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Recap 
• Heterogeneous Architecture

– GPU (integrated and discrete)
• Programming

– Language (CUDA, OpenCL, OpenACC)
• Performance Bugs

– General 
• synchronization, skippable function, wrong data-structures, …

– GPU-specific
d t tt hit t d t bilit
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• memory data-access patterns, architecture, code-portability

Model for Heterogeneous Systems
• “normal system” + coprocessor

– Intel x86 host + Nvidia GPU
– AMD Opteron + AMD GPU

l l– Intel core + Intel MIC

• Similarities
– Asynchronous execution
– Internal parallelism
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Programming Heterogeneous Systems is HARD
• Performance

– Parallel activities
– Synchronization

li– Data Locality
– CPU-GPU communication

• Programming Languages
– CUDA (Nvidia only)
– OpenCL

O ACC (Di i b d)
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– OpenACC (Directive-based)

Fixing Performance Bugs: An Empirical Study of 
Open-Source GPGPU Programs

Yi Yang, Ping Xiang, Huiyang Zhou (NCSU), Mike Mantor (AMD)g, g g, y g ( ), ( )
International Conference on Parallel Processing (ICPP 2012)

• Background 
• Study open source projects

– Categorized performance bugs
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– Proposed solutions
– Performance and energy evaluation

• Conclusions



GPU architecture

Streaming 
MultiProcess

…….. SM
Streaming Processor 

(SP)
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(SM)
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L1
Constant Cache
Texture Cache
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• How to access the global memory efficiently?
• The constant and texture memories are overlooked

Global MemoryConstant 
Memory

Texture Memory

7

Host

Kernel

Device

Grid 1

Block Block

GPU Thread Hierarchy: Block IDs and Thread IDs

• Each thread uses IDs to decide 
what data to work on Kernel 

1

Kernel 
2

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Block (1, 1)
(0,0,1) (1,0,1) (2,0,1) (3,0,1)

what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D 

• Simplifies memory
addressing when processing
multidimensional data
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Courtesy: NDVIA

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

( , , ) ( , , ) ( , , ) ( , , )

– Image processing
– Solving PDEs on volumes
– …



CUDA and OpenCL programming language
• How well programmers utilize the GPUs hardware?
• Application developers need to specify the thread block 

dimension, and most applications choose 16x16 or 256x1

• OpenCL is supported by both AMD and NVIDIA GPUs
– How to find the optimal thread block dimension?
– How to achieve the high performance on different GPUs using 

same code?
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GPU Questions from Last Session
• Is there even a L1/L2 Cache?

– Yes/No
Host

Thread Execution Manager

Input Assembler

Texture Texture Texture Texture Texture Texture Texture TextureTexture

L1 CacheL1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache
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Load/store

Global Memory

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Load/store Load/store Load/store Load/store Load/store

L2 Cache



GPU Questions from Last Session
• Is shared memory per block or per SM?

– A programmer sees thread blocks and not SM
• CUDA Thread Block

CUDA Thread 
Block

Thread Id #:
• All threads in a block execute the same kernel program (SPMD)
• Programmer declares block:

– Block size 1 to 512 concurrent threads on G80, G200
– Up to 1024 on GF100
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• Threads have thread id numbers within block
Thread program uses thread id to select work and address shared data

0 1 2 3 …      
m   

Thread 
program
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– Thread program uses thread id to select work and address shared data
• Threads in the same block can synchronize while doing their share of the work
• Threads in different blocks cannot cooperate

– Each block can execute in any order relative to other blocks!

Transparent Scalability

• Hardware is free to assigns blocks to any 
processor at any time

A k l l b f ll l– A kernel scales across any number of parallel 
processors

Device

Block 0 Block 1

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Device

Block 0 Block 1 Block 2 Block 3
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Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 6 Block 7 Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to 
other blocks. 

time
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G80 Example: Thread Scheduling and Warp 
Concept

• Each Block is executed as 
32-thread Warps

Warps are scheduling units
t0 t1 t2 … t31

…
t0 t1 t2 … t31

…Block 1 Warps Block 2 Warps

t0 t1 t2 … t31
…Block 1 Warps

– Warps are scheduling units 
in SM

• If 3 blocks are assigned to an 
SM and each block has 256 
threads, how many Warps are 
there in an SM?
– Each Block is divided into 

256/32 = 8 Warps

… …

SP SP

Instruction Fetch/Dispatch

Instruction L1
Streaming Multiprocessor

Shared Memory

…
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p
– There are 8 * 3 = 24 Warps 

SP

SP

SP
SFU

SP

SP

SP
SFU
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Studied GPGPU Projects
Project Description

DecGPU An error correction algorithm implemented in NVIDIA CUDA and MPI, and runs on a
GPU cluster.

FLAGON A library for programming NVIDIA CUDA from Fortran 9x. It provides multiple
primitive functions and an interface to CUBLAS and CUFFT library.

GPUMLib A GPGPU code library for machine learning algorithms.
Ising GPU A project uses GPUs to accelerate Monte Carlo simulation of the 2D and 3D IsingIsing GPU A project uses GPUs to accelerate Monte Carlo simulation of the 2D and 3D Ising

models. Up to 35X speedups are achieved over the CPU implementation.
MUMmerGPU A high-throughput parallel pair-wise local sequence alignment program; 13X faster than

the CPU version.
nDust A set of GPGPU programs to calculate dust-plasma charge equilibrium of dust-plasma

systems in protoplanetary disc environments.
OpenCurrent A C++ library for solving Partial Differential Equations (PDEs) over regular grids.
Qymsym A GPU accelerated parallel hybrid symplectic integrator for planetary system integration.

ViennaCL An OpenCL code library of common linear algebra operations and the solution of large
sparse systems of equations by means of iterative methods
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sparse systems of equations by means of iterative methods.
CUBLAS &
CUDA SDK

Although CUBLAS 3.1 and 3.2 are not open source, their matrix multiplication
implementations are available. The matrix multiplication in CUDA SDK is open source.

Include computational physics, biology, mathematics, 
machine learning, and etc.



Performance Bug Patterns
• Classify performance bugs
1) Thread block dimension
2) Constant and texture memory
3) Off-chip memory bandwidth

• Code-segments leading to inefficient use of GPU hardware
• Propose solutions for these performance bugs
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Methodology
• Intel Core 2 Quad Q9650 CPU

– NVIDIA GTX285
– GTX480
– AMD HD5870 

• CUDA SDK 3.1 and ATI Stream SDK v2.2

• Evaluation
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– Performance 
– Energy efficiency

• Gflops/Joule (computational workload)
• Gbytes/Joule (transmission benchmarks)

Energy = Power * Time
Power = Dynamic_power + Static_power



1) Thread block dimension
Buggy Code

int main() { 
dim3blkDim(16, 16); // Kernel invocation
dim3gridDim(N / blkDim.x, N / blkDim.y); 

• Many applications choose 16x16 or 256x1
• The search space of the optimal thread block dimension is 

l

g ( , y);
myKernel<<<gridDim, blkDim>>>(…);  

}
Kernel invocation
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large
• Examine the thread block dimension in three cases

– No data reuse
– Data reuse through shared memory
– Data reuse through the hardware cache 

Case 1: no data reuse (GTX 480)
__global__ void kernel(float* out, float* in, int
w){

int idx = threadIdx.x+blockIdx.x*blockDim.x;
int idy = threadIdx.y+blockIdx.y*blockDim.y;
out[idy*w+idx]  = in[idy*w+idx];

}
Memory copy in 2D domain
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Idea: Use Shared Memory to reuse 
global memory data

• Each input element is read by WIDTH 
threads.
L d h l t i t Sh d

N

D
T

H

• Load each element into Shared 
Memory and have several threads use 
the local version to reduce the memory 
bandwidth
– Tiled algorithms

M P

W
ID

ty

Slide 19

W
ID

T
H

WIDTH WIDTH

tx
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Case 2: data reuse through shared memory
__global__ void matrixMul( output* C, input* A, input* B, 
intwA, in wB){

int tx = threadIdx.x; int ty = threadIdx.y;
….//variable declaration and definition
for (a = aBegin, b = bBegin;a <= aEnd;a+=aStep, b+=bStep){

__shared__ float As[blocky][Step], Bs[Step][blockx];
…//load a tile of A into shared mem As
…//load a tile of B into shared mem Bs
for(i= 0; i<Step; i++) 
Csub += As[ty][i]* Bs[i][tx];

}
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}
…//store Csub to matrix C

}
Matrix multiplication from NVIDIA SDK



Matrix multiplication (SDK) on GTX 480
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• 32by16 achieves the best performance
– More data reuse in shared memory with larger thread block
– 3 thread blocks per SM (one SM can have up 1.5K threads)

• 32by32 has best energy consumption
– Best data reuse with 1 thread block per SM

Case 3: data reuse through hardware cache
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• 8x32 is up to 77% speedup over 16x16
• Reduce the inter-warp reuse and increase the intra-warp reuse
• The detail can be found in the paper

1k 2k 3k 4k
Matrix size NxN



2) Constant and texture memory (cache)

6000
texture shared constant
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The bandwidth of different caches 
(assume all data are in the cache)

0
HD 5870 GTX 480

Performance result comparison on GTX 480
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• cublas3.1: A is tiled in shared memory and B is tiled in register
• cublas3.2: A,B are first tiled in shared memory and further tiled in register 
• Speedup: Up to 74% speedup on cublas3.1 and 30% speedup on cublas3.2

2kby2k 4kby4k 8kby8k 16kby1k 32kby1k 64kby1k 128kby1k
Size of matrix B



3) Global memory datatypes

Buggy Code
template <class DT>template <class DT>
__global__ void kernel(DT* out, DT* in){

int idx = threadIdx.x+blockIdx.x*blockDim.x;
out[idx]  = in[idx];

}

Accessing global memory using different data
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Accessing global memory using different data 
types

Global memory data types
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• Observation: Only some data types can deliver optimal bandwidth 
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Global memory data types: energy consumption
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• The performance dominates the energy consumption
• float2 has optimal energy consumption on both GTX 480 and HD5870

Impact of bugs
Bug type Affected 

projects
Fixed 

kernels
Speedup 
GTX285

Speedup 
GTX480

SpeedupH
D5870

Global Mem. 7 1 11.14X 2.33X 31.30X
Th d bl k 10 4 /A 1 0 /AThread block
Dim.

10 4 N/A 1.07X-
1.77X

N/A

Portability 1 1 1.82X-
2.38X

1.61X-
5.00X

3.80X-
6.89X

Constant and
texture

2 2 2.42X 1.1X-
4.03X

9.30X

Function
special.

3 3 N/A 1.93X-
4.72X

N/A
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4.72X
Floating-point
Num.

2 2 N/A 1.14X-
1.50X

N/A

The proposed fixes achieve significant improvements



Conclusions
• Investigated ten open source projects and characterized 

the common performance bugs issues. 

• Proposed a set of new optimization techniques to fix the 
performance bugs of these open source projects. 

• Studied the energy effect of performance bugs and show 
that proposed fixes achieve both high performance and 

Slide 29

energy efficiency.
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Matrix multiplication using constant memory

A[0][0] A[0][1] A[0][2]
A[1][0] A[1][1] A[1][2]

B[0][0]

B[1][0]

B[0][1]

B[1][1]

B[0][2]

B[1][2]x

• Thread 0 (t0) computes C[*][0]
• B[*][0] will be used by t0 only

– Reused in Register
• A[0][0] will be used by all threads

[ ][ ] [ ][ ] [ ][ ]
A[2][0] A[2][1] A[2][2]
A[3][0] A[3][1] A[3][0]

B[1][0]

B[2][0]

C[0][0]

C[1][0]

C[2][0]

B[1][1]

B[2][1]

C[0][1]

C[1][1]

C[2][1]

B[1][2]

B[2][2]

C[0][2]

C[1][2]

C[2][2]

x

=
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• A[0][0] will be used by all threads
– Broadcast using constant memory

• Adopt classics tiled MM
– A is tiled in constant memory
– B is tiled in register

C[3][0] C[3][1] C[3][2]
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t0 t1 t2
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bx
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01 TILE_WIDTH-12

0 1 2
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H ID
T

H

Tiled Multiply

• Break up the execution of the 
kernel into phases so that the data 
accesses in each phase is focused

Md Pd

0

T
IL

E
_W

ID
T

H W
Iaccesses in each phase is focused 

on one subset (tile) of Md and Nd
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