Optimal Random Perturbation
Multiple Privacy Levels

Xiaokui Xiao, Yufei Tao, Minghua Chen

n Proc. International Conferece on Very Large
Data Bases 2009 (VLDB'09)

Presented by

Amiya Kumar Maji

tory (DCSL), Purdue University

Motivation

Existing randomization schemes perturb data at one
privacy level

Need to have multiple privacy levels

— Govt. organization may require data with high
usability and low privacy

— Private organizations may have more perturbed data
— May define a cost model based on perturbation level
Naive Solution

— Perturb each version of data independently

— Problem of collusion

Uniform Perturbation

e Original dataset D, perturbed data D*
e D* retains all non-sensitive values in D
e For every sensitive value x in D perturb as

Algorithm uni-pert (x. p)
/* x 15 the value being perturbed. and p the retention probability */

toss a com with head probability p
if the coin heads then return =
else return a random value in the domam of =

p = retention probability
If p=1, then D = D*

If p = 0, then all sensitive values are randomized in D*

Problem with Independent
Perturbation

refained with

th::_:_b_rf{'l_ 40% Alice

retained with ™ Bob

probability 20%

Each value perturbed independently

Chances of both independently perturbed values to be
HIV is small

Original value is HIV with high confidence

Pr[Both Alice and Bob gets HIV | original disease not
HIV] is less than 1%

Contributions

Present a multi-level uniform perturbation with two
properties

— The confidence about original value is no more than
the most trusted recipient (valid for any number of
colluding parties)

— Each recipient’s data can be considered as an
application of uni-pert with its retention probability

Consumes O(n+m) expected space
Produces a perturbed version in O(n+log m) time

n = no. of tuples in D, m = no. of versions

Preliminaries

X: a random variable denoting original value
Y: a random variable denoting perturbed value
X, Y distribute in @ domain DOM

IDOM| = s

p = retention probability

For x, y in DOM

Privacy Guarantees

Uniform perturbation guarantees

— Pyp, privacy

Let, Q(X) be a predicate on X

Pr[Q(X)] = adversary’s (prior) belief in Q(X)

PriQ(X) | Y] = adversary’s belief in Q(X) after observing Y

P1-P, privacy requires

PriQ(X)] < p1
and Pr|(Q(X)] > p2

Problem Definition

Symbol Description
D The original dataset
A The sensitive attribute of D
B The set of non-sensitive attributes of D
DOM The domain of A
S The size of DOM
n The cardinality of D
H The set of recipients we responded to before
m The size of H
i The i-th highest retention
(1 <1< m) probability of the recipients in H
Dr The perturbed version of) returned to the
(1 <1< m) recipient with retention probability p

p

The retention probability of the incoming request

Contd.

Let, t: an arbitrary tuple in D

X: r.v. denoting the sensitive value in t
S.hare: Set of colluding recipients

L: Set of perturbed values of X

best(L): value in L that is most authentic

H: set of all recipients that we have responded to

IH| > 1

Problem Definition

e Given a new request with retention probalility p, return a
perturbed dataset D* of D where every tuple t*
corresponds to a tuple t in D such that

1. t* keeps all the non-sensitive values in t

2. If Y is the r.v. denoting the perturbed version of X, then
distribution of Y is given by

Pr Dr — 9l

X =zx|= { p+(1l—p)/s itfx=y

[I —p) ;"; S iftr #y

Contd.

If L is @ non-empty subset of all perturbed values of t
we returned (including the current recipient) then we
can guarantee

PriQ(X)|L] = PriQ(X)|best(L)]

Multi-level Uniform
Perturbation

Let, m be the size of H

Py, Po, .., Py, are retention probabilities of recipients in H
in non-ascending order

D.* is the anonymized version of D with retention
probability p

Need to compute D* with p

p is different from py, py, .., Pry

D* must be derived from D;*, D,*, .., D,*

Let p, is the smallest probability in {p;, p,, --, P} larger
than p

P, is the largest probability in {p;, Py, .., Py SMaller than
P

If p, does not exist, set p,=1

If p, does not exist, p, is undefined

D/*, D/* are the data sets corresponding to p,, and p,

D* can be computed from D*, D.*

Algorithm

Algorithm multi-pert (p)
/* p 1s the retention probability of a new request */

1. let p1., pa. pm be the retention probabilities of the
previous requests in non-ascending order
2. if pequals p; for any ¢ € |1, m], then return D
3. [=the largest subscript < € [1,m] such that p; > p
/* p; = the lowest of p1. p2. ..., pm greater than p */
if p; does not exist then p; = 1 and Dy = D
r = the smallest subscript ¢ € [1, m] such that p; < p
/* pr = the greatest of p1. pa. pm lower than p */
if pr does not exist
for each tuple #; € D7
create a tuple ¢ in D* with t*|B] = ;[B]
/* B 1s the set of non-sensitive attributes */
set t*[A] to t;[A]| with probability p/p;, or to a
random value in DO M with probability 1 — p/p
/* A 1s the sensitive attribute */

10. else

i
12.
13

14.

for each tuple ; € Dy
identify 1ts matching tuple #. € D7
create a tuple t* in D* with t*|B| = ;| B]
set ™| A] to t;[A] with probability u, to ¢ | A] with
probability v. or to a random value 1 DO M with
probability 1 — u — v, where u. v are given n
Equations 3 and 4, respectively

15. return D*

e { p/pr if y1 =
(p—pr)/(pt —pr) iy # yr

l—pr/p o
o { i -j%)(l - fs_l)Pf‘fngrlJ ity = yr

e iy # ur

Example

Assume D has a single sensitive attribute x=HIV
DOM is domain of diseases with [DOM|=10

Alice request perturbed data with probability p,=40%
Assume HIV is retained in Alice’s data set

H contain Alice and value of p,

Bob requests data with p=20%

P, = undefined, p, = 40%

p/p = 50%

Retain Alice’s value with 50% probability

Contd.

Verify requirements 2, and 3 in problem definition

y for Bob is solely computed from Alice’s value, hence 3
is satisfied

Compute Pr[Y = HIV | X = HIV] for Bob
3 cases

I. Alice receives HIV and the coin we toss for Bob
heads

[0.4 + (1 - 0.4)/10] * 0.5 = 0.23

Y

Alice’s Alice’s coin

coin tails, random

heads disease
selected is HIV

Contd.

II. Alice receives HIV, coin for Bob tails, and the
random value drawn from DOM is HIV

0.46 * 0.5 * 0.1 = 0.023

III. Alice doesn't receive HIV, coin for Bob tails, and
the random value selected is HIV

(1-0.46) * 0.5 * 0.1 = 0.027
Pr[Y=HIV | X=HIV] = 0.23 + 0.023 + 0.027 = 0.28
Consider uni-pert with X = x = HIV
For Bob, p = 20%
Using uni-pert

PrlY=HIV | X=HIV] = 0.2 + (1 - 0.2) * 0.1 = 0.28

Derivation of u, v

e Recall p, p, are probabilities s.t. p, > p.eyw > P;
Let y, vy, are the perturbed values for p,, p;
When y, = ,

— Pr[head] = uy, Pr[tail] = v,
Wheny, 1=y,
— Pr[head] = u,, Pr[tail] = v,

Let Y,, Y, be the r.v. corresponding to the perturbed
values for Alice and Bob respectively

p, = 40%, p, = 80%

e The algorithm requires

. 1)+ —p)/s iz =1y
Pr(Yy = yp| X —l‘-]—{ (1—pp)/s it # yp

e Both are satisfied when

P Y =l Y = Y, X = 2]

[(pp+=(1 pf,))(puzpw (1—pa/pPb))

Pat+ =< (1 Pn;)

1 1—pg - =
(2(;’b_}: (1:'9 ;i? fya = T # Yo

(1 —pa)) ifYa =Yp 7+ T
1;,.:, S(l—pa)) if = yp # Ya

I = '
(1—py, Pa/Pp) otherwise
5(1_Pa)

Hy.=w=mn

e Constitute equations for u;, vy, U,, Vv, from these cases

e Solve for uy, Vy, Uy, V5

Theoretical Analysis

e Lemma 1:

For anyiin {1, .., m} we have

Contd.

e Theorem 1:

Collusion is useless. For any subset L of {Y;=Y;, Y>=Y5,
.., Y=Y} we have

Pr(Q(X)|L] = Pr[Q(X)|best(L)]
e Theorem 2:

For all recipientiin 1 <i < n, Y, is statistically same as
the output of uni-pert, i.e.,

o WY v SRRt [, | GG, SR Pi = (1 — P4 ‘]' /S 'S S e s
i =kt == { (1 —pi)/s it r # y;

Minimizing Space and Time

Naive approach
Let |[H| = m
For each sensitive value x store all the m released values
Computation cost:
— O(logm) to find |, r
— O(n) to perturb
Space overhead:

— O(n*m)

Efficient Implementation

Notice that many consecutive values in y,, Y5, .., ¥, are
same

We only need to save when y values change

Y, Y5 .., Y, make m-1 consecutive pairs (Y4, Y,), (Y-,
Y3)/ L (Ym-ll Ym)

A pair is disparate if (Y4, Y;) are different
Let disp(t) = no. of disparate pairs in history
Lemma 2:

E[disp(t)] < In(1/c),

cisaconstantsuchthat 1 2p, 2p,=2..2p,2=C

Contd.

e Save the list of probabilities p;, p,, --» Pm
Build a list history(t) where each element has form
<p, Y>
Space complexity: O(n + m)

To compute new perturbed version find p,, p, in O(log
m) time

To retrieve vy, for p

— Find the smallest probability p; = p,

— Return'y;

Time complexity: O(n + log m)

Experiments

e Verify the following experimentally
— Ineffectiveness of collusion
— Equivalence to uniform perturbation
— Failure of independent perturbation

— Space and computation cost

Parameters

Let X denote the original sensitive value
Y., Y, Y. are three perturbed versions
P,=30%, p,=10%, p.=50%

Set X as uniform dist, gaussian dist, salary dist, or
occupation dist

Computevy,, v,, Y. for each X=x
Prepare a 4D array F[X, Y,, Y,, Y.] with all cells initially O

Run simulation 1019 times

Collusion is ineffective

— We must show

F[.’I-_. yﬂ.a yb* _'_?-;'*C]

ve F[T's Ya, Yb, Ye|

Distribution of Sensitive Values

25
X X

(b) Gaussian

13

25
X

(c) Salary (d) Occupation

0.6
0.5
04
0.3
0.2
0.1

035

1 approximated PH{X=x| Y;=va. Y3=p. ¥:=y:] w approximated PriX=x|Y.=y]

03T |
025 T Tttt

0.2~ RS
0.15 === S
0.1 F-mmmmm oo mnn oo Rt

005 - oo Tttt

ManMaA0ARAAd AN s o oo

1 30

(c) Salary (y, = 6. yp = 46. y. = 30)

50

.
e | B
|
0.25 f----mmmmmmmm oo e
|
1 L R RGECETEESEEr EuEtl| SEEREEEEES
il |
0.0

0

0.35
03
0.25
02
0.15
01
0.05

e

(d) Occupation (y, = 26. y, = 19. y. = 16)

-

e Equivalence to uni-pert

— Need to show

e Compute PrlY,=Yy, | X=x] as

Tl (T ! d ’ ¢
>yt iy FlE: Yas b, el

Z'-v-'-y;_,yg«y; Elr, ya, yy, yel

1 approximated Pr{¥;

06T
0.5 mm ey
Q4f==nm-mmmmme oo
03— .
0 .
R

L L T 50

i
(a) Uniform (Charlie. z = 34)
1
0.5 == g
04y T
| IR
e | B
01)T
0] 2 50
Yi

(¢) Salary (Charlie, = = 22)

R

=) | X=x] WM theoretical values

155
1] ettt '
115 ittt bty
(L0
0,15 mmmmm oo
1
1

035~

025 -
]
015 |~
L
Q.05 [oo

Yi
(d) Occupation (Alice. z = 22)

average reconstruction probability

independent perturbation

multi-pert

LI T T R R TRT IR T NT [SEEEEEEEE-

20 30 40 50
number m of releases

Figure 7: Vulnerability of independent perturbation

—— ascending —8B— descending —&— random

compuitation time (sec)
B

Q.4 -
035 oo T

10k 1 2k 4k 6k Sk 10k
number m of releases

2k 4k 6k 8k
number m of releases

(a) Space vs. m (b) Time vs. m

Figure 8: Overhead of multi-pert

Conclusion

Allows us to compute multiple perturbed versions of data

Protects against collusion

Privacy (retention probabilities) of sensitive values may
be specified in arbitrary order

Expected space and time complexity are asymptotically
optimal

