MUVI: Automatically Inferring Multi-Variable

Access Correlations and Detecting Related
Semantic and Concurrency Bugs

enmin Litt, Raluca A. Popas, Yuanyuan Zhoutt

ACM SOSP 2007

Presented by:
Ignacio Laguna

Slide 1/26

Shan Lut, Soyeon Park!, Chongfeng Hut, Xiao Mat, Weihang Jiang!
fUniversity of lllinois, * CleanMake Inc., ® MIT
{shanlu,soyeon,chu7 xiaomao2,wjiang3,zli4,yyzhou}@uiuc.edu, *ralucap@mit.edu

UNIVERSITY

most difficult to detect

these bugs

— Many variables are correlated

— Correlated variables need to be accessed together in a
consistent manner

— Failing in updating correlated variables may lead to
inconsistent views

Slide 2/26

Semantic and Concurrency bugs—Two of the

* Variable Access Correlations can be exploited to detect

PURDUE

UNIVERSITY

Multi-Variable Access Correlations:

Example 1
(MySQL-5.2.0)
?Iass THD 1655 int Event_job_data::execute(---)
1656 {

char *db;
/* currently selected database name”/

1674 thd->db = my_strdup(dbname.str);
1675 thd->db_length = dbname.length;

uint db_length;

/" length of the database name */ 1701 }/* Execute a connection event®/

} /* client connection descriptor”/

MySQL-5.20 sql_class.h MySQL-5.2 event_data_objects.cc

(a) Definition (b) Variable access correlation

* thd->db_length describes the length of the string thd->db

¢ Semantic connection:

— Whenever thd->db is modified, thd->db_length needs to be updated
accordingly (or at least to be checked)

D@L Slide 3/26

Multi-Variable Access Correlations:

(Mozilla-0.8)
struct JSPropertyCache { Thread 1 Thread 2
. js_PropertyCacheFill (...)
JSPropertyCacheEntry js_FlushPropertyCache(---) {
table [SIZE]; { lock(t) Jock (t)
memset - cache->table[indx] = obj;
{ (cache-> table, 0, SIZE);;A/un/ock (t)
JSBool empty; unlock (t) i
/* whether the : :
j: * lock (e)
fable s emply”/ cache-> empty = TRUE; lock (e)
} unlock (e)
} unlock (e)
Mozilla jsinterp.h Mozilla jsinterp.c } Mozilla jsinterp.h

(b) Bug (violating the access correlation due to conflict
accesses from another thread, even though no data
race on any single variable)

(a) Variables with
access coirelation

* A flag variable (cache->empty) indicates whether an array variable
(cache->table) is empty
* Semantic connection:
— Whenever an item is inserted or removed from the table, (empty) needs to be
updated accordingly

UNIVERSITY

& Sice 4126 PURDUE

Why are multi-variable access correlations
important?
e They usually exist only in programmer’s mind
— They are too tedious to document
— Can easily be violated by other programmers

» Existing techniques cannot extract such correlations
— Compiler analysis cannot catch them

* Violating correlations can lead to two types of bugs:
— Inconsistent updates bugs
— Concurrency bugs

TTDNITR
L\—‘@L Slide 5/26 A UinisUu L

N IVERSITY

vl

Bug Type 1:
Multi-Variable Inconsistent Updates

1721 int Event_job_data::compile(THD* thd)
1722 {

1820 thd->db= old_db;
...... <4—___ Forgets to write

Example 1 thd-3db_length !

1833 }/* Compile an eventy ~ Will lead to
misbehavior or

crash!
MySQL-5.2 event_data_objects.cc

(d) Bug (violating the access correlation)
* [If programmer forgets the correlation, he/she may update one
variable and forget to update the other correlated variable
* Remember:

— Whenever thd->db is modified, thd->db_length needs to be updated
accordingly

& Sice 6126 PURDUE

UNIVERSITY

Bug Type 1:
Multi-Variable Inconsistent Updates (Cont’d)
Example 2

class String 663 void String::gs_append (...)
{ 664 {

665 memcpy (Ptr + str_length, str, len+1);
666 str_length += len;

uint32 str_length;

/*occupied string length*/ 667 } Increasing string-
uint32 Alloced_length; length without
/*allocated string length*/ even a check on
e Alloced_length is
} wrong!

MySQL-5.2 sql_string.cc

MySQL-5.2.0 sql_string.h

(e) Definition (h) Bug (violating the access correlation)

* The actual string length (str_length) should never go beyond the
length allocated for it (Allocated_length)

 Every modification to (str_length) requires a corresponding check
or update to (Allocated_length)

D@L Slide 7/26

Bug Type 2:
Multi-Variable Concurrency Bug

struct JSPropertyCache { Thread 1 Thread 2
. js_PropertyCacheFill (...)
JSPropertyCacheEntry || 1S-FlushPropertyCache(---) {
table [SIZE]; {tock (t) lock (t)
memset : cache->table[indx] = obj;
{ (cache™> table, 0, SIZE); 4 uniock (t)
JSBool empty; unlock (t) i
/* whether the H
i */ lock (e)
table is empty cache-> empty = TRUE;) lock (e)
} unlock () cache->emp!
1 unlock (e)
Mozilla jsinterp.h Mozilla jsinterp.c } Mozilla jsinterp.h
(a) Variables with (b) Bug (violating the access correlation due to conflict
access correlation accesses from another thread, even though no data

race on any sinale variable)
* The execution may violate access correlation due to
interleaving across threads
* The correct way:

— To access correlated variables atomically (within the same
atomic region)

& Sice 8126 PURDUE

UNIVERSITY

Contributions of this Work

1) First tool to automatically identify multi-variable access
correlations in large programs

— MUVI (Muti-Variable Inconsistency) tested with latest versions of
Linux, Mozilla, MySQL and PostgreSQL

— Detected 6449 correlations in 19—175 minutes with 83% accuracy
— Detected bugs were confirmed by the developers

2) MUVI automatically detects inconsistent updates bugs

3) MUVI address limitations of previous methods to detect
multi-variable concurrency bugs

DITDNITR
\—\ﬂ@L Slide 9/26 A Uiisu L

Real World Examples of Multi-Variable
Correlations

ID| source Variable definitions # of functions they
are together (not)
Linux | struct net_device_stats {
c|a net- u(i'—i rx_bytes: /* #c_!l' received bytes */ 49(1)
g device.h u64 rx_packets; /* #of received packets™/
el }
g struct tm |{
Q PgSQL int tm_sec; /* second */
3 b f time.n int tm_min; /* minute ¥/ 00)
2 |7 time */
8 struct hb_var_screeninfo {
@© u32 red_msb; /#red */
é Linux u32 blue_msb; /% blue #/ 1)
= ¢ fb.h u32 green_msh; /*green*/
%] u32 transp_msh; /*transparency*/
% | /* for color display */
@ . struct iscsi_session |
T d .L‘mu.\l(spinlock_t lock: /% lock ¥/
= libiscsi.h| it state; /% critical data */ 2000)
!
struct hlist_node {
o Linux struct hlist_node *next; /* next #/ 32(0)
listh struct hlist_node **pprev; /% pevious #/
} /% linked list */
MySQL| struct st_test_file* cur_file;
f mysql- | structst_test_file* file_stack: 69 (0)
test.c /* cur_file points to the top of stack */

& Sice 10726 PURDUE

UNIVERSITY

Real World Examples of Multi-Variable
Correlations (Cont’d)

ID| source Variable definitions # of functions they
are together (not)
S c Linux | struct net_device_stats {
(o] f—f . net- u64 rx_bytes; /*#of received byles */ 4(68)
= g 8 device.h u64 tx_aborted_erros; /* #of transfer aborts™/
25 |
E z MySQL Class THD |
g3 h sql_ l\'_ET net; /¥ client conncglion descriptor *f 3(87)
B 3 class.h | wint db_length; /length of database name*/
> © R

* Not any two variables from a function are always
access-correlated

DITDNITR
\—\ﬂ@L Slide 11/26 A Uiisu L

Inferring Variable Access Correlations

¢ Notation:
— Access correlation: Al(x) = A2(y)

— Where, x and y are variables, Al and A2 can be any of the
three: “read”, “write” or “AnyAcc” (either read or write)

— Example: write(x) = read(y): every time x is modified, the
value of y has to be read together

D@L Slide 12/26 PURDUE

UNIVERSITY

®

What does it mean “Access Together”?
» Accesses to variables are measured to be together in
terms of source code distance

— Measured in terms of lines of code
* MUVI defines “access together” as:

— if two accesses (reads or writes) appear in the same

function with less than MaxDistance statements apart,

these two accesses are considered together, where
MaxDistance 1s an adjustable threshold

Slide 13/26

UNIVERSITY

“Access Correlation” Definition

» Variable x has access correlation with variable y (i.e.,
Al(x) = A2(y)):

— Iff Al(x) and A2(y) appear together at least MinSupport
times, AND

— Whenever A1(x) appears, A2(y) appears together with at
least MinConfidence probability

— MinSupport and MinConfidence are tunable parameters

Slide 14/26

PURDUE

UNIVERSITY

Database of Variable Access Information
* MUVI parses source code to collect each function’s
variable access information

— Information is stored in an Acc_Set database

variables and structure/class fields
variables

* MUVI considers only common variables like global
— It avoids short-lived correlations with scalar local

¢ The database stores both direct and indirect accesses to

variables through different function calls

Slide 15/26

UNIVERSITY

Access Pattern Analysis

* Goal: to identify variables that are accessed in the same
function more than a threshold number of times

— Each set of variables that satisfy this is an “access pattern”
candidate)

— Note: an “access pattern” is not an “access correlation” (but is a good

* MOVI uses the frequent item-set mining algorithm FPClose

* FPClose is applied to the database that is the Acc_Sets of all
functions in the program

D@L

— Output: the set of access patterns that are frequent

Slide 16/26

PURDUE

UNIVERSITY

The Final Step:
Correlation Generation and Pruning

* MOVI takes the access patterns to generate correlations
— It prunes false positives and ranks the results

* Given an access pattern (x, y), it may indicate different
correlations Al(x) = A2(y) or Al(y) = A2(x)

* For each possibility, MOVI determines which access correlation
holds based on:
— Support—number of functions in which Al(x) and A2(y) are together

— Confidence—conditional probability: given Al(x) in a function,
A2(y) is performed nearby in the same function

TTDMITT
L\"@L Slide 17/26 i Unisun

N IVERSITY

vl

Detecting Inconsistency Bug Updates

* An inconsistent update bug is caused by violations to
write = AnyAcc correlations

— The programmer updates one variable, but forget to update or check
its correlated variable

* Basic detection algorithm:

— For any write(x) = AnyAcc(y) correlations, examine the violations
of it

* Pruning is performed to eliminate false bug candidates

— Example: suppose we have a bug candidate function F, which misses
the access to y

— If yis accessed in F’s caller or callee functions, it is unlikely to be a
bug

& Sice 18126 PURDUE

UNIVERSITY

Detecting Multi-Variable Concurrency Bugs
Extensions to two previous data race detectors:

memory location

1) Lock-set algorithm: reports a data race bug when it
does not find a common lock when accessing a shared

— Extension: check if correlated accesses are protected by a
common lock

comparing the logic timestamps of accesses from
different threads

2) Happens-before algorithm: detects data-race bugs by
D@L

Slide 19/26

UNIVERSITY

Evaluation Mythology

e The latest version of the following applications were used
Linux, MySQL, PostgreSQL, Mozilla.

* Evaluation of MUVI in terms of:
— Correlation analysis

— Inconsistent update bug detection

— Concurrency bug detection capability
* Parameters settings:

— MinSupport = 10

— MinConfidence = 0.8

— MaxDistance = 10 lines of code

D@L

Slide 20/26

PURDUE

UNIVERSITY

Experimental Results:
Variable Access Correlation Analysis

App. #Access- |[#Involved|# Involved| % False [Analysis
Correlations| Variables [Structures|Positive] Time
Linux 3353 3038 ki 19% 175m2s
Mozilla 1431 1380 304 16% | 157m40s
MySQL 726 703 209 13% 19m25s
PostgreSQL 939 833 277 15% 98m23s
Total 6449 5054 1467 | 17%* [450m30s|

Table 5: Variable correlations inferred by MUVI. The
correlations presented here include only AnyAcc=-AnyAcc
and the other types are presented in Table 8. * The
false positive here means the average false positive rate.

; DITDNYITDL
Slide 21/26 A Uilis Ui
UNIVERSITY

Experimental Results:
Inconsistent Update Bug Detection

App. [#EMUVI|[#New| #New #Bad | #False | False pos.
Bug | Bugs Bugs |program-|Positives| sources

Report [Found|Confirmed| ming S1[{S2(S3
Linux 40 22 12 5 13 634
Mozilla 30 7 0 8 15 s(7(0
MySQL[20 9 5 3 8 51211
PgSQL 10 1 0 4 5 510]0
Total 100 39 17 20 41 24112] 5

Table 6: Inconsistent update bugs detected by MUVI.
#New bugs confirmed means that the bugs are already
confirmed by the corresponding developers after we re-
ported these errors. “S1"” stands for semantic exception,
“S2” for wrong correlation, and “S3” for no future read.

Siide 22126 PURDUE

UNIVERSITY

New Inconsistent Update Bugs Detected in
Latest Version of Linux

static int imsttth_check_var (struct static int neofb_check_var(struct red_msb, green_
fb_var_screeninfo *var, struct fb_info *info)| fb_var_screeninfo *var, struct fo_info *info)|; Msb, blue_msb

{ { . and transp_msb
var->red_msb = 0; var-sred_msb=0; are used together
var->green_msb = 0; var->green_msb=0; to set up color.
var->blue_msb = 0; var->blue_msb=0; o
var->transp_msb = 0; .. Il missing update to var->transp_msb Missing any one
} can make display

} drivers/video/imsfftb.c correct driversivideo/neofb.c BUG failure.

(a) A new (confirmed) bug found by MUVI in latest version Linux driver framebuff.ercompc.)ne.nt

rx_bytes and

{statlc int fr_rx(struct sk_buff “skb) ?;ﬁﬂi tiT,le\(g{‘:ﬂ?uil;f:)eg\?;?j:fgg o packets are
stats->rx_packets++; {.. - ' explained earlier
stats->rx_bytes += skb->len; stats-rx_bytes += pkt_len;] How could receiv-

} -~ [f missing update to stats= rx_packets ing bytes without

! receivi ?
drivers/net/wan/hdlc_fr.c correct| drivers/net/via-velocity.c ~ BUG recelving packets?

(b) A new (confirmed) bug found by MUVI in |atest version Linux driver netwdrk bdmponent

E‘@'— Slide 23/26

Experimental Results:
Concurrency Bug Detection

Bug Lock-setyv | Happens-beforey v
Detect [False| Over- [Detect [False Over-
Bug? | Pos. | head”® | Bug? | Pos. head™
Moz-js1 Y 1 [39.9%] Y 1 21.2%
Moz-js2 Y 2 [398%| Y 5 1.0%
Moz-imap Y 0 |132%]| Y 0 1.0%
MySQL-log Y 3 | 6.5% Y 6 5.0%
MySQL-blog| N 0 |59% N 1 3.2%
Note: In addition to the above existing concurrency
bugs, we detected four new multi-variable concur-
rency bugs that have never been reported before.

D@L Slide 24/26 PURDUE

UNIVERSITY

Sensitivity Analysis:
How to Select MinConfidence and MinSupport?

%)

2100 £ 100

2 Q

S8 g 80

26 o 607

E 4 G 401

g 2 T 20

8 5

w §B88R 888 F lovbohonobboobo
zzzzzz — - QAo o
o O O O O o ? 1 il o -
Confidence Range (%) Support Range w0

(a) Confidence (b) Support

* Configuration parameters are taken as the points where
false alarm rate changes dramatically

— Example: when confidence reaches 80%, false positive
rate changes from 50% to 20%

DITDNITR
\—\ﬂ@'— Slide 25/26 A Uiisu L

UNIVERSITY

Summary

* MUVI proposes source code analysis and data mining
techniques to:

— Automatically infer variable access correlations
— Detect related bugs

e MOVI extracted 6449 access correlations from Linux,
Mozilla, MySQL and PostgreSQL with 83% accuracy

* MOVI detected 39 new bugs (17 already confirmed)

=& Side 2625 PURDUE

UNIVERSITY

