Automated Known Problem Diagnosis with Event Traces

Chun Yuan, Ni Lao, Ji-Rong Wen, Jiwei Li, Zheng Zhang, Yi-Min Wang, Wei-Ying Ma Microsoft Research, Tsinghua

Motivation

- Problem diagnosis
 - · Labor intensive diagnosis process
 - Manual Inspection of Solutions
 - Inefficient due to too much human involvement
- Automating diagnosis process for known problems
 - Novel trace based problem diagnosis

Solution Approach

- Known problems are annotated with relevant system behavior
- New behavior -> classify to some known problem

Tracer

- What events to collect?
 - System calls
- What attributes to collect?
 - Process / thread Id
 - Process / thread name
 - · System call name, parameters, return value

Trace Example

process thread syscall paramaters & return value
...

18419 iexplore.exe 3892 CreateThread Process: 3888, Thread: 3896
SUCCESS

18420 iexplore.exe 3892 PostMessageWM_USER+0x300 1
18421 iexplore.exe 3892 OpenKey HKCU\SOFTWARE
\Microsoft\Internet Explorer\Main SUCCESS

18422 iexplore.exe 3892 QueryValue HKCU\SOFTWARE\Microsoft
\Internet Explorer\Main\Enable Browser ExtensionsNOTFOUND

18423 iexplore.exe 3892 OpenKey HKLM\SOFTWARE\Microsoft
\Windows\CurrentVersion\Internet Settings SUCCESS

Classifier

- Classification:
 - Training: learn a model from annotated training
 - Testing: predict the class a new one belongs to
- Accuracy:
 - · Percentage of true positive data
- Cross validation
- N-gram
 - · Any N successive elements in a sequence
- Support Vector Mechanism

System Call Variation

- Noise filtering
 - Patterns occurring at less than a threshold % times are discarded
- Object name canonicalization
 - File path is discarded
- Cross machine comparison

Evaluation

- 4 target problems:
 - IE display
 - Firefox display
 - Outlook Express Open
 - Shared Folder
- Data Collection
 - Machine > Round > Problem
 - · Inject fault
 - · Start tracer → Reproduce → Stop tracer
 - · Remove the fault

Summary

- Canonicalization has no effect
- Longer patterns only helpful when fewer attributes are available

Summary

- Canonicalization is good
- l-gram is good enough, 2-gram useful when smaller number of attributes
- Accuracy converges more quickly with larger number of machines

Questions?

Thank You