
Slide 1/27

A Systematic Study of Automated Program

Repair:

Fixing 55 out of 105 Bugs for $8 Each

Claire Le Goues (Virginia), Michael Dewey-Vogt (Virginia),

Stephanie Forrest (New Mexico) , Westley Weimer

(Virginia)
International Conference on Software Engineering (ICSE) 2012

Presented by Paul Wood

Slide 2/27

Other Papers

Claire Le Goues, Stephanie Forrest, Westley Weimer: The

Case for Software Evolution. Foundations of Software

Engineering Working Conference on the Future of Software

Engineering (FoSER) 2010: 205-209

Westley Weimer, Stephanie Forrest, Claire Le Goues,

ThanhVu Nguyen: Automatic Program Repair With

Evolutionary Computation. Communications of the ACM

Vol. 53 No. 5, May 2010, Pages 109-116.

http://dijkstra.cs.virginia.edu/genprog/

Slide 3/27

Paper’s Purpose

• Evaluate the Genetic Programming (“GenProg”) method

proposed by the authors (in previous papers) to

determine:

– What fraction of bugs can be repaired

– How much does it cost

• Because the author’s method of repair uses an extensive

search space, there is a computation cost

– How much cluster time, cost (ie AWS) is there to correct a bug

• Approach is to

– Use GP to generate candidate repairs and evaluate them

– Distribute the process to bring down the wall time for repairs

Slide 4/27

Genetic Programming

• In artificial intelligence, genetic programming (GP) is an

evolutionary algorithm-based methodology inspired by

biological evolution to find computer programs that

perform a user-defined task. (Wikipedia)

• Programs can be represented as abstract syntax trees for

example and nodes selected/swapped/deleted/replaced

• Benefits:

– Novel solutions can be found to some problems

• Downsides:

– Very large (infinite) mutation spaces possible

Slide 5/27

GP Operations

• Fitness

– A program is scored by a test

– Example: 4 test cases, a program passes 3 and fails 1: 75% score

– GenProg: test cases provided by programmer

• Selection

– Programs in a population are selected, usually probabilistically based on fitness

(natural selection)

– GenProg: Fitness-weighted selection, some filtering based on computability

• Cross-Over

– Parts of selected programs are merged (example: lines 1:50 of program 1 and lines

51:100 of program 2)

– GenProg: Uniform cross-over is performed, but only on the code edits

• Mutation

– Some part of the program is changed randomly

– GenProg: Delete, Insert, or Replace (Delete & Insert) nodes near fault/fix locality

Slide 6/27

Slide 7/27

Slide 8/27

Slide 9/27

Slide 10/27

Slide 11/27

GP Problems

• Infinite Monkey Theorem

– Monkeys hitting keys at random for an infinite amount of time will almost

surely write the complete works of William Shakespeare

• This paper on genetic programming attempts to solve this problem

by showing:

– Constraints can be used to limit the mutation space without compromising

too many valid solutions

– The time (and money) required to solve a problem is comparable to some

other approach

• GenProg limits the search space by:

– Using fault/fix localization

– Mutating with existing code in the program

• Assumption is made that a program that contains an error in one area likely

implements the correct behavior elsewhere

Slide 12/27

Patch Representation

• GenProg represents patches as node edits

– Similar to a diff output

• Previous work used the entire AST, but memory usage

was too high

• A patch consists of edits like:

– Delete(81)

– Replace(23,44)

• Contains no redundant code

Slide 13/27

Fitness Evaluation

• The pass percentage of the test suite provided for each

program is used for the fitness evaluation

• A random subset of tests is used to screen candidates

without overburdening resources running test cases

• Fails are weighted twice as much as passes on the test

cases, and a weighted sum is used for selection

Slide 14/27

Fault Localization

• The fault is localized by observing the statements visited

by statements visited by a failing test and not a passing

test

• Statements never visited have 0 weight, statements

visited only on failed tests have 1.0 weight, and

statements visited by both have 0.1

Slide 15/27

Fix/Mutation Source Localization

• To limit the choice of statements to mutate, some “fix

localization” is done

• The source statements must have in scope variables (can

compile)

• It must also be visited by at least one of the test cases

Slide 16/27

Mutation and Crossover

• Mutation is done by replacing a statement, inserting a

statement, or deleting a statement

• Each operator is selected with equal probability

• Each source statement for insert/replace is randomly

selected from the fix locality

– This requires the fix statement to already be present somewhere

in the source code

• Crossover is done by combining two parents (a list of

edits) and then removing edits with a probability 0.5

– Result average is the same size as the parent

Slide 17/27

Bug Repair Example

Infinite loop

possible if

days = 366

Slide 18/27

Mutation 1&2

Slide 19/27

Final Mutation

Slide 20/27

Final Repair

Slide 21/27

GenProg Benchmark

• Programs from SourceForge, Google Code, etc are taken

• Pairs of versions where test cases transition from fail to

pass are considered

– A human-written repair caused the test case to pass

• The most recent test cases are used and then older

versions of the source code are taken

– The idea is that a test case was added to validate a bug fix,

subsequently it can be used to find the bug

• To determine the cost of a repair, Amazon’s EC2 is used

and the cost of finding a bug is the cost of the EC2

resource

Slide 22/27

GenProg Benchmark

Slide 23/27

GenProg Benchmark

Slide 24/27

GenProg Benchmark

Slide 25/27

Conclusion

• GenProg repaired 55 of 105 defects from programs

spanning 5.1 MLOC and 10,193 tests

• Repairs are generated using reasonable resources

($7.32/patch)

– The programs must have test suites available

– Not all faults can be repaired

• The cost of computational resources when a repair is

generated are lower than the human cost

– The patches generated still require developer validation

– Evaluating costs is complex, and the conclusion is not absolute

Slide 26/27

Paper Critique

• The authors make a strong case for their work by using

cost analysis

• It is loaded with impressive statistics about performance

– “Our improved algorithm finds repairs 68% more often”

• The experiment space is gigantic (100x larger) compared

with other automated repair publications

Slide 27/27

Future Work / Improvements

• Data structure manipulation

– GenProg only uses statement insert/delete/replace

• Performance considerations

– The test suites do not consider performance, the generated

results can leave orphaned variables, etc., or be inefficient in

some ways

• Repair Method Inefficiency

– Genetic Programming is inefficient by nature, requires too

much CPU time to be useful on current embedded systems or in

a real time setting (it still requires hours on EC2)

• Automated Repair for High Availability

Slide 28/27

Backup

Slide 29/27

Parameters

