
Slide 1/30 

 

 Discretized Streams: Fault-Tolerant Streaming 
Computation at Scale"

 
Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy 

Hunter, Scott Shenker, Ion Stoica 
 

University of California, Berkeley 
 

Published in SOSP ‘13 

Slide 2/30 

Motivation"
•  Faults and stragglers inevitable in large clusters running 

“big data” applications. 
•  Streaming applications must recover from these quickly. 
•  Current distributed streaming systems, including Storm, 

TimeStream, MapReduce Online provide fault recovery 
in an expensive manner. 
–  Involves hot replication which requires 2x hardware or 

upstream backup which has long recovery time. 



Slide 3/30 

Previous Methods"
•  Hot replication 

–  two copies of each node, 2x hardware. 
–  straggler will slow down both replicas. 

•  Upstream backup 
–  nodes buffer sent messages and replay them to new node. 
–  stragglers are treated as failures resulting in long recovery step. 

•  Conclusion :  need for a system which overcomes these 
challenges 

Slide 4/30 

• Voila ! D-Streams  



Slide 5/30 

Computation Model"
•  Streaming computations treated as a series of 

deterministic batch computations on small time intervals. 
•  Data received in each interval is stored reliably across the 

cluster to form input datatsets 
•  At the end of each interval dataset is subjected to 

deterministic parallel operations and two things can 
happen 
–  new dataset representing program output which is pushed out to 

stable storage 
–  intermediate state stored as resilient distributed datasets 

(RDDs) 

Slide 6/30 

D-Stream processing model"



Slide 7/30 

What are D-Streams ?"
•  sequence of immutable, partitioned datasets (RDDs) that 

can be acted on by deterministic transformations 
•  transformations yield new D-Streams, and may create 

intermediate state in the form of RDDs 
•  Example :- 

–  pageViews = readStream("http://...", "1s") 
–  ones = pageViews.map(event => (event.url, 1)) 
–  counts = ones.runningReduce((a, b) => a + b) 

Slide 8/30 

High-level overview of Spark Streaming system"



Slide 9/30 

Recovery"
•  D-Streams & RDDs track their lineage, that is, the graph 

of deterministic operations used to build them. 
•  When a node fails, it recomputes the RDD partitions that 

were on it by re-running the tasks that built them from 
the original input data stored reliably in the cluster. 

•  Checkpointing of state RDDs is done periodically 

Slide 10/30 

Lineage graph for RDDs"



Slide 11/30 

D-Stream API"
•  Users register one or more streams using a functional 

API 
•  Input streams can either be read by listening on a port or 

periodically loading from secondary storage 
•  Two types of operations can be performed on these 

streams : 
–  Transformations – which create a new D-Stream from one or 

more parent streams 
–  Output operations – which let the program write data to 

external systems. 

Slide 12/30 

D-Stream API"
•  D-Streams also provides several stateful transformations 

for computations spanning multiple intervals. 
•  Windowing : groups all the records from a sliding 

window of past time intervals into one RDD. 
–  e.g. words.window("5s")  

•  Incremental aggregation : several variants of an 
incremental reduceByWindow operation 
–  pairs.reduceByWindow("5s", (a, b) => a + b) 



Slide 13/30 

reduceByWindow execution"

Slide 14/30 

Components of Spark Streaming"



Slide 15/30 

System Architecture"
•  D-Streams is implemented in a system called Spark 

Streaming 
•  This is based on a modified version of Spark processing 

engine from the same group (NSDI ‘12) 
•  Spark Streaming consists of three components 

–   A master that tracks the D-Stream lineage graph and 
schedules tasks to compute new RDD partitions. 

–   Worker nodes that receive data, store the partitions of input 
and computed RDDs, and execute tasks. 

–   A client library used to send data into the system. 

Slide 16/30 

Fault and Straggler Recovery"

•  Parallel Recovery 
–  All tasks which were running on a failed node are recomputed 

in parallel on other nodes 
–  Motivation behind this : upstream backup takes long time to 

recover when the load is high  
–  Parallel recovery catches up with the arriving stream much 

faster than upstream backup 



Slide 17/30 

Parallel recovery vs upstream backup"

Slide 18/30 

Fault and Straggler Recovery"
•  Straggler Mitigation 

–  a task runs more than 1.4x longer than the median task in its job 
stage is marked as slow 

–  They show that this method works well enough to recover from 
stragglers within a second. 

•  Master Recovery 
–  At the start of each interval the current state of computation is 

written into stable storage. 
–  Workers connect to the new master when it comes up and 

inform it of their RDD partitions 



Slide 19/30 

Evaluation"
•  Spark streaming was evaluated using three applications : 

–  Grep, which finds the number of input strings matching a 
pattern 

–  Word- Count, which performs a sliding window count over 30s 
–  TopKCount, which finds the k most frequent words over the 

past 30s 
•  These applications were run on “m1.xlarge” nodes on 

Amazon EC2, each with 4 cores and 15 GB RAM 

Slide 20/30 

Results"

Maximum throughput attainable under a	


given latency bound (1 s or 2 s) by Spark Streaming	





Slide 21/30 

Results"

Throughput vs Storm on 30 nodes	



Slide 22/30 

Results"

Interval processing times for WordCount(WC) and 
Grep under failures	





Slide 23/30 

Results"

Effect of checkpoint in WordCount	



Slide 24/30 

Results"

Recovery of WordCount on 20 & 40 nodes	





Slide 25/30 

Results"

Processing time of  intervals  in  Grep & WordCount  in  normal 
operation  as  well  as  in  the  presence  of  a  straggler,  with  and 
without speculation	



Slide 26/30 

Conclusion"
•  By breaking computations into short, deterministic tasks 

and storing state in lineage-based data structures (RDDs), 
Dstreams can use powerful recovery mechanisms. 

•  D-Streams has a fixed minimum latency due to batching 
data. However  the show that the total delay of 1-2 
seconds is still tolerable for many real world uses 



Slide 27/30 

Thanks"

Questions? 


