A Survey of Botnet Technology and Defenses

Michael Bailey, Evan Cooke, Farnam Jahanian, Yunjing Xu, Manish Karir

Cybersecurity Applications & Technology Conference for Homeland Security (CATCH 2009)

Presented by Gaspar Modelo-Howard

Objective

• Provide a **brief look at** how *existing botnet research*, *evolution and future of botnets*, as well as the *goals* and visibility of today's networks intersect

Agenda

- Botnets
- Data Sources
- Research Studies
- Conclusions

Botnets (1)

- A botnet consists of:
 - Zombies: Pool of compromised computers
 - Bot: Software to enable operator to remotely control zombies
 - Bots are a hybrid of previous threats (virus, worms)
 - Its construction is (usually) a cooperative effort
- Predominant in today's networks and can be very large (100K)

Botnets (2)

- Design requirement 1: how to make owners "accept" usage of computers for malicious purposes
- Botnet attackers have migrated from
 - Single, manual propagation method to multiple automated propagation
 - Random scanning to robust "hitlists"
 - Vulnerable services to "vulnerable" users (social engineering)

Table 1. Propagation Mechanisms

Propagation Methodology	Design Complexity	Design Complexity Detectability Propaga		Population Size
Exploit: Operating System	Medium	High	Low	High
Services	Medium	Medium	Medium	Medium
Applications	High	Low	High	Low
Social Engineering	Low	Medium	Low	High

Botnets (3)

- Design Requirement 2: how to communicate with each bot instance without being detected
- Three botnet topologies identified:
 - Centralized: central point forwarding messages between clients, low latency, easier to detect, central location can compromise whole system
 - P2P: no central point/hierarchy, harder to disrupt, more complex design, no delivery or latency guarantees
 - Unstructured: completely random P2P, messages encrypted, random Internet scan, simple design, high latency, no delivery guarantee

Botnets (4)

• Design Requirement 2: how to communicate with each bot instance without being detected

Table 2. Command and Control Topologies

Topology	Design	Detect-	Message	Surviv-
	Complexity	ability	Latency	ability
Centralized	Low	Medium	Low	Low
Peer-to-Peer	Medium	Low	Medium	Medium
Unstructured	Low	High	High	High

Botnets (5)

- Design Requirement 3: how to extract value from a bot infected node
 - Attackers moving from DoS attacks, punish IRC users or gain status to create value and even extract real monetary gain
 - Agobot can initiate
 DDoS attacks

• SDBot includes advanced key logging techniques _

 Storm botnet has interface for conducting Spam campaigns

Table 3. Attack Classes

Design

Topology | Detectability

8	ropology	Detectability	Complexity	Value
Sing	le Host DDoS	High	Low	Low
Mul	ti Host DDoS	Medium	Medium	Medium
	Identity Theft	Low	High	Medium
	Spam	Medium	Medium	High
	Phishing	Medium	High	Medium

Attack

Data Sources

- Issues of data sources available according to botnet detection and mitigation
 - Service provider networks: notification of malicious activity
 - Enterprise networks: cleaning hosts, preventing spread
- Types of Data
 - DNS: data to/from servers/resolvers to detect attack/communication behavior (spam)
 - Netflow: sampling traffic flows, identifies comm patterns and attacks, limited visibility
 - Packet Tap: switch/tap deployment, finer granularity, higher cost, encryption reduces visibility
 - Address Allocation: Identifies reconnaissance behavior, visibility generally reserved for enterprises
 - Host: wealth of info available, avoids visibility issues but faces scalability ones
 - Honeypot: insight into means and motives, does not involve production hosts, difficult for social engineering attacks

Research: Detection Techniques (1)

Detection via cooperative behaviors

- Bothunter: models bot infection phase to compare suspected events
- Botsniffer: statistical algorithms to detect botnets using centralized topology
- Botminer: extends Botsniffer, detection framework performing clustering
 C&C comm and malicious activities and cross-correlation on them
- Karasaridis et al.: detection scheme to calculate distances between monitored flow data and pre-defined IRC traffic flow model
- Akiyama et al.: three metrics to determine botnets cooperative behavior (relationship, response, synchronization)
- Strayer et al.: temporal correlation algorithm in five-dimensional space about packet inter-arrival time and size
- Chois et al.: studied anomaly group activities of botnets in DNS traffic
- Ramachandram et al.: discovered identities of bots based "reconnaissance" lookups to determine bots' blacklist status

Research: Detection Techniques (2)

Detection by signatures

- Goebel et al.: used regular expressions, n-gram analysis and scoring systems to detect bots' conversations
- Binkley et al.: grouped IP hosts in IRC channels with IP scanning activities to determine if they were malicious

Detection of attack behaviors

- Brodsky et al.: relied on behavior of botnets (send large number of data in short period of time) to detect spam
- Xie et al.: used spam server traffic properties and spam payload to construct spam signature generation framework

Research: Detection Techniques (3)

- Detection via cooperative behaviors
- Detection by signatures
- Detection of attack behaviors

Table 4. The relationship between the network visibility, the botnet invariant behaviors, and various proposed techniques

		Bot Behaviors		
		Propagation	Communication	Attack
	Traffic Flows	scan-detection	control-protocols	ddos-detection
ses		[14, 15, 13, 3, 18, 26]	[14, 15, 13, 11, 3]	[18, 1, 26]
Sources		binary-downloading-detection	[18, 1, 26]	spam-detection
		[14, 15, 13, 26]		[15, 13, 18, 4, 28]
Data				active-responder [25]
	Darknet Data	bot-informants [14, 13]	bot-informants [14, 15, 13]	bot-informants [13]
		scan-detection [14, 13]		
	Packet Capture	vulnerability-signature [14]	control-signatures	
			[18, 1, 11, 3]	
	DNS Logs		rendezvous-detection [18, 5]	spam-detection [15, 13, 4]
				reconnaissance-detection [24]
				active-responder [25]

Research: Measurement Studies (1)

Size Estimation

- Rajab et al. observed botnets using DNS, IRC, passive methods
- Zhuang et al. grouped spam-generating bots by examining spam contents
- Rajab et al. considered discrepancies in botnet size estimation

Behavior Analysis

- Gianvecchio et al. proposed two types of classifiers (entropy rate and ML) to differentiate human and IRC bots
- Anderson et al. focused on scam hosting infrastructure and how it is shared
- Dagon et al. noted time zones and locations play a critical role in malware propagation

Research: Measurement Studies (2)

Peer-to-peer botnets

- Grizzard et al. provided a history and overview of P2P botnets
- Holz et al. presented case study on Storm with details on system and network-level behaviors
- Kanich et al. estimated Storm botnet size by considering various types of noise (protocol aliasing)
- Wang et al. proposed a hybrid (centralized and P2P)
 structured botnet that overcame individual disadvantages

Conclusions

- Botnets are moving targets
 - All aspects of life-cycle (propagation, C&C, and attacks)
 are evolving constantly
- No technique is perfect
 - Each detection algorithm has a set of tradeoffs (FP and FN)
- All networks are not the same
 - Different networks have different goals, visibility of botnet behaviors and data sources
- A successful botnet detection/mitigation solution should address these realities and their interactions with each other

