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Motivation

• Existing randomization schemes perturb data at one 
privacy level

• Need to have multiple privacy levels

– Govt. organization may require data with high 
usability and low privacy

– Private organizations may have more perturbed data

– May define a cost model based on perturbation level

• Naïve Solution

– Perturb each version of data independently

– Problem of collusion



Uniform Perturbation

• Original dataset D, perturbed data D*

• D* retains all non-sensitive values in D

• For every sensitive value x in D perturb as

• p = retention probability

• If p = 1, then D = D*

• If p = 0, then all sensitive values are randomized in D*



Problem with Independent 
Perturbation

• Each value perturbed independently

• Chances of both independently perturbed values to be 
HIV is small

• Original value is HIV with high confidence

• Pr[Both Alice and Bob gets HIV | original disease not 
HIV] is less than 1%



Contributions

• Present a multi-level uniform perturbation with two 
properties

– The confidence about original value is no more than 
the most trusted recipient (valid for any number of 
colluding parties)

– Each recipient’s data can be considered as an – Each recipient’s data can be considered as an 
application of uni-pert with its retention probability

• Consumes O(n+m) expected space

• Produces a perturbed version in O(n+log m) time

• n = no. of tuples in D, m = no. of versions



Preliminaries

• X: a random variable denoting original value

• Y: a random variable denoting perturbed value

• X, Y distribute in a domain DOM

• |DOM| = s

• p = retention probability

• For x, y in DOM



Privacy Guarantees

• Uniform perturbation guarantees

– ρ1-ρ2 privacy

• Let, Q(X) be a predicate on X

• Pr[Q(X)] = adversary’s (prior) belief in Q(X)

• Pr[Q(X) | Y] = adversary’s belief in Q(X) after observing Y

• ρ1-ρ2 privacy requires



Problem Definition
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• Let, t: an arbitrary tuple in D

• X: r.v. denoting the sensitive value in t

• Sshare: Set of colluding recipients

• L: Set of perturbed values of X

• best(L): value in L that is most authentic

• H: set of all recipients that we have responded to

• |H| ≥ 1



Problem Definition

• Given a new request with retention probalility p, return a 
perturbed dataset D* of D where every tuple t* 
corresponds to a tuple t in D such that

1. t* keeps all the non-sensitive values in t

2. If Y is the r.v. denoting the perturbed version of X, then 
distribution of Y is given bydistribution of Y is given by
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3. If L is a non-empty subset of all perturbed values of t 
we returned (including the current recipient) then we 
can guarantee



Multi-level Uniform 
Perturbation
• Let, m be the size of H

• p1, p2, .., pm are retention probabilities of recipients in H 
in non-ascending order

• Di* is the anonymized version of D with retention 
probability pii

• Need to compute D* with p

• p is different from p1, p2, .., pm

• D* must be derived from D1*, D2*, .., Dm*



• Let pl is the smallest probability in {p1, p2, .., pm} larger 
than p

• pr is the largest probability in {p1, p2, .., pm} smaller than 
p

• If pl does not exist, set pl=1l l

• If pr does not exist, pr is undefined

• Dl*, Dr* are the data sets corresponding to pl, and pr

• D* can be computed from Dl*, Dr* 



Algorithm
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Example

• Assume D has a single sensitive attribute x=HIV

• DOM is domain of diseases with |DOM|=10

• Alice request perturbed data with probability p1=40%

• Assume HIV is retained in Alice’s data set

• H contain Alice and value of p1

• Bob requests data with p=20%

• Pr = undefined, pl = 40%

• p/pl = 50%

• Retain Alice’s value with 50% probability
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• Verify requirements 2, and 3 in problem definition

• y for Bob is solely computed from Alice’s value, hence 3 
is satisfied

• Compute Pr[Y = HIV | X = HIV] for Bob

• 3 cases• 3 cases

I. Alice receives HIV and the coin we toss for Bob 
heads

[0.4 + (1 - 0.4)/10] * 0.5 = 0.23

Alice’s 
coin 
heads

Alice’s coin 
tails, random 
disease 
selected is HIV
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II. Alice receives HIV, coin for Bob tails, and the 
random value drawn from DOM is HIV

0.46 * 0.5 * 0.1 = 0.023

III. Alice doesn’t receive HIV, coin for Bob tails, and 
the random value selected is HIV

(1 - 0.46) * 0.5 * 0.1 = 0.027

• Pr[Y=HIV | X=HIV] = 0.23 + 0.023 + 0.027 = 0.28

• Consider uni-pert with X = x = HIV

• For Bob, p = 20%

• Using uni-pert 

Pr[Y=HIV | X=HIV] = 0.2 + (1 – 0.2) * 0.1 = 0.28



Derivation of u, v

• Recall pl, pr are probabilities s.t. pl > pnew > pr

• Let yl, yr are the perturbed values for pl, pr

• When yl = yr

– Pr[head] = u1, Pr[tail] = v1

• When yl != yr

– Pr[head] = u2, Pr[tail] = v2

• Let Ya, Yb be the r.v. corresponding to the perturbed 
values for Alice and Bob respectively

• pa = 40%, pb = 80%



• The algorithm requires

• Both are satisfied when



• Constitute equations for u1, v1, u2, v2 from these cases

• Solve for u1, v1, u2, v2



Theoretical Analysis

• Lemma 1: 

For any i in {1, .., m} we have

and
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• Theorem 1:

Collusion is useless. For any subset L of {Y1=y1, Y2=y2, 
..,  Ym=ym} we have 

• Theorem 2:

For all recipient i in 1 ≤ i ≤ n, Yi is statistically same as 
the output of uni-pert, i.e.,



Minimizing Space and Time

• Naïve approach

• Let |H| = m

• For each sensitive value x store all the m released values

• Computation cost:

– O(log m) to find l, r

– O(n) to perturb

• Space overhead:

– O(n*m)



Efficient Implementation

• Notice that many consecutive values in y1, y2, .., ym are 
same

• We only need to save when y values change

• Y1, Y2, .., Ym make m-1 consecutive pairs (Y1, Y2), (Y2, 
Y3), .., (Ym-1, Ym)3 m-1 m

• A pair is disparate if (Yi-1, Yi) are different 

• Let disp(t) = no. of disparate pairs in history

• Lemma 2:

E[disp(t)] < ln(1/c), 

c is a constant such that  1 ≥ p1 ≥ p2 ≥ .. ≥ pm ≥ c
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• Save the list of probabilities p1, p2, .., pm

• Build a list history(t) where each element has form 

<p, Y>

• Space complexity: O(n + m)

• To compute new perturbed version find pl, pr in O(log 
m) time

• To retrieve yi for pi

– Find the smallest probability pj ≥ pi

– Return yj

• Time complexity: O(n + log m)



Experiments

• Verify the following experimentally

– Ineffectiveness of collusion

– Equivalence to uniform perturbation

– Failure of independent perturbation

– Space and computation cost



Parameters

• Let X denote the original sensitive value

• Ya, Yb, Yc are three perturbed versions

• pa=30%, pb=10%, pc=50%

• Set X as uniform dist, gaussian dist, salary dist, or 
occupation distoccupation dist

• Compute ya, yb, yc for each X=x 

• Prepare a 4D array F[X, Ya, Yb, Yc] with all cells initially 0

• Run simulation 1010 times



• Collusion is ineffective

– We must show

• Compute Pr[X=x | Ya=ya, Yb=yb, Yc=yc] as

• Compute Pr[X=x | Yc=yc]  as



Distribution of Sensitive Values





• Equivalence to uni-pert

– Need to show

• Compute Pr[Ya=ya | X=x] as









Conclusion

• Allows us to compute multiple perturbed versions of data

• Protects against collusion

• Privacy (retention probabilities) of sensitive values may 
be specified in arbitrary order

• Expected space and time complexity are asymptotically • Expected space and time complexity are asymptotically 
optimal


