DARWIN: Distributed and Adaptive Reputation mechanism for Wireless ad-hoc Networks

J. Jaramillo and R. Srikant In Proc. of ACM MobiCom'07

Presented by DongHoon Shin Mar. 31, 2009

Outline

- Introduction
- Basic Game Theory Concepts
- Network Model
- Prior Reputation Mechanisms
- New Reputation Scheme: DARWIN
- Conclusion / Further Work

Introduction

- In mobile ad-hoc networks, cooperation among nodes is required.
 - In such networks, nodes are self-configuring and do not rely on an infrastructure to communicate.
 - Typically, a source communicates with a distant destination in a multi-hop fashion by using intermediate nodes as relays.
- There can be selfish users who want to maximize their own welfare.
- Incentive mechanisms are necessary to enforce nodes to cooperate with each other.
- Two types of incentive mechanisms:
 - Credit-exchange systems
 - Reputation-based systems

3/31

Introduction (cont.)

- Credit-exchange systems
 - Node receives a payment every time they forward a packet.
 - This credit can be used to encourage others to cooperate.
 - Methods are needed to store credit without being tampered.
 - ▶ Tamper-proof hardware
 - Off-line central trusted authority
- Reputation-based systems
 - A node's behavior is measured by its neighbors.
 - Selfishness is deterred by the threat of partial or total disconnection from the network.
 - Due to packet collisions and interference, measurement is not perfect.
 - ▶ Sometimes, cooperative nodes will be perceived selfish.
 - This can trigger a retaliation situation.

Introduction (cont.)

- Contributions
 - Analyze previously proposed reputation strategies.
 - ▶ Design a simple network model.
 - ▶ Provide an understanding of the impact of imperfect measurements on the robustness of reputation strategies.
 - Propose a new strategy called "DARWIN" (Distributed and Adaptive Reputation mechanism for Wireless ad-hoc Networks).
 - ▶ Prove DARWIN's following properties:
 - · Achievement of full cooperation among nodes,
 - · Robustness to imperfect measurements,
 - · Collusion-resistant.

5/31

Basic Game Theory Concepts

- The Prisoners' Dilemma
 - Two possible pure strategies: Cooperate (C) or Defect (D)
 - Payoffs corresponding to their actions:

		Player 2			
		Cooperate		Defect	
Player 1	Cooperate	1	1	-1	2
	Defect	2	- 1	0	0

- Strategy space S_i for player i: S_i = {C, D}
- Strategy profile: an element of the product-space of strategy spaces of each player
 - ► For this example, there are four possible strategy profiles: (*C*, *C*), (*C*, *D*), (*D*, *C*), and (*D*, *D*).

Basic Game Theory Concepts (cont.)

- Nash Equilibrium (NE)
 - A Nash equilibrium is a strategy profile having the property that no player can benefit by unilaterally deviating from its strategy.
- Repeated games (for infinite case)
 - Before *k*-th stage begins, *k-1* preceding plays are observed.
 - Total payoff of the game for player i is the discounted sum of the stage payoffs.

Player *i*'s total payoff: $U_i = \sum_{k=0}^{\infty} w^k u_i^{(k)}$

- ► This game can be interpreted as a repeated game that ends after a random number of repetitions.
- ► Game length is a geometric random variable with mean 1/(1-w).

7/3

Basic Game Theory Concepts (cont.)

- In a repeated game, a player's strategy specifies the action it will take at each stage, for each possible history of play through previous stages.
- A subgame of the original game is defined to be a game starting at stage k with a given history h^k .
- Equilibrium path
 - For a given set of strategies that are in Nash equilibrium, history h^k is on the equilibrium path if it can be reached with positive probability if the game is played according to the equilibrium strategies, and is off the equilibrium path otherwise.

Basic Game Theory Concepts (cont.)

- Subgame Perfect Nash Equilibrium (SPNE)
 - A Nash equilibrium is subgame perfect if the player's strategies constitute a Nash equilibrium in every subgame.
 - Subgame perfection is a stronger concept that eliminates "noncredible" equilibria.
- Game being continuous at infinity
 - A game is continuous at infinity if for each player i, the payoff U_i satisfies:

$$\sup_{h,\tilde{h} \text{ s.t. } h^k = \tilde{h}^k} \left| U_i(h) - U_i(\tilde{h}) \right| \to 0 \text{ as } k \to \infty$$

9/31

Basic Game Theory Concepts (cont.)

- One-Stage Deviation Principle
 - In an infinite-horizon multi-stage game with observed actions that is continuous at infinity, strategy profile s is subgame perfect if and only if no player i and strategy \hat{s}_i that agrees with s_i except at a single stage k and h^k, and such that \hat{s}_i gives a better payoff than s_i conditional on history h^k being reached.

PURDUE

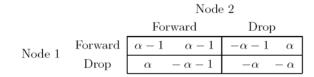
Network Model

- Nodes are selfish, but not malicious.
 - Selfish node is a rational user, so it wants to maximize its own welfare.
- Interaction among nodes is reciprocal.
 - Any two neighbors have uniform network traffic demands and need each other to forward packets.
 - Thus, it can be modeled as a two player's game.
- Time is divided into slots.
- In each time slot, each node decide whether to forward or drop the other's packet.
 - A mixed strategy is also possible by choosing a packetdropping probability.

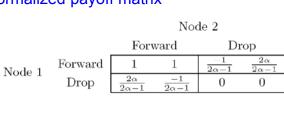
11/31

Network Model (cont.)

Payoff matrix of the packet forwarding game



Normalized payoff matrix



PURDUE

Network Model (cont.)

- Discounted average payoff
 - Perceived dropping probability

$$\hat{p}_{-i}^{(k)} = p_{-i}^{(k)} + (1 - p_{-i}^{(k)})p_c = p_c + (1 - p_c)p_{-i}^{(k)}$$

Average payoff at time slot k

$$\begin{split} u_i^{(k)} = & (1 - p_i^{(k)})(1 - p_{-i}^{(k)}) + \frac{2\alpha}{2\alpha - 1}p_i^{(k)}(1 - p_{-i}^{(k)}) - \frac{1}{2\alpha - 1}(1 - p_i^{(k)})p_{-i}^{(k)} \\ = & 1 + \frac{1}{2\alpha - 1}p_i^{(k)} - \frac{2\alpha}{2\alpha - 1}p_{-i}^{(k)} \end{split}$$

Discounted average payoff of player i starting from time slot n

$$U_i^{(n)} = \sum_{k=n}^{\infty} w^{k-n} u_i^{(k)}$$

13/31

Prior Proposals – Trigger Strategies

• *n*-step Trigger Strategy

- If node *i* cooperates, $\hat{p}_{-i}^{(k)} = p_e$ for all k. Thus, $T = p_e$ is optimal.
- Actually, perfect estimation of p_e is not possible.
- Thus, we have two cases:
 - ▶ If $T < p_e$ then $\tilde{p}_{i \ nT}^{(k)} = 1$ for $k \ge 1$, so cooperation will never emerge.
 - ▶ If $T > p_e$ then player -i will be perceived to be cooperative as long as it drops packets with probability: $p_{-i}^{(k)} \leq \frac{T p_e}{1 p_e}$
- Therefore, full cooperation is never the NE point with trigger strategies.

Prior Proposals – Tit For Tat

Tit For Tat (TFT) Strategy

$$\begin{array}{l} \tilde{p}_{i\ TFT}^{(0)} = 0 \\ \tilde{p}_{i\ TFT}^{(k)} = \hat{p}_{-i}^{(k-1)} \ for \ k \geq 1 \end{array}$$

Milan et al. [15] proved that this strategy does not provide the right incentive either for cooperation in wireless networks.

15/31

Prior Proposals – Generous Tit For Tat

Generous Tit For Tat (GTFT) Strategy

$$\begin{array}{l} \tilde{p}_{i~GTFT}^{(0)} = 0 \\ \tilde{p}_{i~GTFT}^{(k)} = \max\{\hat{p}_{-i}^{(k-1)} - g, 0\} \ for \ k \geq 1 \end{array}$$

- A generosity factor g is introduced to TFT.
 - ▶ TFT does not take into account the fact that it is not always possible to determine whether a packet was relayed or not due to collisions.
- Lemma 1: If both nodes do not deviate from GTFT strategy then the generosity factor that maximizes the discounted average payoff is $g^* \ge p_e$.

Prior Proposals – GTFT (cont.)

Theorem 1: GTFT is subgame perfect if and only if

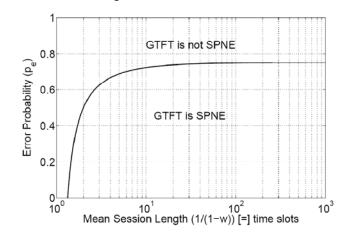
$$g \le p_e \text{ and } w > \frac{1}{2\alpha(1-p_e)}.$$

- Corollary 1: If both nodes use GTFT strategy then the cooperation is achieved on the equilibrium path if and only if $g=p_e$.
- If the interaction between two nodes lasts long enough then GTFT is a robust strategy even if it is not able to achieve full cooperation.
 - ▶ No node can gain by deviating from the expected behavior.
- In summary, GTFT is not satisfactory because in order to achieve full cooperation we need a perfect estimate of p_e.

17/31

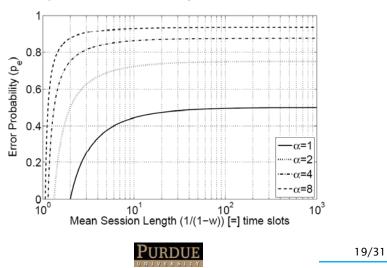
Prior Proposals – GTFT (cont.)

■ GTFT's SPNE region for α =2



PURDUE

Sensitivity of GTFT's SPNE region for different values of *α*



DARWIN - Introduction

- Goal is to propose a reputation strategy that:
 - Does not depend on a perfect estimation of p_e to achieve full cooperation.
 - Is also more robust than previously proposed strategies.
- DARWIN is inspired by Contrite Tit For Tat (CTFT).
- CTFT strategy
 - Based on the idea of contriteness
 - A player that made a mistake and unintentionally defected should exercise contrition and try to correct error instead of going into a retaliation situation.

PURDUE

DARWIN - Definition

DARWIN strategy

$$\tilde{p}_{i\ DARWIN}^{(k)} = \left[\gamma \left(q_{-i}^{(k-1)} - q_i^{(k-1)}\right)\right]_0^1 \ for \ k \geq 0,$$

where for $i = \{1, 2\}$,

$$q_i^{(k)} = \left\{ \begin{array}{ll} \left[\hat{p}_i^{(k)} - \tilde{p}_{i\;DARWIN}^{(k)}\right]_0^1 & for \quad k \geq 0 \\ 0 & for \quad k = -1. \end{array} \right.$$

We define the function:

$$[x]_0^1 = \begin{cases} 1 & if & x \ge 1 \\ x & if & 0 < x < 1 \\ 0 & if & x \le 0 \end{cases}.$$

21/31

DARWIN – Performance Guarantees

 Theorem 2: Assuming $1 < \gamma < p_e^{-1}$, DARWIN is subgame perfect if and only if

$$w > \max \left\{ \frac{1}{\gamma}, \frac{1}{2\alpha(1 - p_e \gamma) + p_e \gamma} \right\}.$$

- Lemma 2: If both nodes use DARWIN then cooperation is achieved on the equilibrium path. That is, p_i^(k) = p_{-i}^(k) = 0 for all k≥0.
- Problem: We cannot obtain a exact value of p_e, then how do we determine a value of γ?
 - By using a estimate of $\mathbf{p_e}$, $\mathbf{p_e^{(e)}}$, we set $\gamma = \frac{1+p_e^{(e)}}{2p_e^{(e)}}$.

DARWIN – Performance Guarantees (cont.)

- Robustness to an imperfect estimate of p_e
 - Estimated error probability is defined as

$$p_e^{(e)} = p_e + \Delta,$$

where $\Delta \in (-p_e, 1-p_e)$ is the estimation error.

Then, we have

$$\gamma = \frac{1 + p_e^{(e)}}{2p_e^{(e)}} = \frac{1 + p_e + \Delta}{2p_e + 2\Delta}.$$

■ The assumption of Theorem 2, $\gamma \leq p_e^{-1}$, is true if and only if

$$\Delta > -p_e \left(\frac{1 - p_e}{2 - p_e} \right).$$

■ Thus, an estimate that overestimates p_e is sufficient.

23/31

DARWIN – Collusion Resistance

- Scenario: a group of colluding nodes work together to maximize their own benefit regardless of the social optimum
 - Define the following notations:
 - ▶ $U_{i\ S_{i}\mid S_{-i}}^{(0)}$: discounted average payoff of player i using strategy S_{i} when it plays against player -i using strategy S_{-i} ;
 - ▶ p_S ∈ (0, 1): probability that a node that implements DARWIN interacts with a colluding node;
 - ▶ $p_D \in (0, 1)$: probability that a colluding node interacts with a node implementing DARWIN.
 - Since DARWIN is the best any strategy S can achieve,

$$U_{i \ S|S}^{(0)} \leq U_{i \ D|D}^{(0)} \ for \ any \ strategy \ S.$$

DARWIN – Collusion Resistance (cont.)

As a consequence of Theorem 2, we also have that for any strategy $S \neq D = DARWIN$,

$$U_{i\ S|D}^{(0)} < U_{i\ D|D}^{(0)} \, .$$

Then, the average payoff to a cooperative node is

$$U(D) = p_S U_{i D|S}^{(0)} + (1 - p_S) U_{i D|D}^{(0)}.$$

Similarly, we have that

$$U(S) = p_D U_{i \ S|D}^{(0)} + (1 - p_D) U_{i \ S|S}^{(0)}.$$

The average payoff is bounded by

$$U(S) < \max \left\{ U_{i\ S|D}^{(0)}, U_{i\ S|S}^{(0)} \right\}.$$

 A group of colluding nodes cannot gain from unilaterally deviating if and only if U(S) < U(D), equivalently,

$$p_S \left[U_{i\ D|D}^{(0)} - U_{i\ D|S}^{(0)} \right] < U_{i\ D|D}^{(0)} - U(S).$$

25/31

DARWIN – Collusion Resistance (cont.)

We obtain by using previous equations that

$$U_{i D|D}^{(0)} - U(S) > 0.$$

 \blacksquare Define strategy S to be a "sucker strategy" if $U_{i\ D|D}^{(0)} < U_{i\ D|S}^{(0)}.$

$$U_{i\ D|D}^{(0)} < U_{i\ D|S}^{(0)}.$$

- Then, we have the following theorem.
- Theorem 3: DARWIN is collusion resistant against a sucker strategy. Furthermore, it is resistant against a non-sucker strategy if and only if

$$p_S < \frac{U_{i\ D|D}^{(0)} - U(S)}{U_{i\ D|D}^{(0)} - U_{i\ D|S}^{(0)}}.$$

Thus, if cooperative nodes mostly interact among each other then DARWIN can resist group attacks.

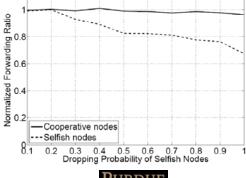
Simulations - Setting

- Settings
 - Network simulator: ns-2
 - Propagation model: two-ray ground reflection model
 - MAC Layer: IEEE 802.11 Distributed Coordination Function
 - Routing: Dynamic Source Routing protocol
 - Network Area: 670 x 670 m²
 - Transmission range: 250 m
 - 50 nodes are randomly placed, and 5 nodes are selfish.
 - There are 14 source-destination pairs.
 - Each source transmit at a constant bit rate of 2 packets/s.
 - Simulation time: 800 seconds
 - = y = 2

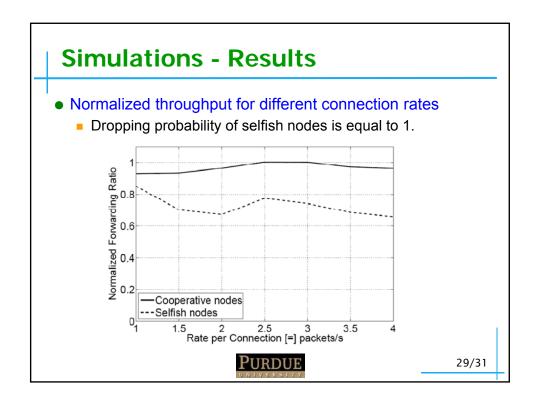
27/31

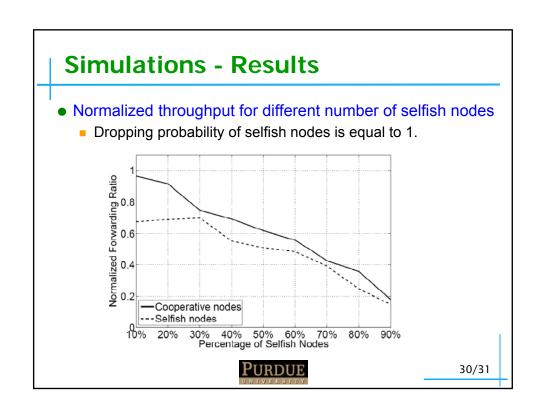
Simulations - Results

- Normalized throughput for different dropping ratios
 - Normalized forwarding ratio =
 (fraction of forwarded packets in the network under consideration) /
 (fraction of forwarded packets in a network without selfish nodes)



PURDUE





Conclusions/Further Works

- Studied how reputation-based mechanisms can help cooperation emerge among selfish users.
 - Showed the properties of prior reputation mechanisms.
 - ► For full cooperation, they rely on the perfect measurement of packets dropped due to natural causes.
 - Proposed a new mechanism called DARWIN, which
 - Achieves full cooperation among nodes,
 - Is robust to imperfect measurements,
 - Is Collusion-resistant.
- Possible future works:
 - Study impact of lies about perceived probability
 - Study reputation mechanisms in the case of being malicious nodes in networks

