6. Average and standard deviation inference and training runtime performance (in seconds) for both
dataset testbeds.AutoForecast select the bestmodel within comparable time to fastest baselinemeta-learner.

Phase Dataset Testbed Naïve Global Best AS ISAC MLP FFORMA AutoForecast-TSL AutoForecast

Inference Univariate 70.9500 ± 1.7801 0.6259 ± 0.0964 0.8537 ± 0.1438 10.2480 ± 2.7182 1.2745 ± 0.5198 16.8927 ± 5.8421 0.7962 ± 0.0436 1.6508 ± 0.0401
Multivariate 48.6287 ± 5.4051 0.4151 ± 0.0403 1.3055 ± 0.2610 7.037 ± 1.6239 1.1461 ± 0.2176 11.9714 ± 1.1423 0.682 ± 0.0372 1.1309 ± 0.1257

Training Univariate N/A N/A 308.9301 ± 46.1968 278.8083 ± 57.9900 705.2908 ± 123.3715 428.5880 ± 22.5101 334.8091 ± 31.6808 670.5855 ± 31.5465
Multivariate N/A N/A 194.3877 ± 39.7441 182.4753 ± 34.3238 411.9337 ± 41.7406 252.1106 ± 15.2327 178.1978 ± 18.0098 376.3956 ± 40.0195

Statistical Significance of AutoForecast: Table 5 shows that for Multivariate testbed,
AutoForecast is also significantly better than most of the baseline meta-learners, i.e., including
AS and MLP while there is no significant statistical difference from GB, ISAC, and FFORMA.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

Prophet and DeepAR (local) have the best performance across the baseline forecasting

algorithms: Table 4 shows that Prophet model has the best average MSE across the baseline
forecasting algorithms. Notably, DeepAR (local) has the second best average MSE.

5.3.4 Dataset-wise Performance. We now present the detailed performances for each dataset for
both testbeds. It is noted these results are averaged across the different time windows for each
dataset. Again, the results show that AutoForecast achieves the best MSE and average rank
among all meta-learners.

(a) Univariate Testbed:Wenowpresent the full evaluation of univariate testbed. Such evaluation
is shown in Table 7 (we show one fold in that table in the interest of space). We note similar
performances for the rest of the folds (as reflected in the average MSE and average rank for all
datasets shown in Table 3-4). AutoForecast outperforms the meta-learner baselines for most
datasets. Moreover, AutoForecast has the lowest average MSE, and the lowest average rank.
(b) Multivariate Testbed: We present the full evaluation of multivariate testbed. Such

evaluation is shown in Table 8. It is clear that AutoForecast outperforms the meta-learner
baselines for most datasets (best for 28 out of the 40 datasets). Again, we note that AutoForecast
has the lowest average MSE, and lowest average rank. In particular, AutoForecast (MSE = 0.12)
gives a gain of 50% over the best baseline (MSE = 0.26) on the Adobe_CPU_Mem_15d dataset.

5.3.5 Runtime Analysis. Inference run time statistics of AutoForecast: Table 6 shows that
AutoForecast (meta-feature generation and model selection) takes 1.7 seconds on most time series
datasets. Moreover, Figure 6 shows that AutoForecast has significant reduction in inference time
compared to the naïve approach (i.e., doing inference using all possible models and then selecting
the model with the best performance), median is 42× across the two testbeds (i.e., 41× on univariate
testbed and 45× on multivariate testbed).
Comparing AutoForecast with baselines: In terms of inference, Table 6 shows that most of the
meta-learners are fast, taking less than 2 seconds to infer the best forecasting model. Finally, we
compare the training cost of AutoForecast against the baseline meta-learners. Table 6 also shows
that AutoForecast has comparable computational training cost. While the training process is
offline and done only once and hence is less critical, this experiment emphasizes that our better
model selection performance does not entail a prohibitive training cost.

5.3.6 Overall Feature Importance. We next show the feature ranking for different categories of
our features. In particular, we show the most important features that affect the performance of
our meta-learner for both datasets. Table 9-10 show the top-20 meta-features for Univariate and
Multivariate testbeds, respectively. For the Multivariate datasets, the landmarker features, spectral
features, and information-theoretic meta-features constitute the top-10 features. For the Univariate
datasets, the spectral features, landmarker, statistical, and information-theoretic meta-features
constitute the top-10 features. We also observe several common top meta-features across the both
testbeds, including Autoregression coefficients (landmarker), Fast Fourier Transform (spectral),
linear trend (information-theoretic), lag autocorrelation (statistical). We also observe that the couple
simple features do not appear in the top-20 meta-features. Such a result of feature importance can
help in identifying the main characteristics that affect meta-learning for our task of model selection
by showing most common features that can describe different types of time-series datasets.

5.3.7 Consistency and Stability of AutoForecast: We perform an experiment to evaluate the
consistency and stability of AutoForecast against the brute force approach. Specifically, in the
brute force approach, one can train all models on a given time series, and sort these models’
performance as ‘rank_BF’. This ‘rank_BF’ can be considered as the benchmark to compare with the

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

Table 7. Method evaluation in Univariate testbed (one fold is shown in the interest of space). The most
performing (lowest MSE) method is highlighted in bold. The rank is provided in parenthesis (lower ranks
denote better performance). AutoForecast achieves the best average MSE and average rank among all
meta-learners.

Dataset Global Best AS ISAC MLP AutoForecast-TSL AutoForecast
FEATHER.1 0.003429 (4) 0.000916 (3) 0.036634 (6) 0.013679 (5) 0.000716 (1) 0.000716 (1)

FURNAS.DAT 0.017221 (4) 0.081947 (5) 0.085216 (6) 0.004338 (3) 0.000177 (1) 0.000177 (1)

EGGS.1 0.0005 (3) 0.000732 (4) 0.006797 (5) 0.02572 (6) 0.000392 (2) 0.000096 (1)

NYSE.1 0.041847 (4) 0.011433 (1) 0.035967 (2) 0.109728 (6) 0.083661 (5) 0.036996 (3)
apple 0.000071 (3) 0.000727 (5) 0.000256 (4) 0.000842 (6) 0.000038 (1) 0.000038 (1)

STJOHNS.1 0.015178 (4) 0.152463 (5) 0.000281 (1) 0.51043 (6) 0.010065 (3) 0.009741 (2)
SERIESM.2 0.00011 (3) 0.000031 (1) 0.000081 (2) 0.000254 (6) 0.000197 (5) 0.000184 (4)
ALIGN.1 0.116045 (5) 0.020837 (1) 0.158484 (6) 0.10843 (4) 0.07156 (3) 0.031977 (2)
LYNX.1 0.029034 (3) 0.036677 (4) 0.204602 (5) 0.076905 (6) 0.021614 (2) 0.012232 (1)

ARCTIC.1 0.002078 (4) 0.013534 (5) 0.001891 (3) 0.029793 (6) 0.001175 (2) 0.0006 (1)

RHINE.1 0.000992 (1) 0.030022 (6) 0.026165 (5) 0.011251 (3) 0.013101 (4) 0.008896 (2)
ASKEW15.1 0.002235 (5) 0.00036 (2) 0.001733 (4) 0.084906 (6) 0.000881 (3) 0.000182 (1)

MEASLBAL.1 0.000007 (2) 0.012992 (5) 0.000068 (3) 0.073299 (6) 0.00038 (4) 0.000002 (1)

REDDEER.1 0.091479 (3) 0.031401 (2) 0.134347 (4) 0.910554 (5) 0.044033 (1) 0.044033 (1)

rail_lines 0.000043 (1) 0.105375 (5) 0.001864 (4) 0.1923 (6) 0.000289 (2) 0.000289 (2)
data_temp_dev 0.00011 (2) 0.000145 (3) 0.000096 (1) 0.03142 (6) 0.000335 (4) 0.000335 (4)
DELL.1 0.005872 (3) 0.008785 (4) 0.013155 (5) 0.196153 (6) 0.00209 (1) 0.00209 (1)

TEMPER.1 0.015079 (4) 0.011044 (3) 0.015079 (5) 0.489135 (6) 0.006356 (1) 0.006356 (1)

SERIESB.1 0.005424 (3) 0.0321 (6) 0.005424 (3) 0.006143 (5) 0.000104 (1) 0.000104 (1)

LACSTJRA.1 0.022971 (5) 0.012493 (3) 0.016164 (4) 0.261073 (6) 0.010394 (1) 0.010394 (1)

Ozone 0.004042 (4) 0.03911 (5) 0.00079 (2) 0.131998 (6) 0.005935 (3) 0.000706 (1)

RAPPAHAN.1 0.006714 (3) 0.014144 (5) 0.006714 (3) 0.048011 (6) 0.001641 (1) 0.001641 (1)

HBCO.1 0.077075 (5) 0.014459 (3) 0.077075 (5) 0.021279 (4) 0.000486 (1) 0.000486 (1)

CURRENT.1 0.005603 (1) 0.007585 (2) 0.031418 (5) 0.050923 (6) 0.010159 (4) 0.00879 (3)
ASKEW7.1 0.118959 (5) 0.003655 (1) 0.118959 (5) 0.080627 (4) 0.03322 (3) 0.012513 (2)
SIMAR4.1 0.05864 (4) 0.010436 (3) 0.05864 (4) 0.097847 (6) 0.000093 (1) 0.000093 (1)

NYWATER.1 0.000024 (1) 0.008165 (3) 0.000024 (1) 0.108533 (6) 0.021238 (4) 0.021238 (4)
CONSUM.1 0.006701 (3) 0.192148 (5) 0.006701 (3) 0.410414 (6) 0.003062 (2) 0.001941 (1)

children_per_woman 0.000027 (1) 0.408328 (5) 0.000027 (1) 1.65767 (6) 0.013115 (3) 0.013115 (3)
AMERICAN.1 0.099565 (4) 0.006172 (3) 0.099565 (4) 0.27694 (6) 0.000867 (1) 0.000867 (1)

SERIESJ.2 0.000311 (1) 0.021111 (3) 0.000311 (1) 0.867712 (6) 0.0531 (4) 0.0531 (4)
FRNCHB.1 0.031783 (4) 0.103844 (2) 0.032671 (4) 0.235725 (6) 0.013224 (3) 0.008845 (1)

OTTER_L.1 0.000697 (1) 0.154446 (5) 0.003607 (4) 0.228931 (6) 0.001445 (3) 0.001383 (2)
IBM.1 0.099506 (3) 0.007062 (1) 0.029243 (2) 1.192122 (6) 0.181934 (5) 0.150301 (4)
IV.1 0.053671 (4) 0.01878 (3) 0.053671 (4) 0.479534 (6) 0.000081 (1) 0.000081 (1)

HANKOU.1 0.005295 (4) 0.000199 (1) 0.085691 (5) 0.427704 (6) 0.001 (2) 0.001 (2)
ESPANOLA.1 0.107704 (5) 0.063331 (3) 0.107704 (5) 0.069497 (4) 0.038676 (2) 0.03053 (1)

NEUMUNAS.1 0.019752 (2) 0.05087 (5) 0.019752 (2) 0.039879 (4) 0.074946 (6) 0.018099 (1)

NINEMILE.1 0.034372 (2) 0.150897 (6) 0.034372 (2) 0.038648 (4) 0.084953 (5) 0.021218 (1)

NAVAJO.1 0.025011 (3) 0.045677 (4) 0.053738 (5) 0.124633 (6) 0.005094 (1) 0.005094 (1)

BLUME.1 0.002218 (2) 0.107086 (6) 0.001929 (1) 0.049793 (5) 0.003823 (3) 0.003519 (3)
NILE2.1 0.00137 (1) 0.001152 (3) 0.00137 (1) 0.193211 (6) 0.054431 (5) 0.014202 (4)
LOGISTIC.1 0.080491 (3) 0.200174 (6) 0.080491 (3) 0.16654 (5) 0.000003 (1) 0.000003 (1)

Y.1 0.010648 (3) 0.00421 (2) 0.002022 (1) 0.722437 (6) 0.065461 (5) 0.061986 (4)
WBDELAWA.1 0.050875 (4) 0.017499 (3) 0.050875 (4) 0.094832 (6) 0.003033 (1) 0.003033 (1)

AMAZON.2 0.000339 (2) 0.001309 (2) 0.000156 (1) 0.219018 (6) 0.051773 (4) 0.051773 (4)
CN.1 0.015912 0.079448 0.012808 0.007689 0.00342 0.00067 (1)

ASKEW14.1 0.021909 (4) 0.000364 (1) 0.021909 (4) 0.046782 (6) 0.004908 (2) 0.004908 (2)
LACSTJIN.1 0.000059 (1) 0.043367 (4) 0.029783 (5) 0.094873 (6) 0.001409 (2) 0.001409 (2)
CD.1 0.004928 (1) 0.139645 (5) 0.041752 (4) 0.476946 (6) 0.010701 (2) 0.010701 (2)
FISHERT.1 0.023112 (3) 0.117186 (6) 0.033638 (4) 0.08318 (5) 0.008069 (1) 0.008069 (1)

RGNP.1 0.000071 (2) 0.034112 (5) 0.000009 (1) 0.079975 (6) 0.01095 (4) 0.00114 (3)
AROSA.1 0.007575042 (1) 0.010614463 (2) 0.242362866 (5) 0.285212298 (6) 0.01804633 (3) 0.01804633 (3)
U.1 0.005295366 (4) 0.000199081 (1) 0.085691031 (5) 0.427703736 (6) 0.000999952 (2) 0.000999952 (2)
RACOON.1 0.001346976 (3) 0.060859373 (5) 0.001346976 (3) 0.293946208 (6) 0.000630665 (1) 0.000630665 (1)

BND.1 0.00047181 0.111166889 0.0000889 (1) 0.043800188 0.002446093 0.000256424 (2)

Average 0.0065 (2.4693) 0.0158 (3.3663) 0.0071 (2.5742) 0.0351 (4.5742) 0.00463 (2.8019) 0.00256 (2.0571)
STD 0.028074 0.063828 0.043792 0.274294 0.028135 0.020976

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

Table 8. Method evaluation in multivariate testbed (average MSE). The most performing (lowest MSE)
method is highlighted in bold. The rank is provided in parenthesis (lower ranks denote better performance).
AutoForecast achieves the best average MSE and average rank among all meta-learners. In particular, it
has the best performance (lowest average MSE) on 28 datasets out of the 40 multivariate datasets and has
comparable performance for remaining datasets.

Dataset Global Best AS ISAC MLP AutoForecast-TSL AutoForecast
Processed_S&P 0.137347 (2) 0.455675 (5) 0.137347 (2) 4.936163 (6) 0.158537 (4) 0.071178 (1)

ozone_onehr 0.780519 (5) 0.364615 (3) 0.780519 (5) 0.765257 (4) 0.189151 (2) 0.042093 (1)

Occ_Train 0.000106 (1) 0.66462 (5) 0.000106 (1) 0.717224 6) 0.303732 (4) 0.072843 (3)
Scanline 0.00811 (2) 0.627556 (5) 0.00811 (2) 1.292029 (6) 0.064343 (4) 0.005702 (1)

knoy_mpu_3_300 0.009803 (1) 0.176418 (6) 0.009803 (1) 0.04145 (3) 0.10648 (5) 0.043316 (4)
energydata_complete 0.273006 (3) 0.298254 (5) 0.273006 (3) 3.02911 (6) 0.145331 (2) 0.065071 (1)

AdobeAveCPU_96x3270 0.0005 (1) 0.097903 (4) 0.0005 (1) 5.486816 (6) 0.151596 (5) 0.003049 (3)
Adobe_Service_CPU_Mem_15d 0.264722 (2) 0.813373 (5) 0.264722 (2) 10.782728 (6) 0.581017 (4) 0.120063 (1)

knoy_mpu_1_340 0.009342 (4) 0.005052 (3) 0.009342 (4) 0.239649 (6) 0.001921 (2) 0.000374 (1)

iowa-electricity 0.003171 (3) 0.025284 (5) 0.003171 (3) 0.966798 (6) 0.000001 (1) 0.000001 (1)

knoy_mpu_1_400 0.077215 (4) 0.020974 (3) 0.077215 (4) 0.101848 (6) 0.000009 (1) 0.000009 (1)

knoy_mpu_2_400 0.132552 (4) 0.005615 (1) 0.132552 (4) 2.452516 (6) 0.011195 (3) 0.00656 (2)
Occupancy 0.000097 (1) 0.056036 (4) 0.000097 (1) 2.821039 (6) 0.253453 (5) 0.022591 (3)
ozone_eighthr 0.131161 (2) 0.286562 (5) 0.131161 (2) 4.974266 (6) 0.151916 (4) 0.090387 (1)

knoy_mpu_3_400 0.024336 (4) 0.005892 (3) 0.024336 (4) 0.083823 (6) 0.001408 (2) 0.000618 (1)

quality_control 0.028198 (4) 0.027566 (3) 0.028198 (4) 4.303693 (6) 0.025724 (2) 0.006722 (1)

knoy_mpu_1_500 0.022832 (4) 0.015874 (3) 0.022832 (4) 0.063941 (6) 0.000024 (2) 0.000005 (1)

knoy_mpu_3_100 0.008206 (1) 0.014191 (3) 0.008206 (1) 0.021298 (4) 0.025675 (5) 0.025675 (5)
knoy_mpu_1_360 0.023268 (5) 0.018886 (4) 0.023268 (5) 0.001753 (3) 0.001025 (2) 0.000034 (1)

knoy_mpu_2_100 0.005647 (3) 0.009183 (5) 0.005647 (3) 1.82924 (6) 0.000588 (1) 0.000588 (1)

knoy_mpu_2_500 0.042863 (3) 0.450295 (5) 0.042863 (3) 0.703812 (6) 0.042598 (2) 0.001608 (1)

Sales_Transactions 0.068063 (2) 0.122557 (5) 0.068063 (2) 0.57930 (6) 0.074798 (4) 0.005779 (1)

co2-concentration 0.001174 (1) 0.044724 (5) 0.001174 (1) 0.613426 (6) 0.006403 (4) 0.001976 (3)
knoy_mpu_1_100 0.00652 (2) 0.123459 (6) 0.00652 (2) 0.064915 (5) 0.006806 (4) 0.002683 (1)

Processed_NASD 0.037896 (2) 0.255123 (5) 0.037896 (2) 0.6712377 (6) 0.117047 (4) 0.020919 (1)

knoy_mpu_3_380 0.081679 (3) 0.103497 (5) 0.081679 (3) 0.627697 (6) 0.023772 (2) 0.005902 (1)

knoy_mpu_2_320 0.036278 (3) 0.014435 (2) 0.036278 (3) 0.193747 (6) 0.069011 (5) 0.01057 (1)

knoy_mpu_2_380 0.000959 (1) 0.009084 (4) 0.000959 (1) 1.172323 (6) 0.025441 (5) 0.001284 (3)
us-employment 0.005489 (1) 0.578479 (5) 0.005489 (1) 4.724258 (6) 0.046471 (4) 0.009717 (3)
knoy_mpu_1_380 0.052463 (4) 0.131345 (6) 0.052463 (4) 0.000476 (2) 0.008725 (3) 0.000013 (1)

knoy_mpu_2_200 0.021158 (3) 0.021852 (5) 0.021158 (3) 0.692687 (6) 0.002585 (2) 0.000488 (1)
fast-storage-1 0.113182 (2) 0.69159 (5) 0.113182 (2) 2.765069 (6) 0.130727 (4) 0.032013 (1)

fast-storage-20 0.00008 (1) 0.347404 (5) 0.0008 (1) 2.515765 (6) 0.156555 (4) 0.009153 (3)
knoy_mpu_1_600 0.103141 (5) 0.014413 (3) 0.103141 (5) 0.034072 (4) 0.002585 (2) 0.000359 (1)

knoy_mpu_3_200 0.011019 (4) 0.006598 (3) 0.011019 (4) 0.463735 (6) 0.002928 (2) 0.002038 (1)

Processed_DJI 0.002731 (1) 0.407639 (5) 0.002731 (1) 6.420626 (6) 0.110294 (4) 0.027849 (3)
Processed_RUSS 0.109793 (3) 0.159702 (5) 0.109793 (3) 2.493557 (6) 0.072741 (2) 0.026686 (1)

knoy_mpu_3_600 0.006719 (3) 0.024021 (6) 0.006719 (3) 0.000626 (1) 0.011989 (5) 0.003086 (2)
knoy_mpu_2_600 0.072972 (4) 0.031156 (3) 0.072972 (4) 1.704111 (6) 0.005216 (1) 0.005216 (1)

Processed_NYSE 0.099705 (3) 0.50898 (5) 0.099705 (3) 2.794788 (6) 0.073811 (2) 0.029246 (1)

Average 0.0584 (2.3191) 0.1683 (3.0851) 0.0584 (2.3191) 1.6938 (3.8723) 0.065 (2.3404) 0.0163 (1.3191)

STD 0.1252 0.2295 0.1252 2.3421 0.1068 0.0271

one outputted from equation 8. We then use Spearman correlation [52] to measure their consistency.
In particular, we computed the Spearman’s rank correlation coefficient (𝜌) to measure the strength
and direction of association between the two ranked arrays that sort the models’ performance of
Brute Force (using suggested method) and AutoForecast for each time window for every dataset.
It basically gives the measure of monotonicity of the relation between two methods i.e. how well
the relationship between two methods (here Brute Force and AutoForecast) could be represented
using a monotonic function.
For the Univariate testbed, the mean of the Spearman’s rank correlation coefficient across all

time windows is 0.517059, the median of the Spearman’s rank correlation coefficient across all time
windows is 0.532343. The maximum of the Spearman’s rank correlation coefficient across all time
windows is 0.738170. We also emphasize that in 99.687% of the Spearman’s rank correlation vector’s
entries are positive. For the Multivariate testbed, the mean of the Spearman’s rank correlation
coefficient across all time windows is 0.506604, the median of the Spearman’s rank correlation

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

Table 9. The most important features and their categories for the Univariate testbed.
Name Category Rank

Fast Fourier Transform (real, imag) Spectral 1
Count Above Mean Statistical 2
Wavelet Transform Spectral 3
Change Quantiles (mean, var) Information-theoretic 4-5
Auto Regression Coefficients (coeff no. 2 and coeff no. 7) Landrmarker 6-7
Lag Autocorrelation (partial, agg) Statistical 8-9
Fast Fourier Transform (abs, angle) Spectral 10-11
Entropy (approx entropy) Information-theoretic 12
Linear Trend (intercept, var) Information-theoretic 13-14
Range Count Max Statistical 15
Peaks (number) Statistical 16
Range Standard Deviation Statistical 17
Absolute Energy Information-theoretic 18
Recurrence Statistics (sum) Statistical 19
Reversal_Asymmetry Statistical 20

Table 10. The most important features and their categories for the Multivariate testbed.
Name Category Rank

Auto Regression Coefficients (coeff no. 1 and coeff no. 7) Landrmarker 1-2
Fast Fourier Transform (real, imag) Spectral 3-4
Fourier Entropy (binned) Spectral 5
Linear Trend (min, var) Information-theoretic 6-7
Change Quantiles (mean, var) Information-theoretic 8-9
Wavelet Transform Spectral 10
Fast Fourier Transform (abs, angle) Spectral 11-12
Range Standard Deviation Statistical 13
Absolute Sum of Change (mean) Information-theoretic 14
Absolute Energy Information-theoretic 15
Median Statistical 16
Entropy (approx entropy) Information-theoretic 17
Lag Autocorrelation Statistical 18
Recurrence Statistics (sum) Statistical 19
Kurtosis Statistical 20

coefficient across all time windows is 0.551903. The maximum of the Spearman’s rank correlation
coefficient across all time windows is 0.743404. We also emphasize that 98.667% of the Spearman’s
rank correlation vector’s entries are positive. Such results show the consistency and stability of
AutoForecast and show how effective AutoForecast is in ranking and selecting best forecasting
models in exchange for saving time through the brute force searching. We also emphasize that our
aforementioned Hit-at-𝑘 accuracy results show the clear superiority of AutoForecast in selecting
better forecasting models compared to baseline meta-learners.

5.3.8 Interpretable Features of Datasets. Now, we show some of the interpretable input feature
values for all datasets in our testbed. In particular, we show mean (Figure 7), median (Figure 8),
variance (Figure 9), skeweness (Figure 10), kutosis (Figure 11), absolute energy (Figure 12), benford
correlation (Figure 13), and existence of duplicates (Figure 14) for each of the individual time series
in that testbed. Such features are shown in Figures 7-14. Note that time-series datasets have standard
normalization before feature extraction. Such features values show the diversity in the datasets,
where each dataset has different characteristics. We emphasize that in the interest of space, we
show sample of these interpretable features.

5.3.9 Micro Evaluations. We finally perform the following micro evaluations.
(a) Tuning of Time-series Meta-learner:We show the effect of different hyper-parameters

used in the training of the time-series meta-learner Θ on the performance of the selected model by
Θ (see Appendix E.1).

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

0 50 100 150 200 250 300
Dataset Index

0.0

0.2

0.4

0.6

0.8

M
ea

n

Fig. 7. Mean

0 50 100 150 200 250 300
Dataset Index

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

Fig. 8. Median

0 50 100 150 200 250 300
Dataset Index

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Va
ria

nc
e

Fig. 9. Variance

0 50 100 150 200 250 300
Dataset Index

−4

−3

−2

−1

0

1

2

3

4

Sk
ew

ne
ss

Fig. 10. Skeweness

0 50 100 150 200 250 300
Dataset Index

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ku
rto

sis

Fig. 11. Kurtosis

0 50 100 150 200 250 300
Dataset Index

0

2

4

6

8

10

12

14

Ab
so

lu
te

 E
ne

rg
y

Fig. 12. Absolute Energy

(b) Time overhead of AutoForecast relative to training of selected model: we show via
aggregate statistics that AutoForecast incurs only negligible overhead relative to actual training
of the selected model (see Appendix E.2).
(c) Dataset-wise inference time comparison: To further show the superiority of

AutoForecast in terms of inference, we pick several random groups of datasets and show the time
(in seconds) that AutoForecast takes versus the naïve approach for forecasting model selection
(see Appendix E.3).

6 DISCUSSION
6.1 Reproducibility of AutoForecast
To further research into the important problem introduced in our work, we have publicly released
our source codes and benchmark data to enable others reproduce our work. In particular, we

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

0 50 100 150 200 250 300
Dataset Index

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

Be
nf

or
d

Co
rre

la
tio

n

Fig. 13. Benford Correlation

0 50 100 150 200 250 300
Dataset Index

0.0

0.2

0.4

0.6

0.8

1.0

Du
pl

ica
te

s

Fig. 14. Existence of duplicates (binary)

are publicly releasing, with this submission, our meta-learning database corpus of 348 datasets,
containing 625 time series in all, performances of the 322 forecasting models, and meta-features
for the datasets. This resource will hopefully encourage the community to standardize efforts at
benchmarking time series forecasting model selection. We also encourage the community to expand
this resource by contributing their new datasets and models. The anonymized website with our
database and source codes is: https://drive.google.com/drive/folders/1K1w1Ida5Cr15b5Fhidax-
i-fNpWZjvet. The details of each dataset in the two testbeds and the different categories of
meta-features are presented in Section 5.1. This serves as the training data and ground truth
evaluation data for AutoForecast.

6.2 Usage of Meta-Learning in AutoForecast
We emphasize that we use the term “meta-learning” in the context of traditional principle of
meta-learning which is building upon prior experience on a set of historical tasks to “do better”
on a new task. We build the experience across different datasets using our general meta-learner
and build experience on the sequential temporal dependence within the same dataset using the
LSTM time-series meta-learner. We also capture task similarity between a new input task (dataset)
and historical datasets using the “meta-features”. We also emphasize that our proposed method is
faster compared to gradient descent-based meta-learners, equivalently pure Deep Learning-based
meta-learners, [31, 56], e.g., on our univariate testbed, N-Beats [56] has significantly slower training
(average = 3600 seconds) and inference time (average = 101 sec) compared to AutoForecast
(average = 670 seconds for training and 1.13 sec for inference). Integrating our meta-learning
approach with a deep learning approach is a potential area of future work.

6.3 Diversity of Datasets and Addition of More Datasets
We acknowledge that diversity of sources makes the meta-learning model learn from such diversity
since model selection on test data would benefit from the prior experience on that diverse train set.
For that purpose, we use benchmark datasets from Kaggle, Adobe real traces, and other open-source
repositories, where the datasets are from different application domains (e.g., finance, IoT, energy,
storage, etc.). In this context, we emphasize that the 625 time series used in the current paper show
the potential of AutoForecast in selecting good time forecasting methods efficiently. However, the
addition of more datasets would be a crucial step for the future related works to have a benchmark
representative sample. For instance, larger collections of time series have been made available
in [29]. This collection contains 30 large-scale time-series, including M4, London Smart Meters,
Dominick sales, and Web Traffic datasets. We have released our benchmark datasets (link provided
earlier in this Section) to help the community build on our work with more datasets and models.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

https://drive.google.com/drive/folders/1K1w1Ida5Cr15b5Fhidax-i-fNpWZjvet
https://drive.google.com/drive/folders/1K1w1Ida5Cr15b5Fhidax-i-fNpWZjvet

1: Mustafa Abdallah et al.

6.4 Performance Collection
For our performance collection, each MSE value represents the difference between the predicted
reading (using corresponding forecasting model in our model space) and actual reading (which
already exists in the dataset). Moreover, to ensure quality of such values for training our
meta-learners, we considered different popular time series forecasting models, and trustworthy
toolboxes and tools that are recommended in the related time series forecasting literature. We also
share the details of our experimental setups in Evaluation Section and Appendix C and D along
with our source codes for replicating our performance generation process. We emphasize that
extending the performance collection with more models and hyperparameters (e.g., “multiplicative”
seasonalitymode in Prophetmodel) would enhance the performance of our framework. Furthermore,
we emphasize that incorporating confidence measures for performance collection can be a fruitful
avenue for future research.

6.5 Selection of Meta-Features
We reemphasize that we used tsfresh [16] to generate most of our meta-features. For each
time-series dataset, we generated a meta-feature vector that consists of 800 meta-features (810
meta-features). We summarize the meta-features used by AutoForecast in Table 13 in Appendix B.
Specifically, our meta-features can be categorized into: (1) Simple features, (2) Statistical features,
(3) Information-theoretic features, (4) Spectral features, and (5) Landmarker features. We also
emphasize that our meta-feature set has common features with several state-of-the-art feature
selection methods. In Table 11, we compare the meta-features introduced in our current study with
those from established state-of-the-art time-series feature extraction methods, including tsfresh [16],
tsfeatures [33], Compengine [48], and Monash time series forecasting repository [29]. It is worth
noting that our proposed meta-features share several common features with each of these leading
methods (that have been commonly used for generating meta-features for time-series datasets),
with 30 features overlapping with tsfeatures, 15 features with Compengine, and 29 features with
Monash. Additionally, we highlight that we have introduced 40 landmark features that have not
been previously considered in any of these existing time-series feature selection methods. We
acknowledge that further enhancing feature selection and expanding representative meta-features
would enhance the performance of our proposed model selection framework in AutoForecast.

6.6 Model Selection vs. Model Averaging
We emphasize that our approach seeks to find the most suitable forecasting method using
meta-learning. In particular, the main focus of our work is to automatically identify (select) the
suitable forecasting model for an unseen time-series dataset, eliminating the need to initially train
(or assess) all models on the new data to determine the most suitable one. This quick inference is the
main goal of this work. However, we posit that with our model selection, some accuracy in selecting
best forecasting models can be lost to achieve much faster processing at inference time (e.g., see the
Hit-at-10 accuracy compared to Hit-at-50 accuracy in Table 2). The main focus of our work is model
selection which is different from model averaging in most prior works in forecasting literature.
In this context, we emphasize that model averaging usually guarantee better accuracy (i.e., mean
square error in our setup). There exist several works that have shown that model averaging is better
than model selection approach [51]. The main insight in this line of work is that model combination
is better than only selecting a single forecasting method (e.g., the prominent FFORMA model [51]
that learns weights for the models and then combines (or ensembles) the predictions according
to these weights). Another example in this context is the work [41]. This work has shown that
weighted forecast combinations perform better than forecasts selected using information criteria,

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

Table 11. A comparison between the proposed meta-features in our current work and the meta-features in
the established state-of-the-art time-series feature extraction methods, including tsfresh [16], tsfeatures [33],
Compengine [48], and Monash time series forecasting repository [29]. We emphasize that our proposed
meta-features has several common features with each one of these different state-of-the-art methods (i.e.,
30 features common with tsfeatures, 15 features common with Compengine, and 29 features common with
Monash). Furthermore, we stress that we have 40 landmarker features (see Appendix B.3 for its details) that
have not been considered in any of these prior feature selection methods.
Feature Name (Category) AUTOFORECAST (Ours) tsfresh [16] tsfeatures [33] Monash [29] Compengine [27]

Box-Cox lambda values ✗ ✗ ✗ ✓ ✗

acf_features (Autocorrelation-based) ✓ ✓ ✓ ✓ ✗
Periodicity measure ✓ ✓ ✗ ✓ ✓
Longest period of consecutive values above mean ✓ ✓ ✗ ✓ ✓
Time intervals between successive outliers ✗ ✗ ✗ ✓ ✓
ac_9 (Lag Autocorrelation) ✓ ✓ ✓ ✓ ✓
autocorr_features (htsa autocorrelation) ✗ ✗ ✓ ✓ ✓
arch_stat (Statistical) ✓ ✓ ✓ ✓ ✓
binarize_mean (Count below/above Mean) ✓ ✓ ✓ ✓ ✓
pred_feat (prediction) ✓ ✓ ✓ ✓ ✓
station_features (stationarity) ✓ ✓ ✓ ✓ ✓
dist_feature (distribution) ✗ ✗ ✓ ✓ ✓
scal_features (scaling) ✓ ✓ ✓ ✓ ✓
crossing_points (no. times the series crosses median) ✓ ✓ ✓ ✓ ✗
embed2_incircle (lag of first zero crossing of autocorr.) ✗ ✗ ✓ ✓ ✓
entropy (Spectral entropy of a time series) ✓ ✓ ✓ ✓ ✓
firstmin_ac (Time of first minimum in the autocorr.) ✓ ✓ ✓ ✓ ✓
firstzero_ac (Time of first zero in the autocorrelation) ✓ ✓ ✓ ✓ ✓
flat_spot (longest flat spots) ✗ ✗ ✓ ✓ ✗
fluctanal_prop_r1 (range and fluctuations) ✓ ✓ ✓ ✓ ✓
heterogeneity (Heterogeneity coefficients) ✓ ✓ ✓ ✓ ✗
histogram_mode (mode of data vector using histograms) ✗ ✗ ✓ ✓ ✓
holt_parameters (holt linear trend) ✓ ✓ ✓ ✓ ✓
hurst (difference-based) ✓ ✓ ✓ ✓ ✗
Successive differences features ✓ ✓ ✗ ✓ ✓
localsimple_taures (zero crossing of residuals) ✓ ✓ ✓ ✓ ✗
spike (sudden and significant changes in time series) ✓ ✓ ✓ ✓ ✗
lumpiness (mean and variance of tiled windows) ✓ ✓ ✓ ✓ ✗
max_level_shift (features of sliding windows) ✓ ✓ ✓ ✓ ✗
motiftwo_entro3 (Local motifs) ✗ ✗ ✓ ✓ ✗
nonlinearity ✓ ✓ ✓ ✓ ✗
outlierinclude_mdrmd (median of outliers) ✗ ✗ ✓ ✓ ✓
pacf_features (Partial autocorrelation-based) ✓ ✓ ✓ ✓ ✗
sampenc (Second Sample Entropy) ✓ ✓ ✓ ✓ ✓
sampen_first (First Sample Entropy) ✓ ✓ ✓ ✓ ✓
spreadrandomlocal_meantaul (Bootstrap stationarity) ✗ ✗ ✓ ✓ ✗
std1st_der (STD of first derivative) ✓ ✓ ✓ ✓ ✗
stl_features (Strength of trend and seasonality) ✓ ✓ ✓ ✓ ✗
trev_num (trev autocorrelation) ✓ ✓ ✓ ✓ ✗
freq (frequency) ✓ ✓ ✓ ✓ ✗
unitroot_kpss (Unit Root Test Statistic) ✓ ✓ ✓ ✓ ✗
walker_propcross (walker particle trend) ✗ ✗ ✓ ✓ ✗
zero_proportion (Proportion of zero) ✗ ✗ ✓ ✓ ✗
Fast Fourier Transform Coeeficients ✓ ✓ ✗ ✓ ✓

Symm_looking (Symmetry looking of time-series) ✓ ✓ ✗ ✗ ✗
Reversal_Asymmetry (Reversal asymmetry of time-series) ✓ ✓ ✗ ✗ ✗
Absolute Summation of Change ✓ ✓ ✗ ✗ ✗
Change Quantiles ✓ ✓ ✗ ✗ ✗
Friedrich Coefficients (Dynamics) ✓ ✓ ✗ ✗ ✗
Wavelet Transform Coefficients ✓ ✓ ✗ ✗ ✗
Absolute Energy ✓ ✓ ✗ ✗ ✗
Fourier Entropy ✓ ✓ ✗ ✗ ✗

(1) Auto Regeression Coefficients ✓ ✗ ✗ ✗ ✗
(2) Random Forest Landmarker Features ✓ ✗ ✗ ✗ ✗

Number of Leaves ✓ ✗ ✗ ✗ ✗
Tree depth ✓ ✗ ✗ ✗ ✗
Mean of Base Tree Feature Importance ✓ ✗ ✗ ✗ ✗
Max of Base Tree Feature Importance ✓ ✗ ✗ ✗ ✗
Out-of-bag estimate score ✓ ✗ ✗ ✗ ✗

(3) Bayesian Ridge Regression ✓ ✗ ✗ ✗ ✗
Mean of Distribution ✓ ✗ ✗ ✗ ✗
Log Marginal Likelihood ✓ ✗ ✗ ✗ ✗
Estimated Weights’ Precision ✓ ✗ ✗ ✗ ✗
Estimated Noise Precision ✓ ✗ ✗ ✗ ✗
Stopping Number of Iterations ✓ ✗ ✗ ✗ ✗

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

in terms of both point forecast accuracy and prediction interval coverage. Model averaging would
usually be the better choice to achieve the best accuracy possible if the runtime is not an issue.
Nonetheless, our choice of model selection in this work instead of model averaging is based on
the above mentioned goal of having much faster inference compared to model averaging methods.
Our evaluation has provided clear evidence for such gain in inference time (as shown in Table 6).
Also, single model selection can potentially provide more interpretability. For example, explaining
forecasts of model averaging along with its top features can be a challenging task [67]. In particular,
interpreting the predictions from different (possibly correlated) predictors needs caution [18].

7 CONCLUSION
We introduced a meta-learning approach to automate the process of time-series forecasting by
automatically inferring the best time-series model on an unseen dataset, without needing exhaustive
evaluation of all existing models on this dataset. The problem arises because there are many
possible forecasting models with their associated hyperparameters, and different choices are
optimal for different datasets. Our proposed solution AutoForecast is a meta-learner, trained on
an extensive pool of historical time-series forecasting datasets and models. To effectively capture
dataset similarity, we designed novel problem-specific meta-features. AutoForecast generalizes
to new datasets since it learns two models from the training corpus: first, the mapping between
the meta-features vector and the corresponding best-model via the general meta-learner (Φ); and
second, the evolution of the models’ performances in time with the meta-features and previous
models’ performances via the time-series meta-learner (Θ). Thus, for a new different dataset,
we extract its meta-features vector and then determine the best model using the pre-trained
(Φ) and (Θ). Extensive experiments on two large testbeds, univariate and multivariate, showed
that AutoForecast significantly improves time-series forecasting model selection over directly
using some of the most popular models as well as several SOTA meta-learners. We also included
few AutoML solutions (including AutoArima, AutoETS, and Auto-AI-TS) in our evaluation. We
performed an experiment to evaluate the consistency and stability of AutoForecast against the
brute force approach that rank all forecasting algorithms. We showed that AutoForecast gives
a significant improvement in the inference time compared to naïve approaches. We release the
benchmark data for the community to contribute new datasets and models to further advance
automating time-series forecasting. Furthermore, we explained in details the generation of our
novel landmarker meta-features and provided a full list of the meta-features we used in our work.
This can help further the replication of our results. We believe that our work provides an essential
stepping-stone in enhancing quick model selection of different time-series forecasting models.

ACKNOWLEDGMENTS
This work is funded in part from Indiana University-Purdue University Indianapolis. The authors
thank Adobe Research for providing computational resources for performing part of the experiments
(when Mustafa Abdallah was a research intern) and for approving sharing the Adobe traces publicly.

REFERENCES
[1] Hossein Abbasimehr, Mostafa Shabani, and Mohsen Yousefi. 2020. An optimized model using LSTM network for

demand forecasting. Computers & industrial engineering 143 (2020), 106435.
[2] Mustafa Abdallah, Wo Jae Lee, Nithin Raghunathan, Charilaos Mousoulis, John W Sutherland, and Saurabh Bagchi.

2021. Anomaly Detection through Transfer Learning in Agriculture and Manufacturing IoT Systems. arXiv preprint
arXiv:2102.05814 (2021).

[3] Mustafa Abdallah, Ryan Rossi, Kanak Mahadik, Sungchul Kim, Handong Zhao, and Saurabh Bagchi. 2022. AutoForecast:
Automatic Time-Series Forecasting Model Selection. In Proceedings of the 31st ACM International Conference on

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

Information & Knowledge Management (Atlanta, GA, USA) (CIKM ’22). Association for Computing Machinery, New
York, NY, USA, 5–14. https://doi.org/10.1145/3511808.3557241

[4] Salisu Mamman Abdulrahman, Pavel Brazdil, Jan N. van Rijn, and Joaquin Vanschoren. 2018. Speeding up algorithm
selection using average ranking and active testing by introducing runtime. Mach. Learn. 107, 1 (2018), 79–108.
https://doi.org/10.1007/s10994-017-5687-8

[5] Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan Gasthaus, Tim
Januschowski, Danielle C Maddix, Syama Sundar Rangapuram, David Salinas, Jasper Schulz, et al. 2020. GluonTS:
Probabilistic and Neural Time Series Modeling in Python. J. Mach. Learn. Res. 21, 116 (2020), 1–6.

[6] Bay Arinze, Seung-Lae Kim, and Murugan Anandarajan. 1997. Combining and selecting forecasting models using rule
based induction. Computers & Operations Research 24, 5 (1997), 423–433. https://doi.org/10.1016/S0305-0548(96)00062-7

[7] Christoph Bergmeir and José M Benítez. 2012. On the use of cross-validation for time series predictor evaluation.
Information Sciences 191 (2012), 192–213.

[8] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms for hyper-parameter optimization.
In 25th annual conference on neural information processing systems (NIPS 2011), Vol. 24. Neural Information Processing
Systems Foundation.

[9] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. Journal of machine
learning research 13, 2 (2012).

[10] Casper Solheim Bojer and Jens Peder Meldgaard. 2021. Kaggle forecasting competitions: An overlooked learning
opportunity. International Journal of Forecasting 37, 2 (2021), 587–603.

[11] Pavel Brazdil, Christophe Giraud Carrier, Carlos Soares, and Ricardo Vilalta. 2008. Metalearning: Applications to data
mining. Springer Science & Business Media.

[12] Vitor Cerqueira, Luis Torgo, and Igor Mozetič. 2020. Evaluating time series forecasting models: An empirical study on
performance estimation methods. Machine Learning 109, 11 (2020), 1997–2028.

[13] Vitor Cerqueira, Luis Torgo, and Carlos Soares. 2021. Model Selection for Time Series Forecasting: Empirical Analysis
of Different Estimators. arXiv preprint arXiv:2104.00584 (2021).

[14] Chris Chatfield. 1978. The Holt-winters forecasting procedure. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 27, 3 (1978), 264–279.

[15] Baibhab Chatterjee, Dong-Hyun Seo, Shramana Chakraborty, Shitij Avlani, Xiaofan Jiang, Heng Zhang, Mustafa
Abdallah, Nithin Raghunathan, Charilaos Mousoulis, Ali Shakouri, Saurabh Bagchi, Dimitrios Peroulis, and Shreyas Sen.
2021. Context-Aware Collaborative IntelligenceWith Spatio-Temporal In-Sensor-Analytics for Efficient Communication
in a Large-Area IoT Testbed. IEEE Internet of Things Journal 8, 8 (2021), 6800–6814. https://doi.org/10.1109/JIOT.2020.
3036087

[16] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W Kempa-Liehr. 2018. Time series feature extraction on
basis of scalable hypothesis tests (tsfresh–a python package). Neurocomputing 307 (2018), 72–77.

[17] Christophmark. 2020. Python Implementation of FFORMA. https://github.com/christophmark/fforma
[18] Merlise Clyde. 2003. Model averaging. Subjective and objective Bayesian statistics (2003), 636–642.
[19] Fred Collopy and J Scott Armstrong. 1992. Rule-based forecasting: Development and validation of an expert systems

approach to combining time series extrapolations. Management science 38, 10 (1992), 1394–1414.
[20] Alysha M De Livera, Rob J Hyndman, and Ralph D Snyder. 2011. Forecasting time series with complex seasonal

patterns using exponential smoothing. Journal of the American statistical association 106, 496 (2011), 1513–1527.
[21] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. 2018. Transfer

learning for time series classification. In 2018 IEEE international conference on big data (Big Data). IEEE, 1367–1376.
[22] Matthias Feurer and Frank Hutter. 2019. Hyperparameter optimization. In Automated Machine Learning. Springer,

Cham, 3–33.
[23] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter. 2015.

Efficient and Robust Automated Machine Learning. In Advances in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 28. Curran Associates, Inc. https://proceedings.neurips.
cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf

[24] Matthias Feurer, Jost Springenberg, and Frank Hutter. 2015. Initializing bayesian hyperparameter optimization via
meta-learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 29.

[25] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning. PMLR, 1126–1135.

[26] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. 2019. Unsupervised scalable representation learning for
multivariate time series. arXiv preprint arXiv:1901.10738 (2019).

[27] Ben D Fulcher, Carl H Lubba, Sarab S Sethi, and Nick S Jones. 2019. CompEngine: a self-organizing, living library of
time-series data. arXiv preprint arXiv:1905.01042 (2019).

[28] Everette S Gardner Jr. 1985. Exponential smoothing: The state of the art. Journal of forecasting 4, 1 (1985), 1–28.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

https://doi.org/10.1145/3511808.3557241
https://doi.org/10.1007/s10994-017-5687-8
https://doi.org/10.1016/S0305-0548(96)00062-7
https://doi.org/10.1109/JIOT.2020.3036087
https://doi.org/10.1109/JIOT.2020.3036087
https://github.com/christophmark/fforma
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf

1: Mustafa Abdallah et al.

[29] Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J. Hyndman, and Pablo Montero-Manso. 2021.
Monash Time Series Forecasting Archive. In Neural Information Processing Systems Track on Datasets and Benchmarks.

[30] Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, and Pablo Montero-Manso. 2023. An accurate and
fully-automated ensemble model for weekly time series forecasting. International Journal of Forecasting 39, 2 (2023),
641–658. https://doi.org/10.1016/j.ijforecast.2022.01.008

[31] Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. 2021. Recurrent neural networks for time series
forecasting: Current status and future directions. International Journal of Forecasting 37, 1 (2021), 388–427.

[32] Ali Hooshmand and Ratnesh Sharma. 2019. Energy predictive models with limited data using transfer learning. In
Proceedings of the Tenth ACM International Conference on Future Energy Systems. 12–16.

[33] Rob Hyndman, Yanfei Kang, Pablo Montero-Manso, Thiyanga Talagala, Earo Wang, Yangzhuoran Yang, Mitchell
O’Hara-Wild, et al. 2019. tsfeatures: Time series feature extraction. R package version 1, 0 (2019).

[34] Rob J Hyndman. 2014. Measuring forecast accuracy. Business forecasting: Practical problems and solutions (2014),
177–183.

[35] Rob J Hyndman and Yeasmin Khandakar. 2008. Automatic time series forecasting: the forecast package for R. Journal
of statistical software 27 (2008), 1–22.

[36] Rob J Hyndman, Anne B Koehler, Ralph D Snyder, and Simone Grose. 2002. A state space framework for automatic
forecasting using exponential smoothing methods. International Journal of forecasting 18, 3 (2002), 439–454.

[37] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. 2010. ISAC-Instance-Specific Algorithm
Configuration.. In ECAI, Vol. 215. Citeseer, 751–756.

[38] Kaggle. 2021. Time Series Forecasting Datasets. https://www.kaggle.com/search?q=time+series+forecasting+in%
3Adatasets. [Online; accessed 21-May-2021].

[39] Prajakta S Kalekar et al. 2004. Time series forecasting using holt-winters exponential smoothing. Kanwal school of
information Technology 4329008, 13 (2004), 1–13.

[40] Alexandros Kalousis. 2002. Algorithm selection via meta-learning. Ph. D. Dissertation. University of Geneva.
[41] Stephan Kolassa. 2011. Combining exponential smoothing forecasts using Akaike weights. International Journal of

Forecasting 27, 2 (2011), 238–251.
[42] Mirko Kück, Sven F Crone, and Michael Freitag. 2016. Meta-learning with neural networks and landmarking for

forecastingmodel selection an empirical evaluation of different feature sets applied to industry data. In 2016 international
joint conference on neural networks (IJCNN). IEEE, 1499–1506.

[43] Christiane Lemke and Bogdan Gabrys. 2010. Meta-learning for time series forecasting and forecast combination.
Neurocomputing 73, 10-12 (2010), 2006–2016.

[44] Richard Lewis and Gregory C Reinsel. 1985. Prediction of multivariate time series by autoregressive model fitting.
Journal of multivariate analysis 16, 3 (1985), 393–411.

[45] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. 2017. Hyperband: A novel
bandit-based approach to hyperparameter optimization. The Journal of Machine Learning Research 18, 1 (2017),
6765–6816.

[46] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by randomForest. R news 2, 3 (2002), 18–22.
[47] Pablo Ribalta Lorenzo, Jakub Nalepa, Michal Kawulok, Luciano Sanchez Ramos, and José Ranilla Pastor. 2017. Particle

swarm optimization for hyper-parameter selection in deep neural networks. In Proc. of the Genetic & Evolutionary
Computation Conference. 481–488.

[48] Carl H Lubba, Sarab S Sethi, Philip Knaute, Simon R Schultz, Ben D Fulcher, and Nick S Jones. 2019. catch22: CAnonical
Time-series CHaracteristics: Selected through highly comparative time-series analysis. Data Mining and Knowledge
Discovery 33, 6 (2019), 1821–1852.

[49] Marin Matijaš, Johan AK Suykens, and Slavko Krajcar. 2013. Load forecasting using a multivariate meta-learning
system. Expert systems with applications 40, 11 (2013), 4427–4437.

[50] Gaurav Mittal, Chang Liu, Nikolaos Karianakis, Victor Fragoso, Mei Chen, and Yun Fu. 2020. HyperSTAR: Task-Aware
Hyperparameters for Deep Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 8736–8745.

[51] Pablo Montero-Manso, George Athanasopoulos, Rob J Hyndman, and Thiyanga S Talagala. 2020. FFORMA:
Feature-based forecast model averaging. International Journal of Forecasting 36, 1 (2020), 86–92.

[52] Leann Myers and Maria J Sirois. 2004. Spearman correlation coefficients, differences between. Encyclopedia of statistical
sciences 12 (2004).

[53] Jyoti Narwariya, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and TV Vishnu. 2020. Meta-learning for few-shot
time series classification. In Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. ACM, 28–36.

[54] Mladen Nikolić, Filip Marić, and Predrag Janičić. 2013. Simple algorithm portfolio for SAT. Artificial Intelligence Review
40, 4 (2013), 457–465.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

https://doi.org/10.1016/j.ijforecast.2022.01.008
https://www.kaggle.com/search?q=time+series+forecasting+in%3Adatasets
https://www.kaggle.com/search?q=time+series+forecasting+in%3Adatasets

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

[55] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2020. Meta-learning framework with
applications to zero-shot time-series forecasting. arXiv:2002.02887 (2020).

[56] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2020. N-BEATS: Neural basis expansion
analysis for interpretable time series forecasting. In International Conference on Learning Representations. https:
//openreview.net/forum?id=r1ecqn4YwB

[57] Zheyi Pan, Wentao Zhang, Yuxuan Liang, Weinan Zhang, Yong Yu, Junbo Zhang, and Yu Zheng. 2020. Spatio-Temporal
Meta Learning for Urban Traffic Prediction. IEEE Transactions on Knowledge and Data Engineering (2020), 1–1.
https://doi.org/10.1109/TKDE.2020.2995855

[58] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[59] Arnak Poghosyan, Ashot Harutyunyan, Naira Grigoryan, Clement Pang, George Oganesyan, Sirak Ghazaryan, and
Narek Hovhannisyan. 2021. An Enterprise Time Series Forecasting System for Cloud Applications Using Transfer
Learning. Sensors 21, 5 (2021), 1590.

[60] Ricardo BC Prudêncio and Teresa B Ludermir. 2004. Meta-learning approaches to selecting time series models.
Neurocomputing 61 (2004), 121–137.

[61] Min Qi and Guoqiang Peter Zhang. 2001. An investigation of model selection criteria for neural network time series
forecasting. European Journal of Operational Research 132, 3 (2001), 666–680.

[62] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. 2020. Rapid Learning or Feature Reuse? Towards
Understanding the Effectiveness of MAML. In International Conference on Learning Representations. https://openreview.
net/forum?id=rkgMkCEtPB

[63] Sachin Ravi and Hugo Larochelle. 2017. Optimization as a Model for Few-Shot Learning. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.
https://openreview.net/forum?id=rJY0-Kcll

[64] Mauro Ribeiro, Katarina Grolinger, Hany F ElYamany, Wilson A Higashino, and Miriam AM Capretz. 2018. Transfer
learning with seasonal and trend adjustment for cross-building energy forecasting. Energy and Buildings 165 (2018),
352–363.

[65] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, and Raia Hadsell.
2019. Meta-Learning with Latent Embedding Optimization. In International Conference on Learning Representations.
https://openreview.net/forum?id=BJgklhAcK7

[66] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020. DeepAR: Probabilistic forecasting with
autoregressive recurrent networks. International Journal of Forecasting 36, 3 (2020), 1181–1191.

[67] Michael Schomaker and Christian Heumann. 2014. Model selection and model averaging after multiple imputation.
Computational Statistics & Data Analysis 71 (2014), 758–770.

[68] Skipper Seabold and Josef Perktold. 2010. Statsmodels: Econometric and statistical modeling with python. In Proceedings
of the 9th Python in Science Conference, Vol. 57. Austin, TX, 61.

[69] Syed Yousaf Shah, Dhaval Patel, Long Vu, Xuan-Hong Dang, Bei Chen, Peter Kirchner, Horst Samulowitz, David Wood,
Gregory Bramble, Wesley M Gifford, et al. 2021. AutoAI-TS: AutoAI for Time Series Forecasting. In Proceedings of the
2021 International Conference on Management of Data. 2584–2596.

[70] Bobak Shahriari, Alexandre Bouchard-Côté, and Nando Freitas. 2016. Unbounded Bayesian optimization via
regularization. In Artificial intelligence and statistics. PMLR, 1168–1176.

[71] Qi Shi, Mohamed Abdel-Aty, and Jaeyoung Lee. 2016. A Bayesian ridge regression analysis of congestion’s impact on
urban expressway safety. Accident Analysis & Prevention 88 (2016), 124–137.

[72] Slawek Smyl. 2020. A hybrid method of exponential smoothing and recurrent neural networks for time series
forecasting. International Journal of Forecasting 36, 1 (2020), 75–85.

[73] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical Networks for Few-shot Learning. In
Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/
file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf

[74] Thiyanga S Talagala, Rob J Hyndman, and George Athanasopoulos. 2023. Meta-learning how to forecast time series.
Journal of Forecasting 42, 6 (2023), 1476–1501.

[75] Thiyanga S Talagala, Rob J Hyndman, George Athanasopoulos, et al. 2018. Meta-learning how to forecast time series.
Monash Econometrics Working Papers 6 (2018), 18.

[76] Thiyanga S. Talagala, Feng Li, and Yanfei Kang. 2021. FFORMPP: Feature-based forecast model performance prediction.
International Journal of Forecasting (2021). https://doi.org/10.1016/j.ijforecast.2021.07.002

[77] Sean J Taylor and Benjamin Letham. 2018. Forecasting at scale. The American Statistician 72, 1 (2018), 37–45.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

https://openreview.net/forum?id=r1ecqn4YwB
https://openreview.net/forum?id=r1ecqn4YwB
https://doi.org/10.1109/TKDE.2020.2995855
https://openreview.net/forum?id=rkgMkCEtPB
https://openreview.net/forum?id=rkgMkCEtPB
https://openreview.net/forum?id=rJY0-Kcll
https://openreview.net/forum?id=BJgklhAcK7
https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://doi.org/10.1016/j.ijforecast.2021.07.002

1: Mustafa Abdallah et al.

[78] Evaldas Vaiciukynas, Paulius Danenas, Vilius Kontrimas, and Rimantas Butleris. 2020. Meta-Learning for Time Series
Forecasting Ensemble. arXiv preprint arXiv:2011.10545 (2020).

[79] Joaquin Vanschoren. 2018. Meta-learning: A survey. arXiv preprint arXiv:1810.03548 (2018).
[80] Xiaozhe Wang, Kate Smith-Miles, and Rob Hyndman. 2009. Rule induction for forecasting method selection:

Meta-learning the characteristics of univariate time series. Neurocomputing 72, 10-12 (2009), 2581–2594.
[81] Yuyang Wang, Alex Smola, Danielle Maddix, Jan Gasthaus, Dean Foster, and Tim Januschowski. 2019. Deep factors for

forecasting. In International Conference on Machine Learning. PMLR, 6607–6617.
[82] Tailai Wen and Roy Keyes. 2019. Time series anomaly detection using convolutional neural networks and transfer

learning. arXiv preprint arXiv:1905.13628 (2019).
[83] Agus Widodo and Indra Budi. 2013. Model selection using dimensionality reduction of time series characteristics. In

International Symposium on Forecasting, Seoul, South Korea. 57–118.
[84] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. 2018. Scalable gaussian process-based transfer surrogates

for hyperparameter optimization. Machine Learning 107, 1 (2018), 43–78.
[85] David H Wolpert. 1996. The lack of a priori distinctions between learning algorithms. Neural computation 8, 7 (1996),

1341–1390.
[86] Weizhong Yan, Hai Qiu, and Ya Xue. 2009. Gaussian process for long-term time-series forecasting. In 2009 International

Joint Conference on Neural Networks. IEEE, 3420–3427.
[87] Rui Ye and Qun Dai. 2018. A novel transfer learning framework for time series forecasting. Knowledge-Based Systems

156 (2018), 74–99.
[88] Yue Zhao, Ryan A Rossi, and Leman Akoglu. 2020. Automating outlier detection via meta-learning. arXiv preprint

arXiv:2009.10606 (2020).
[89] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. 2019. Meta-GNN: On Few-Shot

Node Classification in Graph Meta-Learning. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management (Beijing, China) (CIKM ’19). Association for Computing Machinery, New York, NY, USA,
2357–2360. https://doi.org/10.1145/3357384.3358106

A SUMMARY OF NOTATION
We summarize the notation used in this paper in Table 12.

Table 12. A summary of our notation.

Symbol Description

D𝑡𝑟𝑎𝑖𝑛 Meta-train database
𝑛 Meta-train database size
𝑛𝑖 No. of observations in 𝑫𝑖

𝑣𝑖 No. of variables in 𝑫𝑖

M Model space
𝑀 𝑗 A forecasting model
𝑚 Size of the model space
𝒉𝑖 Hyperparameter vector of 𝑎𝑖
𝑇 Number of time windows
|𝑤𝑖 | Window length
P Performance tensor
𝑷𝑘 Performance matrix of window𝑤𝑘

𝑝
𝑖, 𝑗

𝑘
Model𝑀 𝑗 ’s performance on time window𝑤𝑘 of 𝑫𝑖

𝒑𝑖
𝑘

Models performances vector on time window𝑤𝑘 for 𝑫𝑖

𝑔𝑖 (·) Data representation
F𝑖 Meta-features tensor of 𝑫𝑖

𝑭 𝑖
𝑘

Meta-feature matrix of window𝑤𝑘 in 𝑫𝑖

𝜓 (·) Meta-features extraction module
𝑑 Number of meta-features
L Meta-learner
Φ General Meta-learner
Θ Time-series Meta-learner
𝑀̂Θ

𝑡 , 𝑀̂Φ
𝑡 Selected model for time window𝑤𝑡 by Θ and Φ, respectively

𝑀̂𝑡 Selected model for window𝑤𝑡 in inference by AutoForecast

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

https://doi.org/10.1145/3357384.3358106

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

B TIME-SERIES META FEATURES
There are prior works that generated standard time-series features [26], tsfresh [16] (that we used
for generating part of our meta-features). We now provide details of our meta-features (shared
with our database in the link provided in Section 1). For each dataset, we generate a meta-feature
vector that consists of more than 800 meta-features.

B.1 Meta-features Categories
For each dataset, we generate a meta-feature vector that consists of more than 800 meta-features.
This meta-features vector includes different components that capture various properties of the
time-series dataset, e.g.,, the statistical features (number of crossings, count of observations
above/below the mean value, quantiles, etc.), the data trend (linear, non-linear, dynamics, etc.), data
interdependence (lag autocorrelation, difference features, etc.), information-theoretic features that
are typically based on entropy measures, and the frequency (FFT, wavelet, etc.). Our meta-features
vector also includes landmarker features, which are problem-specific, and aim to capture the
unique characteristics of a dataset. The idea is to apply a few of the fast, easy-to-construct
time-series forecasting models on a dataset and extract features from (i) the structure of the
estimated forecasting model, and (ii) its output performance scores.

B.2 Complete List of Features
We summarize the meta-features used by AutoForecast in Table 13. When applicable, we
provide the formula for computing the meta-feature(s) and corresponding variants we used for
generating the meta-features, and the corresponding number of features. Some are based on [79].
Specifically, our meta-features can be categorized into (1) simple features, (2) statistical features, (3)
information-theoretic features, (4) Spectral features, and (5) landmarker features. Broadly speaking,
the statistical features captures statistical properties of the underlying data distributions; e.g.,
min, max, variance, skewness, covariance, etc. of the features and feature combinations. The
information-theoretic features capture information-theoretic underlying characteristics in the
time-series; e.g., entropy, trend, non-linearity, change statistics, etc. Most of those meta-features
have been commonly used in the AutoML literature [79]. To the best of our knowledge, we emphasize
that our landmarker meta-features (detailed below) are novel and that some components of the
spectral meta-features have not been used in any related work.

B.3 Landmarker Meta-Feature Generation
In addition to simple, statistical, and information-theoretic meta-features, we use three time-series
forecasting landmarker algorithms for computing forecasting-specific landmarker meta-features,
which are Auto Regression [44], Random Forest [46], and Bayesian Ridge Regression [71] to capture
landmarker characteristics of a time-series dataset.
We now provide a quick overview of each algorithm and then discuss how we are using them

for building meta-features. The algorithms are executed with the default parameter.
Auto Regression [44]: In this landamarker feature, we fits the unconditional maximum likelihood
of an autoregressive process. The 𝑘 parameter represents the maximum lag of the process

𝑋𝑡 = 𝜑0 +
𝑘∑︁
𝑖=1

𝜑𝑖𝑋𝑡−𝑖 + 𝜀𝑡

Then, we extract the coefficients 𝜑𝑖 whose index 𝑖 ∈ {0, · · · , 𝑘}.
Random Forest [46]: It is a tree-based ensemble method that builds a collection of base trees
using the sub-sampled unlabeled data, splitting on (randomly selected) features as nodes. Random

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

Forest grows internal nodes until the terminal leaves contain only one sample or the predefined
max depth is reached.
For Random Forest, we use the balance of base trees (i.e., depth of trees and number of leaves

per tree) and additional information (e.g., feature importance of each base tree). It is noted that
feature importance information is available for each base tree—we therefore analyze the statistic of
mean and max of base tree feature importance. The following information of base trees are used:

• Tree depth: min, max, mean, std, skewness, and kurtosis
• Number of leaves: min, max, mean, std, skewness, and kurtosis
• Mean of base tree feature importance: min, max, mean, std, skewness, and kurtosis
• Max of base tree feature importance: min, max, mean, std, skewness, and kurtosis
• Out-of-bag estimate score.

Bayesian Ridge Regression [71]: It estimates a Gaussian probabilistic model of the regression
problem using Bayesian regression. The prior for the coefficient is given by a spherical Gaussian
distribution.
For Bayesian Ridge Regression, we use the following information of the probabilistic model

(fitted using the dataset) as landmarker features:
• Mean of the distribution
• Log marginal Likelihood score
• The precision of the estimated weights
• The noise precision
• The actual number of iterations to achieve the stopping criterion

C MODEL SPACE
We now provide details on the model space used to study the meta-learning problem formulated in
our work. Recall that a model in the context of our problem is a time-series forecasting algorithm
and the hyperparameters used.
DeepAR [66]: DeepAR experiments are using the model implementation provided by GluonTS
version 1.7. We did grid search on different values of number of cells and the number of RNN layers
hyperparameters of DeepAR since the defaults provided in GluonTS would often lead to apparently
suboptimal performance on many of the datasets. The training parameters for each dataset are
described in Table 1. All other parameters are defaults of gluonts.model.deepar.DeepAREstimator.
Deep Factors [81]: Deep Factors experiments are using the model implementation provided
by GluonTS version 1.7. We did grid search over the number of units per hidden layer for the
global RNN model and the number of global factors hyperparameters of Deep Factors. The
training parameters for each dataset are described in Table 1. All other parameters are defaults of
gluonts.model.deep_factor.DeepFactorEstimator.
Prophet [77]: Prophet experiments are using the model python implementation provided by
Facebook (fbprophet) version 0.7.1. We did grid search over the change point prior scale and the
seasonality prior scale hyperparameters of Prophet. The training parameters for each dataset are
described in Table 1. All other parameters are defaults of fbprophet.Prophet.
Seasonal Naive [34]: Seasonal Naive experiments are using the model implementation provided
by GluonTS version 1.7. We did grid search over the length of seasonality pattern, since
it is different unknown for each, dataset hyperparameter of Seasonal Naive. The training
parameters for each dataset are described in Table 1. All other parameters are defaults of
gluonts.model.seasonal_naive.SeasonalNaivePredictor.
Gaussian Process [86]: Gaussian Process experiments are using the model implementation
provided by GluonTS version 1.7. We did grid search over the cardinality of the time-series

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

Table 13. Time-series meta-features for characterizing an arbitrary time-series dataset. We extracts a
comprehensive number of meta-features. The extracted meta-features are five categories: simple, statistical,
information-theoretic meta-features, spectral, and landmarker meta-features. To the best of our knowledge, we
emphasize that our landmarker meta-features are novel and that some components of spectral meta-features
have not been used in any related work.

Name Formula Property Variants No. of Features

Window Length |𝑤𝑖 | Speed/Scalability N/A 1
Number of Time-series variables 𝑣𝑖 Type N/A 1

Lag Autocorrelation 𝜌𝑛 Feature Interdependence 𝜌0 − 𝜌9 10
Lag Partial Autocorrelation 𝛼𝑘 Feature Interdependence acf_agg 15
Standard Deviation Range 𝜎 > 𝑟 (𝑚𝑎𝑥 −𝑚𝑖𝑛) Dispersion 𝑟 ∈ [0.05, 0.95] 20

Maximum 𝑚𝑎𝑥𝑋 Data Range max_duplicates 2
Minimum 𝑚𝑖𝑛𝑋 Data Range min_duplicates 2
Peaks 𝑝𝑒𝑎𝑘𝑋 Data Range peaks_supports, no_peaks 6

Reccurence Statistics 𝑋 Data Range recc_sum,recc_count,recc_ratio 5
Median 𝜇 Concentration rms 2
Mean 𝑋 Concentration rms 2

Variance 𝜎2 Dispersion std_dev 2
Covariance 𝐶𝑜𝑣 Dispersion benford_corr 8
Quantiles 𝑞0.1 − 𝑞0.9 Dispersion diff_quantiles 10

Mass Quantiles 𝑞%0.1 − 𝑞%0.9 Dispersion diff_quantiles 10
Count below Mean

∑
⊮(𝑋 < 𝜇) Statistics min,max,𝜎 ,𝜇 5

Count Above Mean
∑
⊮(𝑋 > 𝜇) Statistics min,max,𝜎 ,𝜇 5

Number of Crossings
∑𝑛

𝑖=1 1[𝑋==𝑣𝑎𝑙] Statistics zero_cross, minus_cross, root_hyp_test 5
Kurtosis 𝜇4

𝜎4 Feature normality sample_kurt 2
Skewness Skw Feature normality sample_skew 2

Symm_looking |𝜇𝑋 −𝑚𝑒𝑑𝑖𝑎𝑛𝑋 | < 𝑟 ∗ (𝑚𝑎𝑥𝑋 −𝑚𝑖𝑛𝑋) Symmetry 𝑟 ∈ [0.05, 0.95] 12
Reversal_Asymmetry E[𝐿2 (𝑋)2 · 𝐿(𝑋) − 𝐿(𝑋) · 𝑋 2] Reversal Asymmetry lag_L 12

Absolute Sum of Change
∑𝑛

𝑖=1 |𝑥𝑖+1 − 𝑥𝑖 | Difference mean_chg, mean_abs_chg, cid 5
Change Quantiles Corridor Quantiles Difference 𝑞𝑙 ∈ [0, 1], 𝑞ℎ ∈ [𝑞𝑙 , 1] 60

Entropy 𝐷 Regularity approx_entropy, sample_entropy 21
Linear Trend Linear_reg_chunks Trend {“pvalue”, “rvalue”, “intercept”, “slope”, “stderr”} 50
Non-Linearity 𝑐3 Non-linearity ℓ ∈ {1, 2, 3}, matrix_profile_feat 9

Friedrich Coefficients 𝑥 ′ = ℎ(𝑥) Dynamics Langevin_Coeffs 5
Wavelet Transform Coefficients Mexican hat wavelet Time-Freq “widths”, “coeffs” 60

Fast Fourier Transform Coeeficients FFT(X) Frequency {“real”, “imag”, ’agg_metrics’} 201
Polar Fast Fourier Transform Coeeficients FFT(X) Frequency {“abs”, “angle”, ’agg_metrics’} 201

Absolute Energy 𝐸 Spectral Energy_ratio_chunks, cross_pw_spect_dens 15
Fourier Entropy 𝐷𝐹 Spectral Regularity binned_entropy 1

(1) Auto Regeression
Regression Coefficients See Appendix B Landmarker ℓ ∈ {1, · · · , 10} 10

(2) Random Forest
Number of Leaves See Appendix B Landmarker max, min, mean, std, skew, kurtosis 6

Tree depth See Appendix B Landmarker max, min, mean, std, skew, and kurtosis 6
Mean of Base Tree Feature Importance See Appendix B Landmarker max, min, mean, std, skew, and kurtosis 6
Max of Base Tree Feature Importance See Appendix B Landmarker max, min, mean, std, skew, and kurtosis 6

Out-of-bag estimate score See Appendix B Landmarker N/A 1

(3) Bayesian Ridge Regression
Mean of Distribution See Appendix B Landmarker N/A 1

Log Marginal Likelihood See Appendix B Landmarker N/A 1
Estimated Weights’ Precision See Appendix B Landmarker N/A 1
Estimated Noise Precision See Appendix B Landmarker N/A 1

Stopping Number of Iterations See Appendix B Landmarker N/A 1
810

and the maximum number of iterations for jitter to iteratively make the matrix positive definite
hyperparameter of Gaussian Proces. The training parameters for each dataset are described in
Table 1. All other parameters are defaults of gluonts.model.gp_forecaster.GaussianProcessEstimator.
Vector Auto Regression [44]: Vector Auto Regression experiments are using the model
implementation provided by statsmodels python library version 0.12.2. We did grid search
over the loss covariance type and the trend hyperparameter of Vector Auto Regression. The
training parameters for each dataset are described in Table 1. All other parameters are defaults of
statsmodels.tsa.var_model.
Random Forest [46]: Random Forest models’ experiments are using the model implementation
provided by sklearn python library version 0.24.2. We did grid search over the the number of
estimators (trees) and the max_depth (i.e., the longest path between the root node and the leaf
node in a tree) hyperparameter of Random Forest. The training parameters for each dataset are
described in Table 1. Other parameters are defaults of sklearn.ensemble.RandomForestRegressor.
Exponential Smoothing Data Representation [39]:We use the exponential smoothing from
the statsmodels python library version 0.12.2. We optimized the smoothing level for the exponential

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

smoothing (which controls the weights given for the history samples). All other parameters are
defaults of statsmodels.tsa.api.ExponentialSmoothing.

D DATASET TESTBEDS DESCRIPTION
D.1 Dataset Sources
Our testbeds are built to simulate the case when meta-train comes frommany different distributions.
This diversity makes the meta-learning model learn from such diversity. Model selection on test
data can thus benefit from the prior experience on the train set. For this purpose, we use benchmark
datasets from Kaggle [38], Adobe real traces, and other open source repositories. In particular, the
Adobe trace datasets records CPU and Memory usage for 50 different services running in Adobe
production clusters collected for 15 days from May 1 to May 15 in 2021. Such traces are shared for
the first time in our current work.

D.2 Testbeds Summary
In short, we have collected 308 univariate datasets from such different sources. The details of the
datasets (i.e., the dataset name, and the number of points in the dataset) are shown in Table 17. We
also collected 40multivariate datasets, where each dataset can have different number of variables and
different type. For instance, Adobe service CPU and memory 15 days utilization is a Homogeneous
multivariate dataset that has 𝑟 = 100. Most of the datasets are from different application domains
(e.g., finance, IoT, energy, storage, etc.). The details of the datasets (i.e., the dataset name, the variate
name, and the number of points for each variate the dataset) are detailed in Table 16. For robustness,
for each testbed, we split its datasets into 5 folds for cross-validation. We build the train/test testbed
by each time selecting four folds from the datasets for training and the remaining fifth fold for
testing. We released the datastes for the community for future usage (link is in Section 1). Table 14
provides a short summary of our dataset testebds. Table 15 provides their main applications.

Table 14. Time-series dataset corpus statistics and properties.

time-series datasets |D | # overall time-series (across all datasets) # of multivariate time-series datasets # of univariate time-series datasets

348 625 40 308

Table 15. Time-series dataset corpus applications.

Application # Univariate time-series datasets # Multiivariate time-series datasets

IoT 10 16
Finance 28 6
Sales 16 2
Cloud Computing 10 2
Energy 20 5
Quality Control 10 3
Fast Storage 22 2
Environment 36 2
Employment 6 1
Others 150 1

E EXTENDED EVALUATION
We next turn our attention to the tuning of the time-series meta-learner and the timing of
AutoForecast, respectively. In particular, we show both the computational cost and the inference
time for AutoForecast and compare it with our different baselines.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

E.1 Tuning of Time-series Meta-learner Θ

We show the effect of different hyper-parameters used in the training of the time-series
meta-learner Θ on the performance (in terms of MSE under the selected model by Θ). For searching
on each parameter, we fix the other parameters on their best values. In the interest of space,
we show full details for the univariate testbed. Figure 15 shows the effect of the number of the
LSTM layers of the time-series meta-learner. We observe that LSTM with 4 layers gives the best
performance (lowest MSE). Second, Figure 16 shows the effect of the number of the units in the
LSTM layer of the time-series meta-learner. We observe that LSTM with 50 units per layer gives
the best performance (lowest MSE). Third, Figure 17 shows the effect of the training batch size of
the time-series meta-learner. A batch with size = 25 instances gives the best performance (lowest
MSE). Finally, Figure 18 illustrates the effect of the number of training epochs of the time-series
meta-learner. We note that training with 50 epochs gives the best performance (lowest MSE). We
have also used dropout rate of 0.2 to prevent over-fitting.

1 2 3 4 5 6
Number of LSTM Layers

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
SE

Fig. 15. The performance of the time-series
meta-learner Θ vs. number of the LSTM layers of Θ
for the univariate testbed. LSTM with 4 layers gives
the best performance (lowest MSE).

10 20 30 40 50 60 70
Number of Units per Layer

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
SE

Fig. 16. The performance of the time-series
meta-learner Θ vs. number of units per layer of Θ for
the univariate testbed. LSTM with 50 units per layer
gives the best performance.

0 20 40 60 80 100 120
Batch Size

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
SE

Fig. 17. The performance of the time-series
meta-learner Θ vs. the training batch size of Θ for the
univariate testbed. A batch with size = 25 instances
gives the best performance.

10 20 30 40 50 60
No. Training Epochs

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
SE

Fig. 18. The performance of the time-series
meta-learner Θ vs. number of training epochs of Θ
for the univariate testbed. Training with 50 epochs
gives the best performance.

E.2 Time Overhead of AutoForecast Relative to Training of Selected Model
Figure 19 shows that it incurs only negligible overhead relative to actual training of the selected
model (with median = 0.1%). Similarly, AutoForecast incurs only negligible overhead relative to
actual training of the selected model for the multivariate testbed (with median = 0.3%) (Figure is

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

omitted for multivariate testbed). This shows that AutoForecast is lightweight, incurring small
selection time overhead.

Fig. 19. Boxplot of time AutoForecast takes relative to training of selected model in univariate testbed.
AutoForecast incurs negligible overhead, (median = 0.1%).

E.3 Dataset-wise Inference Time Comparison
Next, we pick several random groups of 10 datasets each and show the time (in seconds) that
AutoForecast takes versus the time the naïve approach takes for forecasting model selection.
Figures 20-23 show such comparison for the univariate testbed. It is noted the higher reduction of
inference time for larger datasets (i.e., with more data points).

AARIVINT AMAZON ALIGN AMERICAN apple ARCTIC AROSA.1 ASKEW.1 BOISE.1 brent_spot

Dataset Name

0

10

20

30

40

50

60

70

80

90

In
fe

re
n
c
e
 T

im
e
 (

s
e
c
o
n
d
s
)

AutoForecast

Naive

Fig. 20. Inference time comparison between
AutoForecast and naïve approach (Group 1).

ASKEW8 ASKEW9 ATT AZUSA bank BAYDU BEARDS CPI BIGCONEgdp_japan

Dataset Name

0

20

40

60

80

100

120

140

In
fe

re
n
c
e
 T

im
e
 (

s
e
c
o
n
d
s
)

AutoForecast

Naive

Fig. 21. Inference time comparison between
AutoForecast and naïve approach (Group 2).

BIRTHS.1 bitcoin BLUME.1 BND.1 BOXHUN.1BRYCE.1 businv BWATER.1 CD.1 CAMPITO.1

Dataset Name

0

10

20

30

40

50

60

70

80

In
fe

re
n
c
e
 T

im
e
 (

s
e
c
o
n
d
s
)

AutoForecast

Naive

Fig. 22. Inference time comparison between
AutoForecast and naïve approach (Group 3).

DJ.1 DJWEEK.1DVI.1 DELL.1 CORN.2EGGS.1 ELBE.1ELECUS.1HBCO.1 EMP.1 FOOD.1 DJ.1

Dataset Name

0

10

20

30

40

50

60

70

80

In
fe

re
n
c
e
 T

im
e
 (

s
e
c
o
n
d
s
)

AutoForecast

Naive

Fig. 23. Inference time comparison between
AutoForecast and naïve approach (Group 4).

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

Evaluation-Free Time-Series Forecasting Model Selection via Meta-Learning 1:

Table 16. Multivariate Time-series dataset corpus description and details (i.e., the dataset name, the variate
name, and the number of points for each variate of the dataset).

Dataset Name Variable Name # pts Dataset Name Variable Name # pts Dataset Name Variable Name # pts
Processed_S&P Oil 1984 Processed_S&P Nikkei-F 1984 Processed_S&P ROC_5 1984
Processed_S&P NASDAQ-F 1984 Processed_S&P mom1 1984 Processed_S&P mom3 1984
Processed_S&P mom2 1984 Processed_S&P MSFT 1984 Processed_S&P NZD 1984
Processed_S&P NYSE 1984 Processed_S&P ROC_10 1984
ozone_onehr T9 2536 ozone_onehr T8 2536 ozone_onehr T1 2536
ozone_onehr T3 2536 ozone_onehr T2 2536 ozone_onehr T6 2536
ozone_onehr T7 2536 ozone_onehr T5 2536 ozone_onehr T4 2536
ozone_onehr T12 2536 ozone_onehr T11 2536 ozone_onehr T10 2536

energydata_complete RH_1 19735 energydata_complete Press_mm_hg 19735 energydata_complete lights 19735
energydata_complete Appliances 19735 energydata_complete RH_2 19735 energydata_complete RH_3 19735
energydata_complete RH_1 19735 energydata_complete Visibility 19735 energydata_complete Windspeed 19735
Sales_Transactions p19 52 Sales_Transactions p18 52 Sales_Transactions p20 52
Sales_Transactions p1 52 Sales_Transactions p2 52 Sales_Transactions p3 52
Sales_Transactions p7 52 Sales_Transactions p6 52 Sales_Transactions p4 52
Sales_Transactions p5 52 Sales_Transactions p8 52 Sales_Transactions p9 52
Sales_Transactions p10 52 Sales_Transactions p11 52 Sales_Transactions p13 52
Sales_Transactions p12 52 Sales_Transactions p16 52 Sales_Transactions p17 52
Sales_Transactions p15 52 Sales_Transactions p14 52

AdobeAveCPU_96x3270 S40 96 AdobeAveCPU_96x3270 S36 96 AdobeAveCPU_96x3270 S37 96
AdobeAveCPU_96x3270 S31 96 AdobeAveCPU_96x3270 S33 96 AdobeAveCPU_96x3270 S32 96
AdobeAveCPU_96x3270 S4 96 AdobeAveCPU_96x3270 S6 96 AdobeAveCPU_96x3270 S38 96
AdobeAveCPU_96x3270 S1 96 AdobeAveCPU_96x3270 S20 96

fast-storage-20 Memory capacity provisioned 8615 fast-storage-20 Network received throughput 8615 fast-storage-20 Network transmitted throughput 8615
fast-storage-20 Disk write throughput 8615 fast-storage-20 CPU capacity provisioned 8615 fast-storage-20 CPU cores 8615
fast-storage-20 Timestamp 8615 fast-storage-20 CPU usage 8615 fast-storage-20 Disk read throughput 8615
fast-storage-20 Memory usage 8615

knoy_mpu_3_300 X, Y 599 knoy_mpu_1_400 X, Y 1230 knoy_mpu_1_340 Y 1709
Scanline scanline_42049 481 Scanline scanline_126007 481

iowa-electricity net_generation 51 iowa-electricity local_generation 51
Adobe_CPU_Mem_15d stageva6–STGusedcpu 2016 Adobe_CPU_Mem_15d stageirl1–QA2usedcpu 2016 Adobe_CPU_Mem_15d stageirl1–QA2usedmem 2016
Adobe_CPU_Mem_15d stageva6–STG1usedmem 2016 Adobe_CPU_Mem_15d stageirl1–QAusedcpu 2016 Adobe_CPU_Mem_15d stageirl1–QA2usedcpu 2016
Adobe_CPU_Mem_15d stageirl1–QA2usedmem 2016 Adobe_CPU_Mem_15d stageirl1–QAusedmem 2016 Adobe_CPU_Mem_15d stageva6–STG1usedcpu 2016
Adobe_CPU_Mem_15d prodjpn3–PRODusedcpu 2014 Adobe_CPU_Mem_15d stageirl1–Stageusedmem 2016 Adobe_CPU_Mem_15d stageva6–QAusedmem 2016
Adobe_CPU_Mem_15d stageirl1–QAusedcpu 2016 Adobe_CPU_Mem_15d stageirl1–STG10usedcpu 2016 Adobe_CPU_Mem_15d stageirl1–STG10usedmem 2016
Adobe_CPU_Mem_15d stageirl1–QAusedmem 2016 Adobe_CPU_Mem_15d stageva6–QAusedcpu 2016 Adobe_CPU_Mem_15d prodjpn3–PRODusedmem 2014
Adobe_CPU_Mem_15d stageirl1–Stageusedcpu 2016 Adobe_CPU_Mem_15d prodjpn3–PROD1usedmem 2014 Adobe_CPU_Mem_15d prodjpn3–Productionusedmem 2014
Adobe_CPU_Mem_15d stageva6–STG1usedmem 2016 Adobe_CPU_Mem_15d prodirl1–PRODusedcpu 2016 Adobe_CPU_Mem_15d prodva6–PROD10usedmem 2016
Adobe_CPU_Mem_15d prodva6–PROD10usedcpu 2016 Adobe_CPU_Mem_15d prodjpn3–Productionusedcpu 2014 Adobe_CPU_Mem_15d prodjpn3–PROD1usedcpu 2014
Adobe_CPU_Mem_15d prodirl1–PRODusedmem 2016 Adobe_CPU_Mem_15d stageva6–STG1usedcpu 2016 Adobe_CPU_Mem_15d stageva6–QAusedmem 2016
Adobe_CPU_Mem_15d prodirl1–PROD1usedcpu 2016 Adobe_CPU_Mem_15d prodirl1–PRODusedcpu 2016 Adobe_CPU_Mem_15d stageirl1–QAusedmem 2016
Adobe_CPU_Mem_15d stageirl1–QAusedcpu 2016 Adobe_CPU_Mem_15d stageva6–QAusedcpu 2016 Adobe_CPU_Mem_15d prodirl1–PROD1usedmem 2016
Adobe_CPU_Mem_15d prodirl1–PRODusedmem 2016 Adobe_CPU_Mem_15d prodjpn3–PRODusedcpu 2014 Adobe_CPU_Mem_15d stageirl1–QA2usedcpu 2016
Adobe_CPU_Mem_15d stageva6–QAusedmem 2016 Adobe_CPU_Mem_15d prodjpn3–PROD10usedcpu 2014 Adobe_CPU_Mem_15d prodjpn3–PROD10usedmem 2014
Adobe_CPU_Mem_15d stageva6–QAusedcpu 2016 Adobe_CPU_Mem_15d stageirl1–QA2usedmem 2016 Adobe_CPU_Mem_15d prodjpn3–PRODusedmem 2014
Adobe_CPU_Mem_15d stageirl1–QA2usedcpu 2016 Adobe_CPU_Mem_15d stageirl1–QA2usedmem 2016 Adobe_CPU_Mem_15d stageva6–QAusedcpu 2016
Adobe_CPU_Mem_15d stageirl1–QA2usedmem 2016 Adobe_CPU_Mem_15d stageirl1–QAusedcpu 2016 Adobe_CPU_Mem_15d stageva6–QA1usedmem 2016
Adobe_CPU_Mem_15d stageva6–QAusedmem 2016 Adobe_CPU_Mem_15d stageirl1–QAusedmem 2016 Adobe_CPU_Mem_15d stageirl1–QA2usedcpu 2016
Adobe_CPU_Mem_15d stageva6–QA1usedcpu 2016 Adobe_CPU_Mem_15d prodva6–PROD1usedcpu 2016 Adobe_CPU_Mem_15d prodirl1–PROD10usedcpu 2016
Adobe_CPU_Mem_15d stageva6–QAusedmem 2016 Adobe_CPU_Mem_15d stageva6–QAusedcpu 2016 Adobe_CPU_Mem_15d stageva6–QAusedcpu 2016
Adobe_CPU_Mem_15d stageva6–QAusedmem 2016 Adobe_CPU_Mem_15d prodva6–PROD1usedmem 2016 Adobe_CPU_Mem_15d prodirl1–PROD10usedmem 2016
Adobe_CPU_Mem_15d stageirl1–QAusedcpu 2016 Adobe_CPU_Mem_15d stageirl1–QAusedcpu 2016 Adobe_CPU_Mem_15d stageirl1–QAusedmem 2016
Adobe_CPU_Mem_15d stageirl1–QAusedmem 2016 Adobe_CPU_Mem_15d stageirl1–QA2usedcpu 2016 Adobe_CPU_Mem_15d stageirl1–QA2usedcpu 2016
Adobe_CPU_Mem_15d stageirl1–QA2usedmem 2016 Adobe_CPU_Mem_15d stageirl1–QA2usedmem 2016 Adobe_CPU_Mem_15d stageirl1–STGusedmem 2016
Adobe_CPU_Mem_15d stageva6–QAusedcpu 2016 Adobe_CPU_Mem_15d stageirl1–STGusedcpu 2016 Adobe_CPU_Mem_15d stageva6–QAusedmem 2016
Adobe_CPU_Mem_15d prodva6–PRODusedmem 2016 Adobe_CPU_Mem_15d stageirl1–STGusedmem 2016 Adobe_CPU_Mem_15d stageirl1–QA10usedmem 2016
Adobe_CPU_Mem_15d stageirl1–STGusedcpu 2016 Adobe_CPU_Mem_15d stageirl1–QA10usedcpu 2016 Adobe_CPU_Mem_15d prodva6–PRODusedcpu 2016
Adobe_CPU_Mem_15d prodirl1–Productionusedmem 2016 Adobe_CPU_Mem_15d stageirl1–QA10usedmem 2016 Adobe_CPU_Mem_15d stageva6–STGusedmem 2016
Adobe_CPU_Mem_15d stageirl1–STG1usedmem 2016 Adobe_CPU_Mem_15d prodva6–Productionusedmem 2016 Adobe_CPU_Mem_15d stageva6–STGusedcpu 2016
Adobe_CPU_Mem_15d prodva6–Productionusedcpu 2016 Adobe_CPU_Mem_15d stageirl1–STG1usedcpu 2016 Adobe_CPU_Mem_15d prodirl1–Productionusedcpu 2016
Adobe_CPU_Mem_15d stageirl1–QA10usedcpu 2016 Adobe_CPU_Mem_15d stageirl1–STG1usedcpu 2016 Adobe_CPU_Mem_15d stageirl1–QAusedcpu 2016
Adobe_CPU_Mem_15d prodva6–PRODusedmem 2016 Adobe_CPU_Mem_15d stageirl1–STGusedmem 2016 Adobe_CPU_Mem_15d stageirl1–STGusedcpu 2016
Adobe_CPU_Mem_15d prodva6–PRODusedcpu 2016 Adobe_CPU_Mem_15d stageirl1–STG1usedmem 2016 Adobe_CPU_Mem_15d stageirl1–QAusedmem 2016
Adobe_CPU_Mem_15d stageva6–STGusedmem 2016

ozone_eighthr HT70 2534 ozone_eighthr SLP 2534 ozone_eighthr Precp 2534
ozone_eighthr RH70 2534 ozone_eighthr RH85 2534 ozone_eighthr RH50 2534
ozone_eighthr KI 2534 ozone_eighthr SLP 2534 ozone_eighthr HT85 2534
ozone_eighthr HT50 2534
quality_control 4 500 quality_control 5 325 quality_control 2 283
quality_control 3 366 quality_control 1 313
knoy_mpu_3_400 X, Y 720 knoy_mpu_2_400 X, Y 1546 knoy_mpu_1_500 X, Y 2871
knoy_mpu_3_100 X, Y 824 knoy_mpu_1_360 X, Y 1252 knoy_mpu_2_100 X, Y 757
knoy_mpu_2_500 X, Y 1605 knoy_mpu_1_100 X, Y 1215 knoy_mpu_3_380 X, Y 574
knoy_mpu_2_320 X, Y 887 knoy_mpu_2_380 X, Y 848 knoy_mpu_1_380 X, Y 1499
Processed_NASD DTB4WK 1984 Processed_NASD EMA_50 1984 Processed_NASD DTB3 1984
Processed_NASD DTB6 1984 Processed_NASD EMA_20 1984 Processed_NASD FCHI 1984
Processed_NASD FTSE-F 1984 Processed_NASD EMA_10 1984 Processed_NASD EMA_200 1984
Processed_NASD EUR 1984
Occupancy_CO2 Occupancy 8143 Occupancy_CO2 Temperature 8143 Occupancy_CO2 CO2 8143
Occupancy_CO2 Humidity 8143 Occupancy_CO2 Light 8143
us-employment financial_activities 120 us-employment nonfarm_change 120 us-employment construction 120
us-employment mining_and_logging 120 us-employment information 120 us-employment professional_and_business_services 120
us-employment durable_goods 120

Occ_train txt_Light 8143 Occ_train txt_CO2 8143 Occ_train txt_Humidity 8143
Occ_train txt_HumidityRatio 8143 Occ_train txt_Temperature 8143 Occ_train txt_Occupancy 8143

Processed_DJI DAX-F 1984 Processed_DJI DE6 1984 Processed_DJI DGS10 1984
Processed_DJI DE5 1984 Processed_DJI DE4 1984 Processed_DJI DE1 1984
Processed_DJI DE2 1984 Processed_DJI DAAA 1984 Processed_DJI DGS5 1984
Processed_DJI DBAA 1984
Processed_RUSS Brent 1984 Processed_RUSS AUD 1984 Processed_RUSS AAPL 1984
Processed_RUSS CNY 1984 Processed_RUSS Close 1984 Processed_RUSS CAD 1984
Processed_RUSS copper-F 1984 Processed_RUSS CHF 1984 Processed_RUSS AMZN 1984
Processed_RUSS CAC-F 1984
Processed_NYSE IXIC 1984 Processed_NYSE JNJ 1984 Processed_NYSE gold-F 1984
Processed_NYSE Gold 1984 Processed_NYSE JPM 1984 Processed_NYSE GBP 1984
Processed_NYSE GE 1984 Processed_NYSE GDAXI 1984 Processed_NYSE HSI-F 1984
Processed_NYSE HSI 1984
knoy_mpu_3_600 X, Y 876 knoy_mpu_2_600 X, Y 342 knoy_mpu_2_200 X, Y 765
knoy_mpu_1_600 X, Y 2321 knoy_mpu_3_200 X, Y 845
co2-concentration CO2 741 co2-concentration adjusted CO2 741
fast-storage-1 Disk write throughput 8634 fast-storage-1 Network received throughput 8634 fast-storage-1 Memory capacity provisioned 8634
fast-storage-1 Memory usage 8634 fast-storage-1 CPU capacity provisioned 8634 fast-storage-1 CPU cores 8634
fast-storage-1 Disk read throughput 8634 fast-storage-1 Network transmitted throughput 8634 fast-storage-1 CPU usage 8634

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

1: Mustafa Abdallah et al.

Table 17. Univariate Time-series dataset corpus description and details. The details of the datasets (i.e., the
dataset name, and number of points in the dataset) are shown.

Time-series Name # pts Time-series Name # pts Time-series Name # pts Time-series Name # pts Time-series Name # pts
OLDMANT.1 1461 ATT.1 97 NONEMERG.1 319 IV.1 44 HOPEDALE.1 101

WOLF.1 71 FRASER.1 946 EGDEMAN.2 100 IBM.1 87 LACSTJIN.1 1440
HARBOR.1 157 SERIESK.3 192 PORKH.1 99 construction 319 ESPANOLA.1 668
RIOTIETE.1 372 gdp_croatia 24 MINIMUM.1 848 TURTLE.1 672 OLDMAN.1 1470
THAMES.1 71 SERIESE.1 100 sp500_price 123 SP500.1 99 US.1 100

Y.1 44 BIGCONE.1 509 LACSTJRA.1 1440 FEEDH.1 95 SERIESG.1 153
FISHER.1 1470 GLOBWARM.1 129 TBILLS.1 102 CCPI.1 102 CAMPITO.1 5405
JOE.3 1294 CN.1 44 SERIESJY.1 307 bank 581 PRECIP.1 1096
GNPR.1 85 businv 330 MISINAB.1 672 JUDITH.1 492 TEMPER.1 1096
RING.1 66 LAKEVIEW.1 544 DAILYSAP.1 3333 GEODUCK.1 97 HALSEY.1 108
DAL.1 70 SALESX.1 93 AMAZON.2 55 IP.1 111 well_log 675

PCRGNP.1 62 DS_Store 137 FEEDL.1 95 DAILYIBM.1 3333 SERIESC.1 228
FRNCHB.1 45 MAD.1 552 UN.1 81 JAMES.1 600 CPI.1 288
LYNDPIN.2 136 OZONE.1 228 GRANT.1 151 SUNSPOTS.1 289 KIEWA.1 72

NEUMUNAS.1 132 YD.1 44 CHICKNYC.1 498 NILEJJ.1 75 robocalls 52
AMERICAN.1 660 RHINE.1 150 USM1.1 398 PORKL.1 99 ENGINES.1 188
NIAGARA.1 1861 YULE1.1 106 SERIESA.1 200 ASKEW4.1 660 homeruns 118
SKUNK.1 71 stocks_price 560 PRGNP.1 82 OLDMANP.1 1507 OOSTANAU.1 816
DANUBE.1 120 LACSTJSN.1 1440 EMERGING.1 319 CAFFEINE.1 178 us_population 816
PLSUPER.1 104 CIG.3 138 SIMAR4.1 818 SUNSPTMO.1 2820 ENGLISH.1 660
SERIESF.1 70 BOISE.1 588 FREEDMAN.1 58 ASKEW3.1 708 global_co2 104
WHEAT.1 370 EGGS.1 319 VATNSD.1 1098 SERIESJX.1 312 QBIRTHS.1 5117
MARTEN.1 71 FOOD.1 178 CONSUM.1 147 FEED.1 95 EXSHAW.1 506

WHITEMTN.1 1164 centralia 15 TSEOIL.1 361 BRYCE.1 625 MADISON.1 456
apple 622 GOLDH.1 97 MUSKRAT.1 71 BAYDU.1 358 jfk_passengers 468

SFSKYKOM.1 456 SERIESD.1 312 LOGISTIC.1 200 VELMON.1 86 PEAS.1 768
OTTER_L.1 71 METALS.1 178 BIRTHS.1 59 CURRENT.1 468 ASKEW5.1 108
ASKEW13.1 372 ELBE.1 300 FRNCHA.1 70 PLHURON.1 104 TOTAL.1 319

unemployment_nl 214 BEARDS.1 67 RIOGRAND.1 576 occupancy 509 COLUM.1 444
EMP.1 81 RGNP.1 85 rail_lines 37 PIPER.1 348 GNPN.1 85

SPIRITS.3 254 NIGERIA.1 123 MBOULDER.1 588 debt_ireland 21 IPI.1 85
CIGB.2 128 GOLDL.1 97 CMINEF.1 96 NILE2.1 100 ozone 54

ASKEW7.1 600 GLOBTP.1 136 gdp_iran 58 TIOGA.1 661 SERIESB.1 385
G.1 46 MCKEN.1 55 children_per_woman 301 YULE2.1 107 ISH66.1 163

GOTA.1 150 iot_temp 8402 PPHIL.1 1572 WOODS.1 629 DJWEEK.1 186
SAUGEEN.1 1403 USH.1 100 nile 100 co2_canada 215 NAVAJO.1 700
TRADE.1 178 GRUEN.1 53 PACK.2 344 bee_waggle_6 609 ARCTIC.1 66
whin_temp 6074 shanghai_license 205 WG.1 71 NYSE.1 87 AZUSA.1 180
SERIESL.2 549 SOY.1 99 FORTALEZ.1 150 NMAGNET.1 732 AROSA.1 480

FURNAS.DAT 576 LAKEMICH.1 115 MCKENZIE.1 600 ROCKY.1 122 SNOW.1 54
GUELPH.1 72 gdp_argentina 59 SOYL.1 99 SAUGEENP.1 1412 PORK.1 99

uk_coal_employ 105 ASKEW9.1 588 ASKEW14.1 588 TRINITY.1 588 OGDEN.1 97
TPMON.1 2976 I.1 44 DEATHS.1 319 SSASK.1 780 SOYH.1 99

SAUGEENT.1 1412 SKIRTS.1 69 M.1 85 OKAK.1 109 EAGLECOL.1 858
ASKEW10.1 600 WOLVEREN.1 71 SCHOLES.1 114 KINGS.1 49 STJOHNS.1 600
SERIESJ.2 616 NILEMON.1 910 BOXHU1.1 48 YEAR.1 208 BOXHUN.1 217
CORN.2 76 GNP.1 62 SUMMER.1 208 BLUME.1 64 NARAMATA.1 515
HURON.1 157 USM2.1 398 CRYER.1 43 usd_isk 247 MSTOUIS.1 96

MEASLNYC.1 534 seatbelts 192 ASKEW12.1 456 NILE.1 75 ALIGN.1 55
USL.1 100 ELECUS.1 51 SERIESB2.1 271 brent_spot 500 measles 991
RWG.1 71 SNAKE.1 669 REDDEER.1 396 MUMPS.1 534 CANFIRE.1 71

CMINER.1 528 CLEARWAT.1 600 bitcoin 774 NYWATER.1 71 ASKEW15.1 432
ASKEW.1 264 NECHES.1 564 RACOON.1 71 ASKEW8.1 456 CD.1 44

RAPPAHAN.1 600 AARIVINT.1 213 gdp_japan 58 WBDELAWA.1 540 TPYR.1 248
VEL.1 102 TRANEQ.1 178 NINEMILE.1 771 HEBRON.1 109 NAMAKAN.1 648
DELL.1 655 PLMICH.1 104 SERIESM.2 300 MINK.1 71 run_log 376

SUNSPT.1 261 CO2.1 192 PAPER.2 320 FEATHER.1 708 FLOW.1 468
FISHERT.1 1471 PREC.1 136 JOKULSA.1 1096 HBCO.1 66 WINTER.1 208
NAIN.1 109 CMINET.1 528 WATERQ.1 147 MEASLBAL.1 402 BND.1 71
LYNX.1 154 GOLD.1 97 lga_passengers 468 PIGEON.1 636 USM3.1 398

FISHERP.1 1471 IRONSU.3 143 BWATER.1 79 HANKOU.1 1368 DVI.1 470
RICHELU.1 468 DJ.1 157 U.1 85

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: January 2023.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Meta-learning in Time-series Forecasting
	2.2 Few-shot Learning & Transfer Learning
	2.3 Hyperparameter Optimization
	2.4 Meta-learning in ML Pipelines

	3 Problem Formulation
	3.1 Meta-learning Components
	3.2 Model Design and Performance Tensor
	3.3 Forecasting Model Selection Problem Statement
	3.4 Time-series Meta-Features

	4 AutoForecast
	4.1 Meta-Learning Objective and Training
	4.2 Online Inference And Model Selection
	4.3 Inference Time Complexity
	4.4 Intuition of Selecting Different Forecasting Models within the Same Dataset

	5 Experiments
	5.1 Experimental Setup
	5.2 Baselines
	5.3 Results

	6 Discussion
	6.1 Reproducibility of AutoForecast
	6.2 Usage of Meta-Learning in AutoForecast
	6.3 Diversity of Datasets and Addition of More Datasets
	6.4 Performance Collection
	6.5 Selection of Meta-Features
	6.6 Model Selection vs. Model Averaging

	7 Conclusion
	Acknowledgments
	References
	A Summary of Notation
	B Time-series Meta Features
	B.1 Meta-features Categories
	B.2 Complete List of Features
	B.3 Landmarker Meta-Feature Generation

	C Model Space
	D Dataset Testbeds Description
	D.1 Dataset Sources
	D.2 Testbeds Summary

	E Extended Evaluation
	E.1 Tuning of Time-series Meta-learner
	E.2 Time Overhead of AutoForecast Relative to Training of Selected Model
	E.3 Dataset-wise Inference Time Comparison

