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Publications 
•  Justin Ma, Lawrence K. Saul, Stefan Savage, and 

Geoffrey M. Voelker,  
Beyond Blacklists: Learning to Detect Malicious 
Web Sites from Suspicious URLs. 
ACM SIGKDD 2009. 

•  Focus on features selection  

•  Justin Ma, Lawrence K. Saul, Stefan Savage, and 
Geoffrey M. Voelker, 
Identifying Suspicious URLs: An Application of 
Large-Scale Online Learning.  
ICML 2009. 

•  Focus on scaling  (live, large-scale data) 

Slides in this presentation were (mostly) taken  
from  author’s website. 
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Detecting Malicious Web Sites 

Predict what is 
safe without 

committing to 
risky actions 

•  Safe URL? 

•  Web exploit? 

•  Spam-advertised site? 

•  Phishing site? 

URL = Uniform Resource Locator 

http://www.bfuduuioo1fp.mobi/ws/ebayisapi.dll 

http://fblight.com 

http://mail.ru 

http://www.ece.purdue.edu/~dcsl 
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Problem in a Nutshell 

  URL features to identify malicious Web sites 

  No context, no content of pages 

  Different classes of URLs 

  Benign, spam, phishing, exploits, scams... 

  For now, distinguish benign vs. malicious (classical 
classification problem) 

facebook.com fblight.com 
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What we want... 
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How to build this service? 
http://www.bfuduuioo1fp.mobi/ws/ebayisapi.dll 

Blacklist 

Hand-picked features 
(properties of URL) 

Machine learning-based classifier 

8 

State of the Practice 

  Current approaches 

  Blacklists 
[SORBS, URIBL, SURBL, Spamhaus, SiteAdvisor, 
WOT, IronPort, WebSense] 

  Learning on hand-tuned features 
[Kan & Thi ’05, Guan et al ’09] 

  Limitations 

  Cannot learn from newest examples quickly 

  Cannot quickly adapt to newest features 

  Arms race: fast feedback cycle is critical 

More automated approach? 
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URL Classification System 

Label Example Hypothesis 
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Data Sets 

  Malicious URLs 

  5,000 from PhishTank (phishing) 

  15,000 from Spamscatter (spam, phishing, etc) 

  Benign URLs 

  15,000 from Yahoo Web directory 

  15,000 from DMOZ directory 

  Malicious x Benign → 4 Data Sets 

  30,000 – 55,000 features per data set 
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Algorithms 

  Logistic regression w/ L1-norm regularization 

  Other models 

  Naive Bayes 

  Support vector machines (linear, RBF kernels) 

  Implicit feature selection 

  Easier to interpret 
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Feature Vector Construction 
http://www.bfuduuioo1fp.mobi/ws/ebayisapi.dll 

WHOIS registration: 3/25/2009 
Hosted from 208.78.240.0/22 
IP hosted in San Mateo 
Connection speed: T1 
Has DNS PTR record? Yes 
Registrant “Chad” 
... 

[ _ _   …    0 0 0 1 1 1 … 1  0   1      1 …] 
Real-valued Host-based Lexical 

Examples of Features  
to Consider 

1.  Blacklists 
•  List of known malicious sites: SORBS, Spamhaus,  

URIBL, SURBL 

2.  Simple heuristics 
•  IP address in hostname, URL WHOIS registration  

date 

3.  Domain name registration 
•  WHOIS: registrar, registrant, dates 

4.  Host properties 
•  IP address, AS, IP prefix 

5.  Lexical 
•  Tokens in URL, length of URL, number of dots 

Increasing order 
of complexity 



6/8/11 

8 

15 

Which feature sets? 

Blacklist 

Manual 

WHOIS 

Host-based 

Lexical 

4,000 

# Features 

13,000 

4 

7 

17,000 

More features → Better accuracy 

Error rate (%) 
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Which feature sets? 

Blacklist 

Manual 

WHOIS 

Host-based 

Lexical 

Full 96—99% accuracy 

4,000 

# Features 

13,000 

4 

7 

17,000 

30,000 

Error rate (%) 
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Which feature sets? 

Blacklist 

Manual 

WHOIS 

Host-based 

Lexical 

Full 

w/o WHOIS/Blacklist 

4,000 

# Features 

13,000 

4 

7 

17,000 

30,000 

26,000 

Error rate (%) 

Blacklists and WHOIS are 
not comprehensive 
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Agenda 
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  Conclusion 
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Live URL Classficiation System 

•  Millions of examples 
and features 

Online learning 

20 

Live Training Feed 

  Malicious URLs (spamming and phishing) 

  6,000—7,500 per day from Web mail provider  

  Benign URLs 

  From Yahoo Web directory 

  Total of 20,000 URLs per day 

  Live collection since Jan. 5, 2009 

  Months of data 

  Two million examples after 100 days 
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Feature vector construction 
http://www.bfuduuioo1fp.mobi/ws/ebayisapi.dll 

WHOIS registration: 3/25/2009 
Hosted from 208.78.240.0/22 
IP hosted in San Mateo 
Connection speed: T1 
Has DNS PTR record? Yes 
Registrant “Chad” 
... 

[ _ _   …    0 0 0 1 1 1 … 1  0   1      1 …] 
Real-valued Host-based Lexical 
60+ features 1.8 million 1.1 million 

GROWING 
Day 100 
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Practical Challenges of ML in Systems 

  Industrial concerns 

  Scale: millions of examples, features 

  Non-stationarity: examples change over time (arms 
race w/ criminals) 

  Pivotal decision: batch or online? 
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Batch vs. Online Learning 

  Batch/offline learning 

  SVM, logistic regression, 
decision trees, etc 

  Multiple passes over data  

  No incremental updates 

  Potentially high memory 
and processing overhead 

  Online learning 

  Perceptron-style 
algorithms 

  Single pass over data 

  Incremental updates 

  Low memory and 
processing overheard 

Online learning addresses scale and non-stationarity 
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Evaluations 

  Online learning for URL reputation 

  Need for large, fresh training sets 

  Comparing online algorithms 

  Continuous retraining 

  Growing feature vector 
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Need lots of fresh training data? 
SVM trained once 

SVM retrained daily 

  Fresh training data helps 
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Need lots of fresh training data? 

  Fresh training data helps 

  More training data helps 

SVM trained once 
on 2 weeks 

SVM w/ 2-week 
sliding window 
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Which online algorithm? 

  Perceptron 

  Stochastic Gradient Descent for Logistic 
Regression 

  Confidence-Weighted Learning 
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Perceptron 

  Convergence result: 

[Rosenblatt, 1958] 

+ − 
+ + 

+ 
+ 

+ 
− 

− 
− 
− 

− 

  Update on each mistake: 

radius 

margin 

Number of mistakes ≤ 
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Logistic Regression with SGD 

  Log likelihood: 

where 

[Bottou, 1998] 

  For every example: 

Proportional 
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Confidence-Weighted Learning 

  Maintain Gaussian distribution over weight vector: 

[Dredze et al., 2008] [Crammer et al., 2009] 

  Constrained problem: 

  Closed-form update: 
Treat features 

differently 
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Which online algorithms? 

Perceptron 
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Which online algorithms? 

LR w/ SGD 

  Proportional update helps 

Perceptron 
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Which online algorithms? 

  Proportional update helps 

  Per-feature confidence really helps 

Confidence-Weighted 

LR w/ SGD 

Perceptron 
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Batch... 

  Fresh data helps 

  More data helps 

B
a
t
c
h 
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Batch vs. Online 

Confidence-Weighted 

  Fresh data helps 

  More data helps 

  Online matches batch 

B
a
t
c
h 
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Conclusion 

  Detecting malicious URLs 

  Relevant real-world problem 

  Successful application of online learning 

  What helps? 

  More, fresher data 

  Continuous retraining 

  Growing feature vector 

  Confidence-Weighted vs. Batch 

  As accurate 

  More adaptive 

  Less resources 
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