Performance Bugs in Heterogeneous
Programming

Fahad A. Arshad

Slide 1

PURDUE

HIVENARAITTY

W7 WAL W nvidia

Number of papers for different languages

/A

2006

Publication Statistics from hgpu.org

Number of papers for different platforms

Proportion of papers by vendor
(total= 6134 papers)

Others
15%
nVidia 79%

ATI
6%

Numbes of papens based on mas! popular nVida GPLs

2008 2010 2012
I CUDA [OpenGL [l Directx [l Brook [l OpenCL
q@l_ Slide 2) UE
HHIVEABRITY

Recap
e Heterogeneous Architecture 8
— GPU (integrated and discrete)
* Programming
— Language (CUDA, OpenCL, OpenKteCf&tefcpu e
* Performance Bugs

— Generd

* synchronization, skippable function, wrong data-structures, ...
— GPU-gpecific

* memory data-access patterns, architecture, code-portability

=& sie 3 PURDUE

WEIVENRITY

Model for Heterogeneous Systems

¢ “normal system” + coprocessor
— Intel x86 host + Nvidia GPU
— AMD Opteron + AMD GPU
— Intel core + Intel MIC
o Similarities
— Asynchronous execution
— Internal parallelism

Q@L_ Slide 4]PURDUE

NEHIVFEABRITY

Programming Heterogeneous Systems is HARD

» Performance

— Parallel activities

— Synchronization

— DataLocality

— CPU-GPU communication
» Programming Languages

— CUDA (Nvidiaonly)

— OpenCL

— OpenACC (Directive-based)

=& Sie s PURDUE

WEIVENRITY

Fixing Performance Bugs: An Empirical Study of
Open-Source GPGPU Programs

Yi Yang, Ping Xiang, Huiyang Zhou (NCSU), Mike Mantor (AMD)
International Conference on Parallel Processing (ICPP 2012)

» Background

 Study open source projects
— Categorized performance bugs
— Proposed solutions
— Performance and energy evaluation

e Conclusions

L—:@-__ Slide 6]PURDUE

NEHIVFEABRITY

GPU architecture

SM

Streaming
MultiProcess
or
(SM)

Shared
Memory L1

Constant Cache
Texture Cache

L2
Constant Texture Memory Global Memory

Memo

» How to access the global memory efficiently?
¢ The constant and texture memories are overlooked

PURDUE

Slide 7
WEIVENRITY

= ‘i

=

GPU Thread Hierarchy: Block IDs and Thread IDs

Host Device

Grid 1

e Each thread uses IDs to decide

what datato work on Kenel sk || Bk
Block ID: 1D or 2D — | : :
— Thread ID: 1D, 2D, or 3D o || oo |

’

1
Y
\
[}
\

Grid2]

» Simplifies memory — L H

addressing when processing T ﬂﬂ H ﬂ

multidimensional data P
— Image processing

— Solving PDEs on volumes

Courtesy: NDVIA

PURDUE

Slide 8]
BEHNIVEARITY

CUDA and OpenCL programming language
* How well programmers utilize the GPUs hardware?

» Application devel opers need to specify the thread block
dimension, and most applications choose 16x16 or 256x1

* OpenCL issupported by both AMD and NVIDIA GPUs
— How to find the optimal thread block dimension?

— How to achieve the high performance on different GPUs using
same code?

5@.‘. Side 9 PURDUE

WEIVENRITY

GPU Questions from Last Session
* Isthereeven alL1l/L2 Cache?

— Yes/No
GPU Host G80 GT200 Fermi
Transistors {681 million 1.4 billion 3.0 billion
CUDA Cores Inpitfssembler®l 128 240 512
Double Precisio.*ugng_mmm 256 FMA ops /clock
Point Capability 1
Single Precision Floating ! | 128 MAD 240 MAD/ops / 12 FMA ops /clock
‘--) o o o o e e e e e
o o = o =
o o o o o o
OO o0 OO Dolooooloo ool DO ool oo ool oo Colioo|oD
L1 Cache € L1 Cache L1 Cache | L1 Cache L1 Cache | L1 Cache | | L1 Cache L1 Cache
L1 Cache {per-SM) [} Nene None Foenfigurable 161KB-or
| R
ﬁng:\:i‘{'store—Loadlstore— —Lc:tilsi_llslt‘?re——Load/ tore o Loatli/store ;sgﬁpjdlstore—
1 L2 Cache
| concurrent Kerneis NO NO Up 10 10
Global Memory

\;@l_ Slide 10 PURDUE

NHIVEABITY

GPU Questions from Last Session

e Programmer declares block:

— Block size 1 to 512 concurrent threads on G80, G200

— Upto1024 on GF100
— Block shape 1D, 2D, or 3D
— Block dimensionsin threads
e Threads have thread id numbers within block
— Thread program uses thread id to select work and address shared data
e Threadsin the same block can synchronize while doing their share of the work
e Threadsin different blocks cannot cooperate

— Each block can execute in any order relative to other blocks!

|s shared memory per block or per SM?
— A programmer sees thread blocks and not SM

CUDA Thread Block
e All threadsin ablock execute the same kernel program (SPMD)

CUDA Thread
Block

Thread Id #:
0123..

=&

Slide 11

PURDUE

WEIVENRITY

Transparent Scalability

» Hardwareisfreeto assigns blocks to any
processor at any time

— A kernel scales across any number of parallel
processors

) oee oo

/ N

time

L

“Blocko” ‘Block 1‘ “BlockZ‘H‘Block3|

“Block4” Block 5. “Blocks‘H‘Block7|

Each block can execute in any order relativeto

other blocks.

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu

Recorded for the Virtual School of Computational Science and Engineering

Slide 12

PURDUE

WHIVEBRBITY

G80 Example: Thread Scheduling and Warp

Concept
. Each Block is executed as Block 1 Warps Block 2 Warps Block 1 Warps
“ae 1 ' 1 e 1
32-thread Warps 02, 131 02 .. 131 012 131
NS NN AN

— Warps are scheduling units
in SM
e If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps are
there in an SM? |
- Each Block is divided into I

256/32 = 8 Warps
— There are 8 * 3 = 24 Warps
SFU SFU

Streaming Multiprocessor

Instruction Fetch/Dispatch |

Shared Memory |

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Siide 13 PURDUE

B = WEIVENRITY
Studied GPGPU Projects
Proj ect Description

DecGPU An error correction agorithm implemented in NVIDIA CUDA and MPI, and runs on a
GPU cluster.

FLAGON A library for programming NVIDIA CUDA from Fortran 9x. It provides multiple
primitive functions and an interface to CUBLAS and CUFFT library.

GPUMLIib A GPGPU code library for machine learning algorithms.

Ising GPU A project uses GPUs to accelerate Monte Carlo simulation of the 2D and 3D Ising
models. Up to 35X speedups are achieved over the CPU implementation.

MUMmerGPU | A high-throughput parallel pair-wise local sequence alignment program; 13X faster than
the CPU version.

nDust A set of GPGPU programs to calculate dust-plasma charge equilibrium of dust-plasma
systems in protoplanetary disc environments.

OpenCurrent A C++ library for solving Partial Differential Equations (PDES) over regular grids.

Qymsym A GPU accelerated parallel hybrid symplectic integrator for planetary system integration.

ViennaCL An OpenCL code library of common linear algebra operations and the solution of large
sparse systems of equations by means of iterative methods.

CUBLAS & | Although CUBLAS 3.1 and 3.2 are not open source, their matrix multiplication

CUDA SDK implementations are available. The matrix multiplication in CUDA SDK is open source.

Include computational physics, biology, mathematics,
machine learning, and etc.

e

Slide 14]PI]RDUE

FNIVERBITY

Performance Bug Patterns
» Classify performance bugs
1) Thread block dimension
2) Constant and texture memory
3) Off-chip memory bandwidth

» Code-segments leading to inefficient use of GPU hardware
* Propose solutions for these performance bugs

@ s 15 PURDUE

FHEHIVENARAITTY

Methodology

 Intel Core 2 Quad Q9650 CPU
— NVIDIA GTX285
— GTX480
— AMD HD5870

 CUDA SDK 3.1 and ATI Stream SDK v2.2

e Evauation

— Performance Eger QY_=DP0Wer.* Time s
— Energy efficiency Wer = Lynamic_power ic_power

» Gflops/Joule (computational workload)
e Gbytes/Joule (transmission benchmarks)

D@L_ Slide 16]PURDUE

NEHIVFEABRITY

1) Thread block dimension

Buggy Code
int main() {
dim3blkDim(16, 16); // Kernel invocation
dim3gridDim(N / blkDim.x, N / blkDim.y);
myKernel<<<gridDim, blkDim>>>(...);

: Kernel invocation
» Many applications choose 16x16 or 256x1
» The search space of the optimal thread block dimensionis
large
» Examine the thread block dimension in three cases
— Nodatareuse

— Datareuse through shared memory
— Datareuse through the hardware cache

=& Sice 17 PURDUE

WEIVENRITY

Case 1: no data reuse (GTX 480)

__global__ void kernel(float* out, float* in, int
w){
int idx = threadl dx.x+blockldx.x* blockDim.x;
int idy = threadl dx.y+blockldx.y* blockDim.y;
out[idy*w+idx] = in[idy*w+idx];

}

Memory copy in 2D domain

-e-Energy(8b PriergyT$6by 16) Energy(32by8)
——Energy (64§ nergy(128by?2)
\ h/

=
4]

o .
& 100 —m
<
=
_g 50
g
0 T T T
1k 2k Matrix size NxN 3k ak
:-@L_ Slide 18]PURDUE
BNHIVEABRITY

ldea: Use Shared Memory to reuse
global memory data

* Eachinput elementisread by WIDTH
threads.

 Load each element into Shared
Memory and have several threads use
thelocal version to reduce the memory

bandwidth I
— Tiled agorithms Tty
,,,,,,,,,,,,,,,,,,,,
B .‘
tx
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering
= Side 19 PURDUE
B e SEIvENRITY

Case 2: data reuse through shared memory
__global__ void matrixMul(output* C, input* A, input* B,
intwA, inwB){

int tx = threadldx.x; int ty = threadldx.y;

....IIvariable declaration and definition

for (a= aBegin, b = bBegin;a <= aEnd;a+=aStep, b+=bStep){

__shared _ float Ag[blocky][Step], BY Step][blockx];
.../lload atile of A into shared mem As
.../lload atile of B into shared mem Bs
for(i= O; i<Step; i++)
Csub +=Adty][i]* BSi][tx];
}
...IIstore Csub to matrix C

Matrix multiplication from NVIDIA SDK

Matrix multiplication (SDK) on GTX 480

Energy(16by16) -e-Energy(32by8) -—-Energy(32byl16) -+ Energy(32by32)

zov
250
240
230
220
210

Performance (GflopsS)

1k M atr2|)|§ size NxN 3K

e 32by16 achievesthe best performance
— More data reuse in shared memory with larger thread block
— 3thread blocks per SM (one SM can have up 1.5K threads)

e 32by32 has best energy consumption
— Best datareuse with 1 thread block per SM

& Side 21 PURDUE

W EIVENRITY

Case 3: data reuse through hardware cache

-e-Energy(32by8) -=-Energy(16by16) —Energy(8by32)
Energy(4by64) ——Energy(8by64) —+Energy(8by128)
~30 -
Q)

o
295 -

=

=

o 20
5

§15*
210

Matrix size NxN
e 8x32isupto 77% speedup over 16x16
* Reduce the inter-warp reuse and increase the intra-warp reuse
e Thedetail can be found in the paper

L'!@L_. Slide 22]PIJRDUE

BMIVERBITY

2) Constant and texture memory (cache)
W texture ® shared B constant
6000
@ 5000
m
© 4000
(]
£ 3000
£
52000
& 1000 -
O -
HD 5870 GTX 480
The bandwidth of different caches
(assumeall data arein the cache)
=& side 23 PURDUE

Performance result comparison on GTX 480

m cublas3.1 H cublas3.2 H const version U
1000

950

Performance (Gflops/S)
~
a1
o

2kby2k 4kbydk 8kby8k 16kbylk 32kbylk 64kbylk 128kbylk
Size of matrix B

e cublas3.1: A istiled in shared memory and B istiled in register
e cublas3.2: A,B arefirst tiled in shared memory and further tiled in register
e Speedup: Up to 74% speedup on cublas3.1 and 30% speedup on cublas3.2

D@l— Slide 24 PURDUE

HIVERBITY

3) Global memory datatypes

template <classDT>

__global__ void kernel(DT* out, DT* in}{

int idx = threadl dx.x+blockldx.x* blockDim.x;
out[idx] =in[idx];

Buggy Code

}
Accessing global memory using different data
types
=& Sice 25 PURDUE
Global memory data types
200
2 .mR NVIDIA GTX 480
9/150
= 100
E
5 50 -
m 0
uchar ushort float float2 float4 float8 floatl6 float20
(%)
g 150 = 4iMB D HD 5870
£ 100
é 50
3
m 0.
uchar ushort float float2 float4 float8 floatl6 float20

¢ Observation: Only some data types can deliver optimal bandwidth

&

Slide 26]PI]RDUE

BMIVERBITY

Bandwidth (GB/S)
5
o

JE

= 4MB

0,

uchar ushort float float2 float4
e The performance dominates the energy consumption

» float2 has optimal energy consumption on both GTX 480 and HD5870

float8

floatl6 float20

Global memory data types: energy consumption

200 —w-enernv (AMRY — = —enarv (R2MR)Y
2 150 g =xomn NVIDIA GTX 480
) 1
e i
5 100
% 50]
% 1
m
0 -
uchar ushort float float2 float4 float8 floatl6 float20
200 - ==energy (4MB) —<energy (52Mb)

= svE—AMD HD 5870

The proposed fixes achieve significant improvements

=& Side 27 PURDUE
Impact of bugs
7 1 11.14X 2.33X | 31.30X
10 4 N/A 1.07X- N/A
177X
1 1 1.82X- | 1.61X- | 3.80X-
2.38X 5.00X | 6.89X
2 2 2.42X 1.1X- | 9.30X
4.03X
3 3 N/A 1.93X- N/A
4.72X
2 2 N/A 1.14X- N/A
1.50X

@

Slide 28

PURDUE

4
NHIVEABITY

Conclusions

 |Investigated ten open source projects and characterized
the common performance bugs issues.

* Proposed a set of new optimization techniques to fix the
performance bugs of these open source projects.

» Studied the energy effect of performance bugs and show
that proposed fixes achieve both high performance and
energy efficiency.

=& Sie 20 PURDUE

FHEHIVENARAITTY

Backup Slides

NEHIVFEABRITY

L—:@-__ Slide 30]PURDUE

Matrix multiplication using constant memory

» Thread 0 (t0) computes C[*][0Q]
» B[*][0] will be used by tO only
— Reused in Register
o A[O][O] will be used by all threads
— Broadcast using constant memory
» Adopt classicstiled MM
— Alistiled in constant memory
— Bistiledin register

t0

t2

‘Jgt- Slide 31

PURDUE

WEIVENRITY

Tiled Multiply

» Break up the execution of the
kernel into phases so that the data
accesses in each phaseis focused
on one subset (tile) of Md and Nd

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

012 'T?L(E7WIDTH-1
[T ——)

0

3
ty ,
TILE_WIDTH >

q@t. Slide 32

PURDUE

4
HIVERBITY

