Outside the Closed World: On Using Machine Learning For Network Intrusion Detection

Robin Sommer, Vern Paxson
IEEE Symposium on Security and Privacy 2010 (S&P ’10)

Agenda

• Introduction
• Challenges of using machine learning
• Recommendations
• Conclusions
Introduction

• Network intrusion detection systems (NIDS)
 – detects malicious activities such as DoS attacks, port scans, etc. by monitoring network traffic
• There are two types of NIDS:
 – misuse-detection
 – anomaly-detection
• In real world, misuse-detection type is used almost exclusively
• The paper aims to answer why this is the case, when machine learning is generally successful in many other applications

Challenges of Using Machine Learning (1)

• Main claim: “intrusion detection domain exhibits particular characteristics that make effective deployment fundamentally harder than other domains”
 A. Outlier detection
 B. High cost of errors
 C. Semantic gap
 D. Diversity of network traffic
 E. Difficulty with evaluation
Challenges of Using Machine Learning (2)

A. Outlier Detection
 – Machine learning is better at finding similarities than finding an outlier
 – Outlier detection can be thought of as a classification problem. However, there is no training data for the “outlier” class
 – As a result, we need perfect model of normality

Challenges of Using Machine Learning (3)

B. High Cost of Errors
 – In intrusion detection, the cost of any misclassification is high

 • Compared to other domains:
 – Product recommendation systems can tolerate errors
 – OCR technology: spelling and grammar checkers are commonly employed to clean up result. Users are expected to proofread, which is much easier than verifying an NIDS alert manually
 – Spam detection has a highly unbalanced cost model: false positives (ham declared as spam) are much more expensive than false negatives
Challenges of Using Machine Learning (4)

C. Semantic Gap
 – How to transfer the results into actionable reports for the network operator
 – The key question is, “What is the difference between abnormal activity and attacks?”
 – Need to incorporate local security policies

Challenges of Using Machine Learning (5)

D. Diversity of Network Traffic
 – Even basic characteristics such as bandwidth, duration of connections, and application mix can exhibit immense variability. Large bursts of activity are common
 – One solution is aggregation (volume per hour vs. volume per second)
Challenges of Using Machine Learning (6)

E. Difficulties with Evaluation

– Evaluation turns out to be more difficult than building the detector itself

– Difficulties of data
 • Lack of public datasets; the two publicly available datasets (DARPA/Lincoln Labs packet traces and KDD Cup dataset) are old and no longer suitable for evaluation
 • The reason: inspection of network traffic can reveal sensitive information about the organization
 • Two alternatives: simulation and anonymization
 – Simulations are not realistic enough
 – It is difficult to completely remove all sensitive information, and the artifacts removed by anonymization are often needed by NIDS
 • Researchers need to make their own datasets
 – Need access to large network

Challenges of Using Machine Learning (6)

E. Difficulties with Evaluation (continued)

– Semantic gap
 • The system needs to support the operator in understanding the activity to quickly assess the impact

– Adversarial setting
 • Attackers will try to evade NIDS
 • OCR users won’t try to conceal characters
 • Customers have no incentive to mislead company’s recommendation system
Recommendations (1)

- **Understand the threat model**
 - What kind of environment does the system target?
 - What do missed attacks cost?
 - What skills and resources will attackers have?
 - What concern does evasion pose?
- **Keep the scope narrow**
 - What specifically are the attacks to be detected?
 - Assess what tools are appropriate for the task
 - A common pitfall is starting with the premise to use machine learning, and then looking for a problem to solve
 - Identify the appropriate feature set

Recommendations (2)

- **Reduce the costs (misclassifications)**
 - Reduce the system’s scope
 - Aggregating features over suitable time intervals
 - Post-process results with additional information
- **Evaluation**
 - One alternative is to bring the experiment to the data, i.e., researchers send their analysis programs to data providers who run them and return the output
 - Need multiple datasets, from multiple sources
 - Understand the results by manual examination of misclassifications
 - Also inspect the true positives and negatives
Recommendations (3)

• Gain insights to the problem space
 – Rather than treating machine learning as a classifier, we could examine how it uses the features to understand more about the difference between benign and malicious activity, which could be used as a basis for a non-machine-learning detector
 • In spam classification, by examining the learned Bayesian classifier, we discover that certain parts of the message (e.g. subject lines, Received headers, MIME tags) provide much more detection power

Conclusions

• The imbalance between deployments of machine learning-based NIDS stems from the specifics of the problem domain
 – outlier detection
 – very high cost of errors
 – semantic gap
 – high variability of benign traffic
 – adversarial setting