Discretized Streams: Fault-Tolerant Streaming
Computation at Scale

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy
Hunter, Scott Shenker, Ion Stoica

University of California, Berkeley

Published in SOSP ‘13

D@L Slide 1/30 RUVBRI‘JE

Motivation

 Faults and stragglers inevitable in large clusters running
“big data” applications.
» Streaming applications must recover from these quickly.

 Current distributed streaming systems, including Storm,
TimeStream, MapReduce Online provide fault recovery
in an expensive manner.

— Involves hot replication which requires 2x hardware or
upstream backup which has long recovery time.

D@L Slide 2130 RUVBRI:I‘]EE

Previous Methods

* Hot replication
— two copies of each node, 2x hardware.
— straggler will slow down both replicas.
* Upstream backup
— nodes buffer sent messages and replay them to new node.
— stragglers are treated as failures resulting in long recovery step.

* Conclusion : need for a system which overcomes these
challenges

D@L Slide 3/30 RUVBRI‘JE

*Voila ! D-Streams

D@L Slide 4/30 RUVBRI:I‘]EE

Computation Model

+ Streaming computations treated as a series of
deterministic batch computations on small time intervals.

« Data received in each interval is stored reliably across the
cluster to form input datatsets

» At the end of each interval dataset is subjected to
deterministic parallel operations and two things can
happen

— new dataset representing program output which is pushed out to
stable storage

— intermediate state stored as resilient distributed datasets
(RDDs)

UNIVERSIT

b@“— Slide 5/30 PLDUE

D-Stream processing model

batch operation

t=1: |nput
|mmutable / %8 \ immutable
dataset - - dataset

WULE | BUn

t=2:

~ %8 ™

1o (1D
PIPLPLP : LU
—_— —
D-Stream 1 D-Stream 2

;%u Slide 6/30 m

* Example :-

What are D-Streams ?

 sequence of immutable, partitioned datasets (RDDs) that
can be acted on by deterministic transformations

— pageViews = readStream("http://...", "1s")
— ones = pageViews.map(event => (event.url, 1))
— counts = ones.runningReduce((a, b) =>a + b)

* transformations yield new D-Streams, and may create
intermediate state in the form of RDDs

8-

Slide 7/30

PURDUE

UNIVERSITY

High-level overview of Spark Streaming system

Spark Streaming
. streaming
|:'| N divide d'ata computations
stream into .
— / expressed using
live input batches DStreams
data stream 7
I:] batches "
I:] of input ge;grg ¢
dsgois transfor-
@ mations

Qs

batches of
results

1!

Spark

Task Scheduler
<
Memory Manager

Spark batch jobs
to execute RDD
transformations

Slide 8/30

PURDUE

UNIVERSITY

Recovery

» D-Streams & RDDs track their lineage, that is, the graph
of deterministic operations used to build them.

* When a node fails, it recomputes the RDD partitions that
were on it by re-running the tasks that built them from
the original input data stored reliably in the cluster.

* Checkpointing of state RDDs is done periodically

b@L Slide 9/30 m

Lineage graph for RDDs

pageViews ones counts
DStream DStream DStream

interval
[0, 1)

7 ==y
N\ \S

map reduce

73\

interval

—/\/A-‘;r—ﬁ'/>>
[1,2)

=0

L;%L Slide 10/30 m

D-Stream API

 Users register one or more streams using a functional
API

* Input streams can either be read by listening on a port or
periodically loading from secondary storage

* Two types of operations can be performed on these
streams :

— Transformations — which create a new D-Stream from one or
more parent streams

— Output operations — which let the program write data to
external systems.

D@L Slide 11/30 RUVBRI‘JE

D-Stream API

» D-Streams also provides several stateful transformations
for computations spanning multiple intervals.

* Windowing : groups all the records from a sliding
window of past time intervals into one RDD.
— e.g. words.window("5s")

* Incremental aggregation : several variants of an
incremental reduceByWindow operation
— pairs.reduceByWindow("5s", (a, b) =>a + b)

D@L Slide 12/30 RUVBRI:I‘]EE

t+1

t+2

t+3
t+d

reduceByWindow execution

interval
counts

words sliding

counts

interval
counts

words sliding
counts

(a) Associative only (b) Associative & invertible

D%L Slide 13/30 PURD_UE
Components of Spark Streaming
Master _ [(imput receiver Client
:Z: _“E’ Task execution Client
1en
40
D-Stream Iineage ’, J g Block manager
Input t'a—cker Comm. Manager
replication of
input & check-
:Z: » | _ | Input receiver pointed RDDs
RDD lineage 4 £ [Task execution
Task scheduler é Block manager D New
Block tracker Comm. Manager)
[] Modified
D@L Slide 14/30 PURD_U_E

System Architecture

* D-Streams is implemented in a system called Spark
Streaming

 This is based on a modified version of Spark processing
engine from the same group (NSDI “12)

» Spark Streaming consists of three components

— A master that tracks the D-Stream lineage graph and
schedules tasks to compute new RDD partitions.

— Worker nodes that receive data, store the partitions of input
and computed RDDs, and execute tasks.

— A client library used to send data into the system.

D%L Slide 15/30 RUVBRUE

Fault and Straggler Recovery

 Parallel Recovery

— All tasks which were running on a failed node are recomputed
in parallel on other nodes

— Motivation behind this : upstream backup takes long time to
recover when the load is high

— Parallel recovery catches up with the arriving stream much
faster than upstream backup

D@L Slide 16/30 RUVBRITI.EE

Parallel recovery vs upstream backup

< = Upstream Backup
I Parallel Recovery N = 3 s
- 2 [Parallel Recovery N =10 =w=s -
o Parallel Recovery N =20 eerversren
E 15}
- i
o I /
3
S 0.5+
m """"""""""""" nennanananess

() i e ,

0 0.2 0.4 0.6 0.8 1
System Load (Before Failure)
_‘§4@L Slide 17/30 m

Fault and Straggler Recovery

 Straggler Mitigation
— a task runs more than 1.4x longer than the median task in its job
stage is marked as slow
— They show that this method works well enough to recover from
stragglers within a second.

* Master Recovery
— At the start of each interval the current state of computation is
written into stable storage.

— Workers connect to the new master when it comes up and
inform it of their RDD partitions

D@L Slide 18/30 UPI“UVR[quEl

Evaluation

» Spark streaming was evaluated using three applications :

— Grep, which finds the number of input strings matching a
pattern

— Word- Count, which performs a sliding window count over 30s
— TopKCount, which finds the k most frequent words over the
past 30s
» These applications were run on “m1.xlarge” nodes on
Amazon EC2, each with 4 cores and 15 GB RAM

& Side 1913 PURDUE
Results
- 7
ER Grep |WordCount | TopKCount
E] 5
§ 4 '0'1 sec "2 sec '0-1 sec 2 sec
£m
Fos3
g / /
éﬂ 7 | / . ——1sec
o 0 2 sec 1
0 50 100 O 50 100 0 50 0

Nodes in Cluster

Maximum throughput attainable under a
given latency bound (1 s or 2 s) by Spark Streaming

D@L Slide 20/30 RUVR[quEv

Results

% Grep WordCount TopKCount
T 70 30 30

5 gg 25 25

@ 40 20 20

= 30 15 15

520 10 — 10 —
o

<10 — 5 — 5 —
2o 0 0

E 100 1000 100 1000 100 1000
F Record Size (bytes) Record Size (bytes) Record Size (bytes)

B Spark Streaming ™ Storm

Throughput vs Storm on 30 nodes

PURDUE

UNIVERSITY

Slide 21/30

Results

A ==WC,2failures | =-Grep, 2 failures
e ? ==WC, T failure =#=Grep, 1 failure
A
I e = S e r————

oNvhro®ONPO®

Processing Time (s)
0000022 aaa

“ D 09 a2 oo D 09 09 0P 0% P
SO0 0 o o oS OS2 PP 8 o oS
S St L S fbfb*"‘bbc
,\’\oo\eoov oQ\co\'\'-“ ‘xooxee» ,@Q\, S
0

Interval processing times for WordCount(WC) and
Grep under failures

PURDUE

UNIVERSITY

Slide 22/30

Results

— gg f \ =#=30s checkpoints
L 30 =+=10s checkpoints
g =i#=2s checkpoints
£ 25 I
'; 2.0 7
£ 15
“10-:325%::;=_. j:;;;;;i:
8 05 -
© 00 T
o Before On Next 3sSecond Third Fourth Fifth 3s Sixth
failure failure 3s 3s 3s 3s
Effect of checkpoint in WordCount
SC Side 2310 PURDUE
Results
—_ =®=30s ckpts, 20 nodes
CJ gg f\ =#=30s ckpts, 40 nodes
g 30 / =4=10s ckpts, 20 nodes
= 5 / ~#-10s ckpts, 40 nodes
= 25
D 20
% 15
14
ne. 0.0 r r . , : . ’ .

Before On Next3sSecond Third Fourth Fifth 3s Sixth
failure failure 3s 3s 3s 3s

Recovery of WordCount on 20 & 40 nodes

Slide 24130 PURDUE

UNIVERSITY

Results

®No straggler

B Straggler, no
speculation

Straggler, with
speculation

Processing Time

WordCount Grep

Processing time of intervals in Grep & WordCount in normal
operation as well as in the presence of a straggler, with and
without speculation

b@.«_ Slide 25/30 M

Conclusion

* By breaking computations into short, deterministic tasks
and storing state in lineage-based data structures (RDDs),
Dstreams can use powerful recovery mechanisms.

* D-Streams has a fixed minimum latency due to batching
data. However the show that the total delay of 1-2
seconds is still tolerable for many real world uses

b%u_ Slide 26/30 m

Thanks

Questions?

Slide 27/30

PURDUE

llllllllll

