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Motivation

 Faults and stragglers inevitable in large clusters running
“big data” applications.
» Streaming applications must recover from these quickly.

 Current distributed streaming systems, including Storm,
TimeStream, MapReduce Online provide fault recovery
in an expensive manner.

— Involves hot replication which requires 2x hardware or
upstream backup which has long recovery time.
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Previous Methods

* Hot replication
— two copies of each node, 2x hardware.
— straggler will slow down both replicas.
* Upstream backup
— nodes buffer sent messages and replay them to new node.
— stragglers are treated as failures resulting in long recovery step.

* Conclusion : need for a system which overcomes these
challenges
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*Voila ! D-Streams
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Computation Model

+ Streaming computations treated as a series of
deterministic batch computations on small time intervals.

« Data received in each interval is stored reliably across the
cluster to form input datatsets

» At the end of each interval dataset is subjected to
deterministic parallel operations and two things can
happen

— new dataset representing program output which is pushed out to
stable storage

— intermediate state stored as resilient distributed datasets
(RDDs)

UNIVERSIT

b@“— Slide 5/30 PLDUE

D-Stream processing model
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* Example :-

What are D-Streams ?

 sequence of immutable, partitioned datasets (RDDs) that
can be acted on by deterministic transformations

— pageViews = readStream("http://...", "1s")
— ones = pageViews.map(event => (event.url, 1))
— counts = ones.runningReduce((a, b) =>a + b)

* transformations yield new D-Streams, and may create
intermediate state in the form of RDDs
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High-level overview of Spark Streaming system
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Recovery

» D-Streams & RDDs track their lineage, that is, the graph
of deterministic operations used to build them.

* When a node fails, it recomputes the RDD partitions that
were on it by re-running the tasks that built them from
the original input data stored reliably in the cluster.

* Checkpointing of state RDDs is done periodically
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Lineage graph for RDDs

pageViews ones counts
DStream DStream DStream

interval
[0, 1)

7 ==y
N\ \S

map reduce

73\

interval

—/\/A-‘;r—ﬁ'/>>
[1,2)

=0

L;%L Slide 10/30 m




D-Stream API

 Users register one or more streams using a functional
API

* Input streams can either be read by listening on a port or
periodically loading from secondary storage

* Two types of operations can be performed on these
streams :

— Transformations — which create a new D-Stream from one or
more parent streams

— Output operations — which let the program write data to
external systems.

D@L Slide 11/30 RUVBRI‘JE

D-Stream API

» D-Streams also provides several stateful transformations
for computations spanning multiple intervals.

* Windowing : groups all the records from a sliding
window of past time intervals into one RDD.
— e.g. words.window("5s")

* Incremental aggregation : several variants of an
incremental reduceByWindow operation
— pairs.reduceByWindow("5s", (a, b) =>a + b)
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System Architecture

* D-Streams is implemented in a system called Spark
Streaming

 This is based on a modified version of Spark processing
engine from the same group (NSDI “12)

» Spark Streaming consists of three components

— A master that tracks the D-Stream lineage graph and
schedules tasks to compute new RDD partitions.

— Worker nodes that receive data, store the partitions of input
and computed RDDs, and execute tasks.

— A client library used to send data into the system.
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Fault and Straggler Recovery

 Parallel Recovery

— All tasks which were running on a failed node are recomputed
in parallel on other nodes

— Motivation behind this : upstream backup takes long time to
recover when the load is high

— Parallel recovery catches up with the arriving stream much
faster than upstream backup
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Parallel recovery vs upstream backup

< = Upstream Backup
I Parallel Recovery N = 3 s
- 2 [Parallel Recovery N =10 =w=s -
o Parallel Recovery N =20 eerversren
E 15}
- i
o I /
3
S 0.5+
m """"""""""""" nennanananess

() i e ,

0 0.2 0.4 0.6 0.8 1
System Load (Before Failure)
_‘§4@L Slide 17/30 m

Fault and Straggler Recovery

 Straggler Mitigation
— a task runs more than 1.4x longer than the median task in its job
stage is marked as slow
— They show that this method works well enough to recover from
stragglers within a second.

* Master Recovery
— At the start of each interval the current state of computation is
written into stable storage.

— Workers connect to the new master when it comes up and
inform it of their RDD partitions
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Evaluation

» Spark streaming was evaluated using three applications :

— Grep, which finds the number of input strings matching a
pattern

— Word- Count, which performs a sliding window count over 30s
— TopKCount, which finds the k most frequent words over the
past 30s
» These applications were run on “m1.xlarge” nodes on
Amazon EC2, each with 4 cores and 15 GB RAM
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Results
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Results
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Results
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Results
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Conclusion

* By breaking computations into short, deterministic tasks
and storing state in lineage-based data structures (RDDs),
Dstreams can use powerful recovery mechanisms.

* D-Streams has a fixed minimum latency due to batching
data. However the show that the total delay of 1-2
seconds is still tolerable for many real world uses
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Thanks

Questions?
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