
Slide 1/26

MUVI: Automatically Inferring Multi-Variable
Access Correlations and Detecting Related

Semantic and Concurrency Bugs

ACM SOSP 2007

Presented by:

Ignacio Laguna

Slide 2/26

Semantic and Concurrency bugs—Two of the
most difficult to detect

• Variable Access Correlations can be exploited to detect

these bugs

– Many variables are correlated

– Correlated variables need to be accessed together in a

consistent manner

– Failing in updating correlated variables may lead to

inconsistent views

Slide 3/26

Multi-Variable Access Correlations:
Example 1

• thd->db_length describes the length of the string thd->db

• Semantic connection:

– Whenever thd->db is modified, thd->db_length needs to be updated

accordingly (or at least to be checked)

(MySQL-5.2.0)

Slide 4/26

Multi-Variable Access Correlations:
Example 2

• A flag variable (cache->empty) indicates whether an array variable

(cache->table) is empty

• Semantic connection:

– Whenever an item is inserted or removed from the table, (empty) needs to be

updated accordingly

(Mozilla-0.8)

Slide 5/26

Why are multi-variable access correlations
important?

• They usually exist only in programmer’s mind

– They are too tedious to document

– Can easily be violated by other programmers

• Existing techniques cannot extract such correlations

– Compiler analysis cannot catch them

• Violating correlations can lead to two types of bugs:

– Inconsistent updates bugs

– Concurrency bugs

Slide 6/26

Bug Type 1:
Multi-Variable Inconsistent Updates

• If programmer forgets the correlation, he/she may update one

variable and forget to update the other correlated variable

• Remember:

– Whenever thd->db is modified, thd->db_length needs to be updated

accordingly

Example 1

Slide 7/26

Bug Type 1:
Multi-Variable Inconsistent Updates (Cont’d)

• The actual string length (str_length) should never go beyond the
length allocated for it (Allocated_length)

• Every modification to (str_length) requires a corresponding check
or update to (Allocated_length)

Example 2

Slide 8/26

Bug Type 2:
Multi-Variable Concurrency Bug

• The execution may violate access correlation due to
interleaving across threads

• The correct way:

– To access correlated variables atomically (within the same
atomic region)

Slide 9/26

Contributions of this Work

1) First tool to automatically identify multi-variable access

correlations in large programs

– MUVI (Muti-Variable Inconsistency) tested with latest versions of

Linux, Mozilla, MySQL and PostgreSQL

– Detected 6449 correlations in 19−175 minutes with 83% accuracy

– Detected bugs were confirmed by the developers

2) MUVI automatically detects inconsistent updates bugs

3) MUVI address limitations of previous methods to detect

multi-variable concurrency bugs

Slide 10/26

Real World Examples of Multi-Variable
Correlations

Slide 11/26

Real World Examples of Multi-Variable
Correlations (Cont’d)

• Not any two variables from a function are always

access-correlated

Slide 12/26

Inferring Variable Access Correlations

• Notation:

– Access correlation: A1(x) ⇒ A2(y)

– Where, x and y are variables, A1 and A2 can be any of the

three: “read”, “write” or “AnyAcc” (either read or write)

– Example: write(x) ⇒ read(y): every time x is modified, the

value of y has to be read together

Slide 13/26

What does it mean “Access Together”?

• Accesses to variables are measured to be together in

terms of source code distance

– Measured in terms of lines of code

• MUVI defines “access together” as:

– if two accesses (reads or writes) appear in the same

function with less than MaxDistance statements apart,

these two accesses are considered together, where

MaxDistance is an adjustable threshold

Slide 14/26

“Access Correlation” Definition

• Variable x has access correlation with variable y (i.e.,

A1(x) ⇒ A2(y)):

– Iff A1(x) and A2(y) appear together at least MinSupport

times, AND

– Whenever A1(x) appears, A2(y) appears together with at

least MinConfidence probability

– MinSupport and MinConfidence are tunable parameters

Slide 15/26

Database of Variable Access Information

• MUVI parses source code to collect each function’s
variable access information

– Information is stored in an Acc_Set database

• MUVI considers only common variables like global
variables and structure/class fields

– It avoids short-lived correlations with scalar local
variables

• The database stores both direct and indirect accesses to
variables through different function calls

Slide 16/26

Access Pattern Analysis

• Goal: to identify variables that are accessed in the same

function more than a threshold number of times

– Each set of variables that satisfy this is an “access pattern”

– Note: an “access pattern” is not an “access correlation” (but is a good

candidate)

• MOVI uses the frequent item-set mining algorithm FPClose

• FPClose is applied to the database that is the Acc_Sets of all

functions in the program

– Output: the set of access patterns that are frequent

Slide 17/26

The Final Step:
Correlation Generation and Pruning

• MOVI takes the access patterns to generate correlations

– It prunes false positives and ranks the results

• Given an access pattern (x, y), it may indicate different

correlations A1(x) ⇒ A2(y) or A1(y) ⇒ A2(x)

• For each possibility, MOVI determines which access correlation

holds based on:

– Support—number of functions in which A1(x) and A2(y) are together

– Confidence—conditional probability: given A1(x) in a function,

A2(y) is performed nearby in the same function

Slide 18/26

Detecting Inconsistency Bug Updates

• An inconsistent update bug is caused by violations to
write ⇒ AnyAcc correlations
– The programmer updates one variable, but forget to update or check

its correlated variable

• Basic detection algorithm:
– For any write(x) ⇒ AnyAcc(y) correlations, examine the violations

of it

• Pruning is performed to eliminate false bug candidates
– Example: suppose we have a bug candidate function F, which misses

the access to y

– If y is accessed in F’s caller or callee functions, it is unlikely to be a
bug

Slide 19/26

Detecting Multi-Variable Concurrency Bugs

• Extensions to two previous data race detectors:

1) Lock-set algorithm: reports a data race bug when it
does not find a common lock when accessing a shared
memory location

– Extension: check if correlated accesses are protected by a
common lock

2) Happens-before algorithm: detects data-race bugs by
comparing the logic timestamps of accesses from
different threads

Slide 20/26

Evaluation Mythology

• The latest version of the following applications were used:
Linux, MySQL, PostgreSQL, Mozilla.

• Evaluation of MUVI in terms of:

– Correlation analysis

– Inconsistent update bug detection

– Concurrency bug detection capability

• Parameters settings:

– MinSupport = 10

– MinConfidence = 0.8

– MaxDistance = 10 lines of code

Slide 21/26

Experimental Results:
Variable Access Correlation Analysis

Slide 22/26

Experimental Results:
Inconsistent Update Bug Detection

Slide 23/26

New Inconsistent Update Bugs Detected in
Latest Version of Linux

Slide 24/26

Experimental Results:
Concurrency Bug Detection

Slide 25/26

Sensitivity Analysis:
How to Select MinConfidence and MinSupport?

• Configuration parameters are taken as the points where

false alarm rate changes dramatically

– Example: when confidence reaches 80%, false positive

rate changes from 50% to 20%

Slide 26/26

Summary

• MUVI proposes source code analysis and data mining

techniques to:

– Automatically infer variable access correlations

– Detect related bugs

• MOVI extracted 6449 access correlations from Linux,

Mozilla, MySQL and PostgreSQL with 83% accuracy

• MOVI detected 39 new bugs (17 already confirmed)

