Dependable Web Services

Present By
Gaspar Modelo Howard
Ratsameetip Wita

DCSL Reading Group 11/07/2007

Outline

- Dependability Concept
- Challenges in Web Service Environment
- Research in dependable webservice
Dependability Concept

- Widely understood as reliable ability of the system in supplying user with provided service.
- The working group of the International Federation for Information Processing (IFIP) identified more systematic interpretation of dependability concept in terms of:
 - Attributes of dependability
 - Threats to dependability
 - Means to attain dependability

Dependability Threat

- Fault - hypothesized cause of an error.
- Error - part of the system state that may cause a subsequent failure
- Failure - delivered service deviates from correct service

Figure 5: The fundamental chain of threats to dependability
Dependability attributes

- Safety and Security emphasize on the avoidance of a specific class of failures (catastrophic failures, unauthorized access or handling of information, respectively).
- Reliability and Availability emphasize on the avoidance or minimization of service outage.

Means to Attain Dependability

- Appropriate balancing of technique in order to maintain conflicted attributes (e.g. Availability and Security, Availability and Safety).
Means to Attain Dependability

- **Fault prevention** -- attained by deploying proper policy and configurations.
- **Fault tolerance** -- intended to preserve the delivery of correct service in the presence of active faults (error)
 - Error detection and recovery, fault handling
- **Fault removal** -- performed in both development and operation phase of the system
- **Fault forecasting** -- conducted by performing an evaluation of the system behavior with respect to fault occurrence or activation.

Challenges in Web Service Environment

- **Practical Implementation.**
 - general-purpose, low-cost components such as commodity servers and middleware.
- **Out of control resource.**
 - Internet bandwidth connection.
 - Internet environment is subject to(real or virtual) partitions
Load distribution among replicated Web servers: a QoS-based approach

Marco Conti, Enrico Gregori, and Fabio Panzieri
ACM Sigmetrics 2000

Outline

- Introduction
- Load distribution strategies
- Performance comparison simulation and result
- QoS based Architecture design
- Conclusion
Introduction

- A practical approach to provide a responsive Web services is based on introducing redundancy.
- To ensure that each client (or browser) gets bound to the “most convenient” WS replica.
- The word “most convenient” is defined as a particular replica that can provide the client with the shortest User Response Time – URT.
- URT includes both communication and processing time.
- In this paper, automatically binding between client and most convenient will be discussed.
 - Not include maintain data consistency among replicas issue.

Load Distribution Strategies

- DNS-based
 - Use DNS as scheduler of browser’s request.
 - Using Round-Robin discipline.
 - Maximize data throughput, rather than minimizing URT.
Load Distribution Strategies

- **Mirror-based**
 - Provide most geographically closer to that browser.
 - Automatically redirect/ User manually selects a replica.

QOS based Load Distribution Strategy

- Implemented at browser (client side)
- On assumption that DNS provides all replicas addresses in service negotiate process. (change DNS implementation)
- Before sending a query, browser sent out “dummy request” in order to get URT of replicas.
- Browser select satisfactory URT replica.
Performance Comparison

- QOS-based, DNS based and Mirror based load distribution.
- Simulation considering four replicated service, located in four distinct geographical areas.
- Time interval between consecutive queries are independent and exponentially distributed.
- A query corresponds to retrieval of 10 web pages with median size 3000 byte, in average.
- Dummy request in QOS-based corresponds to the retrieval of a 1000 byte page.
- Compare by analyzing relative impact on Query Response time (Query RT)

![Figure 1: Simulation scenario]

- Intra-area delay
 - RTT, Queuing delay, transmission delay
- Inter-area delay
 - Communication latency (i.i.d. random variable)
Simulation Scenario

Exp1 Intra-area network congestion
- Congested router in area 1 (98% utilization)
- Maximum utilization routers in other areas (80%)

Exp2 A heavily load area
- Saturation point of WS replica in area 1 (0.98 of server capacity)
- 0.80 of local WS replicas capacity in other areas.

Exp3 Symmetric cases
- Each are has network utilization at 80% and WS load at 0.8 of server capacity.

Exp 4 A realistic Scenario
- Load difference among areas. (due to different in period of time among distinct geographical area)

<table>
<thead>
<tr>
<th></th>
<th>Area 1</th>
<th>Area 2</th>
<th>Area 3</th>
<th>Area 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>network</td>
<td>0.98</td>
<td>0.90</td>
<td>0.50</td>
<td>0.10</td>
</tr>
<tr>
<td>query rate</td>
<td>0.98</td>
<td>0.80</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Table 3: Load configuration for the realistic scenario

Load distribution with the QoS Strategy

<table>
<thead>
<tr>
<th>Exp</th>
<th>Area 1 Server</th>
<th>Area 2 Server</th>
<th>Area 3 Server</th>
<th>Area 4 Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.58</td>
<td>0.91</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>2</td>
<td>0.95</td>
<td>0.86</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>3</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.84</td>
</tr>
<tr>
<td>4</td>
<td>0.44</td>
<td>0.85</td>
<td>0.69</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Table 1: Load distribution with the QoS strategy
Exp1 Intra-area network congestion

Figure 2: Impact of intra-area network congestion on the query response time

Exp 2 Heavily loaded area in area 1

Figure 3: Impact of a heavily loaded area on the query response time
Symmetric case

![Symmetric case diagram](image1)

Figure 4: Query response time in a symmetric case

Realistic scenario

![Realistic scenario diagram](image2)

Figure 5: Query response time in the realistic scenario
A QoS-based Architecture –w/o DNS modification

Browser Software

<table>
<thead>
<tr>
<th>OS Interface</th>
<th>HTTP Interface</th>
<th>TCP/IP Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>BSL</td>
<td>TCP/IP</td>
</tr>
</tbody>
</table>

Server Software

<table>
<thead>
<tr>
<th>HTTP Interface</th>
<th>TCP/IP Interface</th>
<th>OS Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>WSL</td>
<td>OS</td>
</tr>
</tbody>
</table>

Figure 7: Example of browser and server software structuring.

Conclusion

- From performance comparison of the three load distribution strategies indicated that QoS based strategy outperforms the other two strategies.
- In architectural design, DSN modification needed or facing polling overhead with the alternative configuration.
- URT_{ws} is estimated based on single measurement which may introduce fluctuations of traffic while query among WS replicas.
- Further architectural component – Autonomous Load distribution service responsible for continuous monitoring and providing WSs response time.