A Systematic Study of Automated Program
Repair:

Fixing 55 out of 105 Bugs for $8 Each
Claire Le Goues (Virginia), Michael Dewey-Vogt (Virginia),
Stephanie Forrest (New Mexico) , Westley Weimer
(Virginia)

International Conference on Software Engineering (ICSE) 2012

Presented by Paul Wood

;«@L Siide 1/27 PURDUE

lllllllll

Other Papers

Claire Le Goues, Stephanie Forrest, Westley Weimer: The
Case for Software Evolution. Foundations of Software
Engineering Working Conference on the Future of Software
Engineering (FOSER) 2010: 205-209

Westley Weimer, Stephanie Forrest, Claire Le Goues,
ThanhVu Nguyen: Automatic Program Repair With
Evolutionary Computation. Communications of the ACM
Vol. 53 No. 5, May 2010, Pages 109-116.

http://dijkstra.cs.virginia.edu/genprog/

5@;_ Slide 2/27 PURDUE

lllllllll

Paper’s Purpose

» Evaluate the Genetic Programming (“GenProg”) method
proposed by the authors (in previous papers) to
determine:

— What fraction of bugs can be repaired
— How much does it cost
» Because the author’s method of repair uses an extensive
search space, there is a computation cost
— How much cluster time, cost (ie AWS) is there to correct a bug
» Approach isto
— Use GP to generate candidate repairs and evaluate them
— Distribute the process to bring down the wall time for repairs

=& Sice 3127 PURDUE

Genetic Programming

« In artificial intelligence, genetic programming (GP) is an
evolutionary algorithm-based methodology inspired by
biological evolution to find computer programs that
perform a user-defined task. (Wikipedia)

» Programs can be represented as abstract syntax trees for
example and nodes selected/swapped/deleted/replaced

* Benefits:

— Novel solutions can be found to some problems
» Downsides:

— Very large (infinite) mutation spaces possible

Déet- Slide 4/27 PUBDUE

GP Operations

+ Fitness
— A program is scored by a test
— Example: 4 test cases, a program passes 3 and fails 1: 75% score
— GenProg: test cases provided by programmer

+ Selection

— Programs in a population are selected, usually probabilistically based on fitness
(natural selection)

— GenProg: Fitness-weighted selection, some filtering based on computability
» Cross-Over

— Parts of selected programs are merged (example: lines 1:50 of program 1 and lines
51:100 of program 2)

— GenProg: Uniform cross-over is performed, but only on the code edits
+ Mutation
— Some part of the program is changed randomly
— GenProg: Delete, Insert, or Replace (Delete & Insert) nodes near fault/fix locality

=& Sice 527 PURDUE

UNIVERSITY

INPUT

EVALUATE FITNESS

c
AL

DISCARD

ACCEPT

Claire Le Goues, ICSE 2012 MUTATE OUTPUT

=& Sice 627 PURDUE

UNIVERSITY

Input: ¢

;

Claire Le Goues, ICSE 2012

o

http://genprog.cs.virginia.edu

) Low change
probability.

@ Not changed.

D@._ siide 7127 PURDUE
Legend:
o High change
probability.

Claire Le Goues, ICSE 2012

http://genprog.cs.virginia.edu

Slide 8/27

UNIVERSITY

An edit is:
* Replace statement
X with statement Y

* Insert statement X
after statement Y

* Delete statement X

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu
D@l_ Slide 9/27 PURDUE
N
A
\]
~ 4
ﬁ‘
1
1
An ec#t is:
* Replace statement
X with statement Y
= === nsert statement X
after statement Y
* Delete statement X
Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu
Dg,._ Side 10127 PURDUE

UNIVERSITY

GP Problems

* Infinite Monkey Theorem
— Monkeys hitting keys at random for an infinite amount of time will almost
surely write the complete works of William Shakespeare
 This paper on genetic programming attempts to solve this problem
by showing:
— Constraints can be used to limit the mutation space without compromising
too many valid solutions
— The time (and money) required to solve a problem is comparable to some
other approach
» GenProg limits the search space by:
— Using fault/fix localization
— Mutating with existing code in the program

« Assumption is made that a program that contains an error in one area likely
implements the correct behavior elsewhere

=& Sice 1127 PURDUE

UNIVERSITY

Patch Representation

GenProg represents patches as node edits

— Similar to a diff output

Previous work used the entire AST, but memory usage
was too high

A patch consists of edits like:

— Delete(81)

— Replace(23,44)

Contains no redundant code

Déet- Slide 12/27 PURDUE

UNIVERSITY

Fitness Evaluation

» The pass percentage of the test suite provided for each
program is used for the fitness evaluation

« A random subset of tests is used to screen candidates
without overburdening resources running test cases

« Fails are weighted twice as much as passes on the test
cases, and a weighted sum is used for selection

;«@L Slide 13/27 PURDUE

lllllllll

Fault Localization

» The fault is localized by observing the statements visited
by statements visited by a failing test and not a passing
test

« Statements never visited have 0 weight, statements
visited only on failed tests have 1.0 weight, and
statements visited by both have 0.1

0 VteT.s¢ Visited(t)
faultloc(s) = < 1.0 VteT.s e Visited(t) = —Pass(t)
0.1 otherwise

5@;_ Siide 14/27 PURDUE

lllllllll

Fix/Mutation Source Localization
* To limit the choice of statements to mutate, some ““fix
localization” is done
+ The source statements must have in scope variables (can
compile)
* It must also be visited by at least one of the test cases

B dt € T. s € Visited(t) A
fizloc(d) = {S ‘ VarsUsed(s) C InScope(d) }

D@_ Siide 15/27 PURDUE

111111111

Mutation and Crossover
« Mutation is done by replacing a statement, inserting a
statement, or deleting a statement
 Each operator is selected with equal probability
 Each source statement for insert/replace is randomly

selected from the fix locality

— This requires the fix statement to already be present somewhere
in the source code

 Crossover is done by combining two parents (a list of
edits) and then removing edits with a probability 0.5
— Result average is the same size as the parent

D@_ Siide 16/27 PURDUE

111111111

Bug Repair Example

1 void zunebug(int days) .

2 int year = 1980; InﬁnH6190p
3 while (days > 365) { possible if
4 if (isLeapYear (Yeailli”/////’///_days::366
5 if (days > 366) {

6 days -= 366;

7 year += 1;

:)

9 else {

10 }

11 }

12 else {

13 days -= 365;

14 year += 1;

15 }

16 }

17 printf (“"the year is %d\n”, year);

18 }

D@*— Slide 17/27 PURDUE

UNIVERSITY

Mutation 1&2

1 void zunebug(int days) {

2 int year = 1980;

3 while (days > 365) ({

4 if (isLeapYear (year))({

5 if (days > 366) { 5 if (days > 366) {

6 days -= 366; 6 days -= 366;

7 year += 1; 7 if (days > 366) { // insert #1

8 8 days -= 366; // insert #1

9 year += 1; // insert #1

1@ // insert #1
year += 1;

ALAL

12 else {

13

14 days -= 366; // insert #2

L=

16 }

17 printf (“the year is %d\n”, year);

18 }

D@*— Slide 18/27 PURDUE

UNIVERSITY

Final Mutation

1 void zunebug(int days) {
2 int year = 1980;
3 while (days > 365) ({
4 if (isLeapYear (year))({
5 if (days > 366) { 5 if (days > 366) {
6 daye—=—366 6 // days -= 366; // delete
7 TeeE oo A 7 // if (days > 366) { // delete
! // days -= 366; // delete
8 } 9 1/ year += 1; // delete
9 else { 10 7} // delete
10 } 11 year += 1;
11 } 12
12 else { else {
k=) days -= 365; 14 days -= 366; // insert
14 year += 1; 15}
15 } 16 days -= 366;
16 }
17 printf (“the year is %d\n”, year);
18 }
=& Sice 19127 PURDUE
Final Repair
1 void zunebug repair (int days) {
2 int year = 1980;
3 while (days > 365) {
4 if (isLeapYear (year)) {
5 if (days > 366) {
6 // days -= 366; [/ deleted
7 year += 1;
8 }
9 else {
10 3}
11 days -= 366; // inserted
12 } else {
13 days -= 365;
14 year += 1;
15 }
16 }
17 printf (“the year is %dn”, year);
18 }
=& Sice 20127 PURDUE

UNIVERSITY

GenProg Benchmark

» Programs from SourceForge, Google Code, etc are taken
« Pairs of versions where test cases transition from fail to
pass are considered
— A human-written repair caused the test case to pass
» The most recent test cases are used and then older
versions of the source code are taken
— The idea is that a test case was added to validate a bug fix,
subsequently it can be used to find the bug
* To determine the cost of a repair, Amazon’s EC2 is used
and the cost of finding a bug is the cost of the EC2
resource

= Sicde 21127 PURDUE

|||||||||

GenProg Benchmark

EEEE

bc 97,000 773 3 Language (legacy)
gmp 145,000 146 2 Multiple precision math
gzip 491,000 12 5 Data compression
libtiff 77,000 78 24 Image manipulation
lighttpd 62,000 295 9 Web server
php 1,046,000 8,471 44 Language (web)
python 407,000 355 11 Language (general)
wireshark 2,814,000 7 Network packet analyzer

T) T

|||||||||

%l_ Slide 22/27 PURDUE

GenProg Benchmark

Defects Cost per non-repair | Cost per repair
program Repaired[Hours| ——uSS | —Hours|_us§

fbc 1/3 8.52 5.56 6.52 4.08
gmp 1/2 9.93 6.61 1.60 0.44
gzip 1/5 5.1 3.04 1.41 0.30
libtiff 17/24 7.81 5.04 1.05 0.04
lighttpd 5/9 10.79 7.25 1.34 0.25
php 28/44 13.00 8.80 1.84 0.62
python 1/11 13.00 8.80 1.22 0.16
wireshark 117 13.00 8.80 1.23 0.17

Total | Soios fiz2n | deoh |

$403 for all 105 trials, leading to 55 repairs; $7.32 per bug repaired.

%.’_ Slide 23/27 PURDUE

UNIVERSITY

GenProg Benchmark

JBoss issue tracking: median 5.0, mean 15.3 hours.!

IBM: $25 per defect during coding, rising at build, Q&A,
post-release, etc.?

Tarsnap.com: $17, 40 hours per non-trivial repair.?
Bug bounty programs in general:

+ At least $500 for security-critical bugs.
* One of our php bugs has an associated security CVE.

1C. WeiR, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it take to fix this bug?” in
Workshop on Mining Software Repasitories, May 2007.

2L. Williamson, “IBM Rational software analyzer: Beyond source code,” in Rational Software
Developer Conference, Jun. 2008.

3hitp:/fwww.tarsnap.com/bugbounty.html

UNIVERSITY

%u_ Slide 24/27 PURDUE

Conclusion

» GenProg repaired 55 of 105 defects from programs
spanning 5.1 MLOC and 10,193 tests

 Repairs are generated using reasonable resources
($7.32/patch)
— The programs must have test suites available
— Not all faults can be repaired

» The cost of computational resources when a repair is
generated are lower than the human cost
— The patches generated still require developer validation
— Evaluating costs is complex, and the conclusion is not absolute

=& Sice 25127 PURDUE

Paper Critique
* The authors make a strong case for their work by using
cost analysis
« Itis loaded with impressive statistics about performance

— “Our improved algorithm finds repairs 68% more often”

» The experiment space is gigantic (100x larger) compared
with other automated repair publications

Déet- Slide 26/27 PUBDUE

Future Work / Improvements

Data structure manipulation
— GenProg only uses statement insert/delete/replace
Performance considerations

— The test suites do not consider performance, the generated
results can leave orphaned variables, etc., or be inefficient in
some ways

Repair Method Inefficiency

— Genetic Programming is inefficient by nature, requires too
much CPU time to be useful on current embedded systems or in
a real time setting (it still requires hours on EC2)

Automated Repair for High Availability

=& Side 27127 PURDUE

Backup

=& Side 26127 PURDUE

Parameters

C. Experimental Parameters

We ran 10 GenProg trials in parallel for each bug. We
chose PopSize = 40 and a maximum of 10 generations for
consistency with previous work [11, Sec. 4.1]. Each indi-
vidual was mutated exactly once each generation, crossover
is performed once on each set of parents, and 50% of the
population is retained (with mutation) on each generation
(known as elitism). Each trial was terminated after 10
generations, 12 hours, or when another search found a repair,
whichever came first. SampleFit returns 10% of the test suite
for all benchmarks.

We used Amazon’s EC2 cloud computing infrastructure
for the experiments. Each trial was given a “high-cpu
medium (cl.medium) instance” with two cores and 1.7 GB
of memory.® Simplifying a few details, the virtualization can
be purchased as spot instances at $0.074 per hour but with a
one hour start time lag, or as on-demand instances at $0.184
per hour. These August—September 2011 prices summarize
CPU, storage and 1/O charges.”

Slide 29/27

PURDUE

UNIVERSITY

