MyNet: a Platform for Secure P2P Personal and Social Networking Services

D. N. Kalofonos, Z. Antoniou, F. D. Reynolds, M. Van-Kleek, J. Strauss, and P. Wisner

Nokia and Massachusetts Institute of Technology

PerCom 2008

Presented by: Matthew Tan Creti
MyNet

• MyNet - a platform for secure P2P personal and social networking services

• Built on top of UIA that provides
 – Ubiquitous connectivity with network overlays
 – Device group management enables non-expert users to easily organize and share their resources within their social neighborhood

• Problem: Today managing pervasive access to personal devices, content, and services is too complex for non-expert users
Built on Top of UIA

• **UIA communication platform**
 – Permanent location independent device identifiers bound to personal names
 – Ubiquitous connectivity
 – Distributed device group management

• **Devices and users**
 – A device can be uniquely identified by its EID
 – Devices with multiple-user accounts have a unique EID to identify each device/user pair
 – Users (and groups) are identified as a set of EIDs
Built on Top of UIA (cont.)

• **Imprinting**
 – A new device becomes a MyNet device though the process of *Imprinting* the owner’s identity, profile, and secret (e.g. PIN)
 – The owner secret protects against misuse of critical tasks

• **Personal Device Clusters (PDC)**
 – An imprinted device can be merged with other devices to create a Personal Device Cluster
 – For two devices to merge, owner authentication is required on both devices

• **Social Contacts**
 – A social contact is established between two users though the *Introduction* process
 – Through UIA routing information, SIDs, and EIDs are exchanged
Basic Design Concepts

• Services and Content
 – Each device can run one or more user-services (a user perceived service)
 – Each user-service may be one or more distributed elementary services

• Groups
 – A user can create groups of users or devices
 – A user based group can define the recipient of access control privileges
 – A device based group can define the target of access privileges
 – There are built in groups such as “world”, “my direct contacts”, and “my extended contacts”
Adding devices and contacts is done by an *out-of-band introductions* module (e.g. Near Field Communication (NFC) or Bonjour).

During introduction discovery records including overlay routing information are exchanged, bootstrapping the MyNet resource discovery.

MyNet-”aware” applications can use a remote procedure call layer (RPC) called MyARPC to exchange messages.

A persistent messaging service guarantees a one-way message will be delivered to a destination EID whenever a device comes online.
System Design: PDC-Wide State Replication

- MyNet applications and services can share state across instances running on various devices in a user’s PDC using the PDC-store.
- Currently PDC-store is used for Resource Discovery Records (RDR) and Passlets.
- Optimistic replication provides eventual delivery.
- Conflicts in state are reconciled using timestamps for now.
Secure P2P Resource Discovery

• Resource Discovery Records (RDR) correspond to devices, services, content, and contacts (users)
• The *Secure Resource Discovery* (SRD) module creates an RDR for a device, each new user a device is introduced to, and each MyNet-”aware” and MyNet-”enabled” service
• Discovery process
 1. Resource registration: New RDRs are created when a device is imprinted, a device or contact is introduced, or a service or content is installed using the *Service Installer and Launcher*
 2. User sets discovery permissions: MyNetBook is used to create a Resource Discovery Passlet that specifies which of the user’s RDR may be revealed to a specific user
 3. Resource discovery/browsing: The Secure Resource Discovery client (SRD-client) sends a MyARPC request, and the SRD-server of a device in the target PDC returns the authorized RDR
 4. Service launching: When a user selects a service RDR, the corresponding client-side application is launched
Security: Passlets

- Each device has a Dynamic Firewall, which intercepts all overlay traffic before it reaches hosted servers.
- The firewall makes decisions based on security policies expressed by Passlets.
- Passlets define user-level permissions (permissions meaningful to a user) by exposing a user-friendly part and connecting that to a system representation.
- All passlets have information about who is giving permission, to whom, for what, and for how long.
- A PDC-wide Boolean flag is set to true if permission is for all PDC instances of a service.
- The PassletID is a unique 128-bit number.
- Passlets are stored in sent and received passlet repositories (in the PDC-store) and are replicated across the PDC.
Security: Passlets and the Firewall

• Cumulative Passlets (cPasslets)
 – Internal structures created and maintained by MyNetSec
 – Provide a snapshot of the cumulative effect of permissions granted to a user or by a user through a series of Passlets
 – cPasslets are continuously updated based on Passlets being sent, received, revoked, and expired

• Dynamic Firewall
 – Assembles traffic into units directed to exactly one elementary service as defined by the Service Mapping Documents (SMD) module
 – SMD filters sort the traffic into units that unambiguously specify the destination service, filters are defined in the order of the stack of protocol layers
 1. IP layer (UIA-IPv6)
 2. Transport layer (TCP,UDP)
 3. Service transport layer (HTTP, RTP)
 4. Service invocation layer (SOAP)
 5. Service ID layer
Service Mapping Documents (SMD) Module

- The SMD Module parses SMD documents from installed services to provide information to MyNet discovery and security modules.
- SMDs are XML documents containing:
 - The user-service description used to create Resource Discovery Records (RDRs).
 - Description of one or more elementary distributed services.
 - A list of user-level permissions mapped to RPC actions.
 - A list of error codes.

Slide 11/20
MyNetBook

- A set of UI tools that use the MyNet API to provide user-friendly interaction with the PDC
 - MyNet Imprinting - passes user data into the PDC-store and MyNetSec modules during imprinting
 - MyNet Manager - retrieves discovery records
 - MyNetService Manager - allows the user to install and launch services
 - MyNet Viewer - the front-end GUI application
 - MyNetSec - create, edit browse, and revoke Passlets
 - Introduction manager - uses API calls from the Out-of-Band Introductions module to introduce new devices and social contacts
MyNetBook (cont.)

• **Personal Network Navigation**
 – Devices are shown as the children of the user and services are the children of devices
 – Social contacts appear as children of the PDC owner

• **Introductions**
 – Simple point and click gestures
 – Gestures can be interpreted differently based on context (e.g. add personal device, add social contact, bootstrap network connectivity, invoke service discovery, give access rights, share, launch an application…)}
MyNetBook (cont.)

Figure 4: The MyNet Viewer

Figure 5: The MyNet Passlet Manager tool.
Table 1: Key usability test results.

<table>
<thead>
<tr>
<th>ISSUE</th>
<th>YES</th>
<th>IN PART</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users understand the end result of imprinting</td>
<td>77%</td>
<td>15%</td>
<td>8%</td>
</tr>
<tr>
<td>Users can create, navigate and access a PDC</td>
<td>100%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Users associate sharing with new contacts</td>
<td>54%</td>
<td>39%</td>
<td>7%</td>
</tr>
<tr>
<td>From the GUI, users deduce the Passlet metaphor</td>
<td>64%</td>
<td>-</td>
<td>36%</td>
</tr>
<tr>
<td>Users can issue and revoke Passlets</td>
<td>100%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Adding contacts and sharing raises privacy issues</td>
<td>75%</td>
<td>25%</td>
<td>-</td>
</tr>
<tr>
<td>Users prefer TAPing over other wireless proximity modalities for portable devices</td>
<td>78%</td>
<td>7%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Table 2: Feature availability.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Service Sharing</th>
<th>Access Control</th>
<th>Remote Access</th>
<th>F2F</th>
<th>Scalability</th>
<th>Identity Management</th>
<th>Content Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>limited</td>
<td>service³</td>
<td>limited³</td>
</tr>
<tr>
<td>VPN</td>
<td>difficult³</td>
<td>no²</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>enterprise³</td>
<td>no</td>
</tr>
<tr>
<td>USB</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>limited</td>
<td>user²</td>
<td>limited⁴</td>
</tr>
<tr>
<td>BTH</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>limited</td>
<td>user²</td>
<td>limited⁴</td>
</tr>
<tr>
<td>UPNP</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>limited</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>DFS</td>
<td>no</td>
<td>difficult</td>
<td>difficult</td>
<td>yes</td>
<td>yes</td>
<td>enterprise³</td>
<td>limited⁴</td>
</tr>
<tr>
<td>Httpd</td>
<td>difficult³</td>
<td>difficult³</td>
<td>yes</td>
<td>yes</td>
<td>no³</td>
<td>service⁵</td>
<td>no</td>
</tr>
<tr>
<td>Twango</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>limited</td>
<td>service⁵</td>
<td>limited⁴</td>
</tr>
<tr>
<td>Flickr</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>limited</td>
<td>service⁵</td>
<td>limited⁴</td>
</tr>
<tr>
<td>FaceBook</td>
<td>no</td>
<td>limited</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>service⁵</td>
<td>limited⁴</td>
</tr>
<tr>
<td>MyNet</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>user</td>
<td>no</td>
</tr>
</tbody>
</table>