Operational Fault Detection in Cellular Wireless Base-Stations

Sudarshan Rao

IEEE Transactions on Network and Service Management 2006

Motivation

- Improve reliability of cellular network
 - Build reliable systems
 - Detect and fix problems quickly
- Focus of paper: fault detection in base stations
- Base stations have fault management systems in place
 - Board Level Self Test
 - Software error handlers
 - Hardware alarms
 - Functional tests
- Universe of all possible faults is not known
 - Fault detector must be able to detect unknown faults

Background

- Base stations communicate with base station controller
- Base station controllers communicate with mobile switching center
- Two types of base stations
 - Macro-cell
 - Micro-cell

Background

- Base stations have 1-6 sectors
 - Most macro-cells have 3
- Each sector has one or more carrier frequency
- Each carrier frequency is composed of control channels and traffic channels

Methodology

- Faults defined as any hardware or software failure that would stop or significantly degrade call processing service of a part or entire base station
- Monitor call load activity
 - call = revenue
- Fault detector deployed at base stations
 - memory and computational constraints
- Cost of false alarms: unnecessary repairs
- Cost of missed faults: customer dissatisfaction
- Detect faults at three levels
 - Carrier level
 - Sector level
 - Base station level

Purdue

Carrier Level Detection

- Mobile accesses arrive randomly
 - Assignment of mobiles to carrier done using hash of user ID
- Divided into two cases
 - Uniform load
 - Non-uniform load

Carrier Level Detection – Uniform Load

N = number of carriers in the sector

 n_i = observed number of active users in the i^{th} carrier

 $S = \sum_{i=1}^{N} n_i$ = total number of active users in the sector

 $n_{lo} = min\{n_i ; i=1,2,...,N\}$

- Expected value of $n_i = S/N$ for all i
- Null hypothesis H₀: no fault
- Alternative hypothesis H₁: fault
- Perform chi-squared test

$$X^{2} = \frac{(O-E)^{2}}{E}$$
$$= \frac{(n_{lo}-S/N)^{2}}{S/N}$$

• Compute p-value from chi-squared statistics X^2

PURDUE

Carrier Level Detection - Non-Uniform Load

• Assumes expected distribution of n_i is known

$$- n_i^E = p_i \times S$$

$$X^{2} = \sum_{i=1}^{N} \frac{(O-E)^{2}}{E}$$
$$= \sum_{i=1}^{N} \frac{(n_{i} - n_{i}^{E})^{2}}{n_{i}^{E}}$$

 Only works when no more than one carrier is affected by the fault

Sector Level Detection

- Applies to base stations with three or more sectors
- Since each sector faces different direction, their traffic load differs at different times of day
 - For a base station on highway, sectors facing the highway have different load profile from sectors facing away from the highway

Sector Level Detection

- Expected load distribution is not known a priori
 - Need to learn from data
- Need to keep memory and computational requirements very low

Sector Level Detection

M = number of sectors in the base station

 p_i = proportion of active users in sector i

 n_i = observed number of active users in the ith sector

 $S = \sum_{i} n_{i}$ = total number of active users in the base station

 $n_{lo} = min\{n_i ; i=1,2,...,N\}$

- Learn p_{i,min} during training phase of 2-3 weeks
- Null hypothesis H_0 : $p_i \ge p_{i,min}$
- Alternative hypothesis H_1 : $p_i < p_{i,min}$
- Compute the probability that the sector with lowest number of active users has $\leq n_{lo}$ users

$$p = \sum_{i=0}^{n_{lo}} {S \choose i} (p_{i,min})^{i} (1 - p_{i,min})^{S-i}$$

Sector Level Detection

- · Load imbalance changes over time
- Suggested training time of 2-3 weeks capture daily and weekly variations
- Seasonal variations still not accounted for
 - Ski resorts are busier in winter
 - Beach resorts have higher activities in warmer seasons
- Solution: retrain p_{i,min} on a routine basis

Base Station Level Detection

- Previous approaches involve comparing the system in question to its neighbors
- Can be adapted for base stations
 - requires communication and coordination across nodes
- Simpler approach: deem a base station faulty when it has zero active user for too long
 - only works for hard faults
- How long is too long?

PURDUE

Base Station Level Detection

- Approach 1: record the largest silence time during training period
 - dominated by non-busy hour (i.e., night time)
- Approach 2: do approach 1 separately for busy hour and non-busy hour
- Approach 3: divide the day into N periods and record the largest silence time separately for each period
 - increased data storage and processing requirements
- Seasonal variations not accounted for
 - Retrain on a routine basis

