
Performance Bugs in Heterogeneous
Programming

Fahad A. Arshad

Slide 1

Publication Statistics from hgpu.org

Slide 2

Recap
• Heterogeneous Architecture

– GPU (integrated and discrete)
• Programming

– Language (CUDA, OpenCL, OpenACC)
• Performance Bugs

– General
• synchronization, skippable function, wrong data-structures, …

– GPU-specific
d t tt hit t d t bilit

Slide 3

• memory data-access patterns, architecture, code-portability

Model for Heterogeneous Systems
• “normal system” + coprocessor

– Intel x86 host + Nvidia GPU
– AMD Opteron + AMD GPU

l l– Intel core + Intel MIC

• Similarities
– Asynchronous execution
– Internal parallelism

Slide 4

Programming Heterogeneous Systems is HARD
• Performance

– Parallel activities
– Synchronization

li– Data Locality
– CPU-GPU communication

• Programming Languages
– CUDA (Nvidia only)
– OpenCL

O ACC (Di i b d)

Slide 5

– OpenACC (Directive-based)

Fixing Performance Bugs: An Empirical Study of
Open-Source GPGPU Programs

Yi Yang, Ping Xiang, Huiyang Zhou (NCSU), Mike Mantor (AMD)g, g g, y g (), ()
International Conference on Parallel Processing (ICPP 2012)

• Background
• Study open source projects

– Categorized performance bugs

Slide 6

– Proposed solutions
– Performance and energy evaluation

• Conclusions

GPU architecture

Streaming
MultiProcess

…….. SM
Streaming Processor

(SP)
or

(SM)

L2

Shared
Memory

Registers

L1
Constant Cache
Texture Cache

Slide 7

• How to access the global memory efficiently?
• The constant and texture memories are overlooked

Global MemoryConstant
Memory

Texture Memory

7

Host

Kernel

Device

Grid 1

Block Block

GPU Thread Hierarchy: Block IDs and Thread IDs

• Each thread uses IDs to decide
what data to work on Kernel

1

Kernel
2

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Block (1, 1)
(0,0,1) (1,0,1) (2,0,1) (3,0,1)

what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data

Slide 8

Courtesy: NDVIA

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(, ,) (, ,) (, ,) (, ,)

– Image processing
– Solving PDEs on volumes
– …

CUDA and OpenCL programming language
• How well programmers utilize the GPUs hardware?
• Application developers need to specify the thread block

dimension, and most applications choose 16x16 or 256x1

• OpenCL is supported by both AMD and NVIDIA GPUs
– How to find the optimal thread block dimension?
– How to achieve the high performance on different GPUs using

same code?

Slide 9

GPU Questions from Last Session
• Is there even a L1/L2 Cache?

– Yes/No
Host

Thread Execution Manager

Input Assembler

Texture Texture Texture Texture Texture Texture Texture TextureTexture

L1 CacheL1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache

Slide 10

Load/store

Global Memory

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Load/store Load/store Load/store Load/store Load/store

L2 Cache

GPU Questions from Last Session
• Is shared memory per block or per SM?

– A programmer sees thread blocks and not SM
• CUDA Thread Block

CUDA Thread
Block

Thread Id #:
• All threads in a block execute the same kernel program (SPMD)
• Programmer declares block:

– Block size 1 to 512 concurrent threads on G80, G200
– Up to 1024 on GF100
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• Threads have thread id numbers within block
Thread program uses thread id to select work and address shared data

0 1 2 3 …
m

Thread
program

Slide 11

– Thread program uses thread id to select work and address shared data
• Threads in the same block can synchronize while doing their share of the work
• Threads in different blocks cannot cooperate

– Each block can execute in any order relative to other blocks!

Transparent Scalability

• Hardware is free to assigns blocks to any
processor at any time

A k l l b f ll l– A kernel scales across any number of parallel
processors

Device

Block 0 Block 1

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Device

Block 0 Block 1 Block 2 Block 3

Slide 12

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 6 Block 7 Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to
other blocks.

time

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

G80 Example: Thread Scheduling and Warp
Concept

• Each Block is executed as
32-thread Warps

Warps are scheduling units
t0 t1 t2 … t31

…
t0 t1 t2 … t31

…Block 1 Warps Block 2 Warps

t0 t1 t2 … t31
…Block 1 Warps

– Warps are scheduling units
in SM

• If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps are
there in an SM?
– Each Block is divided into

256/32 = 8 Warps

… …

SP SP

Instruction Fetch/Dispatch

Instruction L1
Streaming Multiprocessor

Shared Memory

…

Slide 13

p
– There are 8 * 3 = 24 Warps

SP

SP

SP
SFU

SP

SP

SP
SFU

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Studied GPGPU Projects
Project Description

DecGPU An error correction algorithm implemented in NVIDIA CUDA and MPI, and runs on a
GPU cluster.

FLAGON A library for programming NVIDIA CUDA from Fortran 9x. It provides multiple
primitive functions and an interface to CUBLAS and CUFFT library.

GPUMLib A GPGPU code library for machine learning algorithms.
Ising GPU A project uses GPUs to accelerate Monte Carlo simulation of the 2D and 3D IsingIsing GPU A project uses GPUs to accelerate Monte Carlo simulation of the 2D and 3D Ising

models. Up to 35X speedups are achieved over the CPU implementation.
MUMmerGPU A high-throughput parallel pair-wise local sequence alignment program; 13X faster than

the CPU version.
nDust A set of GPGPU programs to calculate dust-plasma charge equilibrium of dust-plasma

systems in protoplanetary disc environments.
OpenCurrent A C++ library for solving Partial Differential Equations (PDEs) over regular grids.
Qymsym A GPU accelerated parallel hybrid symplectic integrator for planetary system integration.

ViennaCL An OpenCL code library of common linear algebra operations and the solution of large
sparse systems of equations by means of iterative methods

Slide 14

sparse systems of equations by means of iterative methods.
CUBLAS &
CUDA SDK

Although CUBLAS 3.1 and 3.2 are not open source, their matrix multiplication
implementations are available. The matrix multiplication in CUDA SDK is open source.

Include computational physics, biology, mathematics,
machine learning, and etc.

Performance Bug Patterns
• Classify performance bugs
1) Thread block dimension
2) Constant and texture memory
3) Off-chip memory bandwidth

• Code-segments leading to inefficient use of GPU hardware
• Propose solutions for these performance bugs

Slide 15

Methodology
• Intel Core 2 Quad Q9650 CPU

– NVIDIA GTX285
– GTX480
– AMD HD5870

• CUDA SDK 3.1 and ATI Stream SDK v2.2

• Evaluation

Slide 16

– Performance
– Energy efficiency

• Gflops/Joule (computational workload)
• Gbytes/Joule (transmission benchmarks)

Energy = Power * Time
Power = Dynamic_power + Static_power

1) Thread block dimension
Buggy Code

int main() {
dim3blkDim(16, 16); // Kernel invocation
dim3gridDim(N / blkDim.x, N / blkDim.y);

• Many applications choose 16x16 or 256x1
• The search space of the optimal thread block dimension is

l

g (, y);
myKernel<<<gridDim, blkDim>>>(…);

}
Kernel invocation

Slide 17

large
• Examine the thread block dimension in three cases

– No data reuse
– Data reuse through shared memory
– Data reuse through the hardware cache

Case 1: no data reuse (GTX 480)
__global__ void kernel(float* out, float* in, int
w){

int idx = threadIdx.x+blockIdx.x*blockDim.x;
int idy = threadIdx.y+blockIdx.y*blockDim.y;
out[idy*w+idx] = in[idy*w+idx];

}
Memory copy in 2D domain

100

150

(G
B

/S
)

8by32 16by16 32by8 64by4 128by2Energy(8by32) Energy(16by16) Energy(32by8)
Energy(64by4) Energy(128by2)

Slide 18

0

50

00

1k 2k 3k 4k

B
an

dw
id

th

Matrix size NxN

Idea: Use Shared Memory to reuse
global memory data

• Each input element is read by WIDTH
threads.
L d h l t i t Sh d

N

D
T

H

• Load each element into Shared
Memory and have several threads use
the local version to reduce the memory
bandwidth
– Tiled algorithms

M P

W
ID

ty

Slide 19

W
ID

T
H

WIDTH WIDTH

tx

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Case 2: data reuse through shared memory
__global__ void matrixMul(output* C, input* A, input* B,
intwA, in wB){

int tx = threadIdx.x; int ty = threadIdx.y;
….//variable declaration and definition
for (a = aBegin, b = bBegin;a <= aEnd;a+=aStep, b+=bStep){

__shared__ float As[blocky][Step], Bs[Step][blockx];
…//load a tile of A into shared mem As
…//load a tile of B into shared mem Bs
for(i= 0; i<Step; i++)
Csub += As[ty][i]* Bs[i][tx];

}

Slide 20

}
…//store Csub to matrix C

}
Matrix multiplication from NVIDIA SDK

Matrix multiplication (SDK) on GTX 480

250

260

270
s/

S)

16by16 32by8 32by16 32by32
Energy(16by16) Energy(32by8) Energy(32by16) Energy(32by32)

210

220

230

240

1k 2k 3k 4kPe
rf

or
m

an
ce

 (G
flo

ps

Matrix size NxN

Slide 21

• 32by16 achieves the best performance
– More data reuse in shared memory with larger thread block
– 3 thread blocks per SM (one SM can have up 1.5K threads)

• 32by32 has best energy consumption
– Best data reuse with 1 thread block per SM

Case 3: data reuse through hardware cache

30

35

)

32by8 16by16 8by32 4by64 8by64 8by128Energy(32by8) Energy(16by16) Energy(8by32)
Energy(4by64) Energy(8by64) Energy(8by128)

0

5

10

15

20

25

Pe
rf

or
m

an
ce

 (G
flo

ps

Slide 22

• 8x32 is up to 77% speedup over 16x16
• Reduce the inter-warp reuse and increase the intra-warp reuse
• The detail can be found in the paper

1k 2k 3k 4k
Matrix size NxN

2) Constant and texture memory (cache)

6000
texture shared constant

1000

2000

3000

4000

5000

Pe
rf

or
m

an
ce

 (G
B

/S
)

Slide 23

The bandwidth of different caches
(assume all data are in the cache)

0
HD 5870 GTX 480

Performance result comparison on GTX 480

900
950

1000

/S
)

cublas3.1 cublas3.2 const version Up to 945
Gflops

500
550
600
650
700
750
800
850
900

Pe
rf

or
m

an
ce

 (G
flo

ps
/

(70% of peak)

Slide 24

• cublas3.1: A is tiled in shared memory and B is tiled in register
• cublas3.2: A,B are first tiled in shared memory and further tiled in register
• Speedup: Up to 74% speedup on cublas3.1 and 30% speedup on cublas3.2

2kby2k 4kby4k 8kby8k 16kby1k 32kby1k 64kby1k 128kby1k
Size of matrix B

3) Global memory datatypes

Buggy Code
template <class DT>template <class DT>
__global__ void kernel(DT* out, DT* in){

int idx = threadIdx.x+blockIdx.x*blockDim.x;
out[idx] = in[idx];

}

Accessing global memory using different data

Slide 25

Accessing global memory using different data
types

Global memory data types

100

150

200

dt
h

(G
B

/S
)

4MB 32MB NVIDIA GTX 480float, float2, float4

0

50

100

uchar ushort float float2 float4 float8 float16 float20

B
an

dw
id

100

150

200

dt
h

(G
B

/S
)

4MB 32MB AMD HD 5870float2, float4, float8

Slide 26

• Observation: Only some data types can deliver optimal bandwidth

0

50

100

uchar ushort float float2 float4 float8 float16 float20

B
an

dw
id

Global memory data types: energy consumption

100

150

200
dt

h
(G

B
/S

)
4MB 32MB NVIDIA GTX 480

energy (4MB) energy (32MB)

0

50

100

uchar ushort float float2 float4 float8 float16 float20

B
an

dw
id

100

150

200

dt
h

(G
B

/S
)

4MB 32MB AMD HD 5870
energy (4MB) energy (32MB)

Slide 27

0

50

100

uchar ushort float float2 float4 float8 float16 float20

B
an

dw
id

• The performance dominates the energy consumption
• float2 has optimal energy consumption on both GTX 480 and HD5870

Impact of bugs
Bug type Affected

projects
Fixed

kernels
Speedup
GTX285

Speedup
GTX480

SpeedupH
D5870

Global Mem. 7 1 11.14X 2.33X 31.30X
Th d bl k 10 4 /A 1 0 /AThread block
Dim.

10 4 N/A 1.07X-
1.77X

N/A

Portability 1 1 1.82X-
2.38X

1.61X-
5.00X

3.80X-
6.89X

Constant and
texture

2 2 2.42X 1.1X-
4.03X

9.30X

Function
special.

3 3 N/A 1.93X-
4.72X

N/A

Slide 28

4.72X
Floating-point
Num.

2 2 N/A 1.14X-
1.50X

N/A

The proposed fixes achieve significant improvements

Conclusions
• Investigated ten open source projects and characterized

the common performance bugs issues.

• Proposed a set of new optimization techniques to fix the
performance bugs of these open source projects.

• Studied the energy effect of performance bugs and show
that proposed fixes achieve both high performance and

Slide 29

energy efficiency.

Backup Slides

Slide 30

Matrix multiplication using constant memory

A[0][0] A[0][1] A[0][2]
A[1][0] A[1][1] A[1][2]

B[0][0]

B[1][0]

B[0][1]

B[1][1]

B[0][2]

B[1][2]x

• Thread 0 (t0) computes C[*][0]
• B[*][0] will be used by t0 only

– Reused in Register
• A[0][0] will be used by all threads

[][] [][] [][]
A[2][0] A[2][1] A[2][2]
A[3][0] A[3][1] A[3][0]

B[1][0]

B[2][0]

C[0][0]

C[1][0]

C[2][0]

B[1][1]

B[2][1]

C[0][1]

C[1][1]

C[2][1]

B[1][2]

B[2][2]

C[0][2]

C[1][2]

C[2][2]

x

=

Slide 31

• A[0][0] will be used by all threads
– Broadcast using constant memory

• Adopt classics tiled MM
– A is tiled in constant memory
– B is tiled in register

C[3][0] C[3][1] C[3][2]

31

t0 t1 t2

Nd

bx

tx
01 TILE_WIDTH-12

0 1 2
T

IL
E

_W
ID

T
H

H ID
T

H

Tiled Multiply

• Break up the execution of the
kernel into phases so that the data
accesses in each phase is focused

Md Pd

0

T
IL

E
_W

ID
T

H W
Iaccesses in each phase is focused

on one subset (tile) of Md and Nd

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Slide 32

32

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

by ty 2
1
0

TILE_WIDTH-1

2

1

T
IL

E
_W

ID
T

H
E

W
ID

T
H

