
Slide 1/18

Tiresias: Black-Box Failure Prediction in
Distributed Systems

Presented by:

Ignacio Laguna

Dependable Computing Systems Lab (DCSL)

Williams, A.W.; Pertet, S.M.; Priya Narasimhan

Carnegie Mellon University

Appeared in: IEEE International Parallel and Distributed Processing

Symposium, 2007 (IPDPS ‘07)

Slide 2/18

Current Approaches on Fault-Tolerant Systems

• Typical chain of events in fault manifestations:

Performance

Problems
(e.g., network

congestion,

memory leaks)

Errors Application-

level Failures

Failure

Propagation
(may impact other

components or systems)

• Current approaches on fault-tolerant systems:

– Recovery is triggered after failures (i.e., reactive)

– Impact of faults is not necessarily reduced

– Symptoms of possible future problems are not considered

Slide 3/18

Motivation for Failure Prediction

• Take advantage of pre-failure indicators or symptoms

– For example, performance problems or anomalies

• Being proactive rather than reactive

– Initiate recovery faster (i.e., proactively)

• Reported facts in the literature:

– A fault manifests as increasingly unstable performance-

related behavior before scaling into a failure

– Systems shows steady-state performance behavior in the non-

faulty case

Slide 4/18

Key Contributions of the Paper

• Evaluate performance metrics to facilitate black-box

failure prediction

– Black-box—no knowledge of the application internals

– Compare performance metrics under non-faulty and faulty

conditions

– Provide look-ahead time of application-level failures

• Empirical validation

– Experiments performed in middleware evaluation test-bed

– Various faults injected and explanation of adjustable

parameters is provided

Slide 5/18

Outline

• System Model and Assumptions

• TIRESIAS’ Failure-Prediction Framework

– Data Collection

– Anomaly Detection

– Failure-Prediction Scheme

• Empirical Evaluation

• Future Work

• Summary

Slide 6/18

System Model and Assumptions

• Faults that lead to failures will affect performance
metrics in an observable way

• Performance patterns can be exhibited leading up to
failures

– Even when they appear to be random

• TIRESIAS cannot predict a failure that is not preceded
by a trend of anomalous behavior on the system’s
performance metrics

– For example, value faults where the application produces a
wrong result

Slide 7/18

TIRESIAS’ Failure-Prediction Framework

Network traffic

Memory usage

CPU usage

…
Response time Anomaly

Detector

Anomaly

Detector

Anomaly

Detector

Anomaly

Detector

101001..

101101..

000100..

100100..

Prediction

Heuristics (DFT)

Prediction

Heuristics (DFT)

Prediction

Heuristics (DFT)

Prediction

Heuristics (DFT)

TIRESIAS’

Forecast

lipcap

metrics

/proc

metrics

application

metrics

Look-ahead time

• Two-stage approach: anomaly detection followed by failure
prediction
– Anomaly detection phase—process time-series data of performance metrics

with a straightforward threshold-based anomaly detector

– Dispersion Frame Technique (DFT) is used as prediction heuristic—it looks
for clustering patterns of anomaly points

Anomaly vectors

Slide 8/18

TIRESIAS’ Failure-Prediction Framework (Cont’d)

• Anomaly vectors—a binary sequence of 1’s and 0’s

– Indicates whether each data-point of the metric’s time-series is seen as

anomalous or normal

• DFT seeks patterns of behavior that might indicate instability

– If a pattern if found, a warning of a imminent failure is fired

• A prediction does not reveal the root cause of a problem (there is

no diagnosis) and does not guarantee that a failure will occur

Network traffic Anomaly

Detector

101001.. Prediction

Heuristics (DFT) TIRESIAS’

Forecast

lipcap

metrics

Look-ahead

time

Anomaly vectors

… … … …

Slide 9/18

Data Collection for Anomaly Detection

• Data is collected under non-faulty runs as well as under injection

of faults

• Resource usage is retrieved from /proc every 5 seconds in Linux

machines

– CPU usage (%)

– Available memory (bytes)

– Context-switch rate (per second)

• Network traffic is monitored by the use of the libcap library

– Timestamps are recorded every time a packet appears on the wire

– Capturing mechanism does not add overhead to the network traffic

Slide 10/18

Anomaly Detection Scheme

• Any anomaly-detection scheme can be used in TIRESIAS

– Paper contribution is not the anomaly-detection scheme, but its use for

failure prediction

• Algorithm developed for network-related failures

• Algorithm based on computing the mean of the data and looking

at a three-standard-deviations (±3σ) rule

• Model is based in:

– Template — a model of time-varying expected/normal system behavior

– Envelopes — represent tolerance limits for metric’s normal behavior

Slide 11/18

Anomaly Detection Scheme

• Four vectors of data used for network-traffic analysis:
– X, current raw network-traffic captured data

– P, smoothed traffic data (the trend of the data avoiding extreme
discontinuities)

– T, template that describes normal network-traffic behavior

– V, variance template to calculate standard deviations (thresholds)

• Steps to detect anomalous network-traffic points:

Compare X to T and

to the thresholds

values from V

Is there any

point outside?

Smooth raw data

to produce a

one-day trend, P

Combine current template

with P to produce new T1

(by exponential smoothing)

Compute current

variance vector, V, to

include new data

Yes

No

Anomaly!

(flagged in the

anomaly vector)

Slide 12/18

Prediction Heuristics:
The Dispersion Frame Technique (DFT)

• Dispersion Frame Technique (DFT) originally developed to predict

failures in hardware devices (e.g., hard disks)

– A set of heuristic rules developed from empirical studies (e.g., error-logs)

– Check the relationship between anomaly occurrences by examining how

closely they occur in time

– First time it is applied to time-series error-logs that are output by an anomaly

detector

– Applied for prediction of hard-drive failures with a success rate of 93.7%

• DFT uses two concepts:

– Dispersion Frames (DF) — inter-arrival time between successive error

events (i.e., successive anomalies of the same metric)

– Error Dispersion Indices (EDI) — the number of errors (or anomalies) in

one half of a DF

Slide 13/18

Dispersion Frame Technique (DFT)

• Heuristic clustering rules for prediction:
(1) When two consecutive indices from the successive application of the same

DF exhibit EDI ≥ 2

(2) When two consecutive indices from two successive DFs exhibit EDI ≥ 2

(3) Four monotonically decreasing DFs, and at least one DF = ½ the previous
one

(4) DF < 10 minutes

A highly related group of anomalies exhibits a high EDI — a sign of instability

Dispersion Frames (DF) —

inter-arrival time between

successive error events

Error Dispersion Indices

(EDI) — the number of

errors (or anomalies) in one

half of a DF

errors

Slide 14/18

Empirical Evaluation

• Experiments run in a distributed environment
– 4 nodes (850MHz processor, 512MB RAM, Linux 2.4.18)

• Simple two-tier distributed client-server application
– One client and a dual-redundant server

– The client sends a request to the server, which returns 32 Kb of data to the
client.

• Each experiment covers 45, 000 round-trip client invocations, and
runs for 15 minutes

• A total of 12 different faults injected
– At the primary replica: memory leaks of 64Kb, 96Kb, 128Kb, 256Kb

– At the backup: thread-leak, babbling node, packet loss and abrupt crash

Slide 15/18

Look-ahead Times for Passive Replication

• Failure prediction can be performed on a node other than the faulty one

• CPU usage was not stable enough for consistent failure-prediction

• Failure rate does affect look-ahead time

– The faster the failure rate, the smaller the look-ahead time

Faulty primary node’s viewpoint Non-faulty backup node’s viewpoint

Slide 16/18

Look-ahead Times for Non-faulty Client Node’s Viewpoint

• A false positive rate of 2.5% was found (5 false positives
out of 200 runs)

Passive replication Active replication

Slide 17/18

Future work

• Extend TIRESIAS for root-cause analysis (diagnosis)

and proactive recovery

• Investigate false positive rate more accurately by

gathering more empirical data

• Employ alternative anomaly-detection algorithm along

with DFT

• Develop a distributed DFT to correlated failures across

the nodes

Slide 18/18

Summary

• TIRESIAS: a framework for black-box failure prediction

by the analysis of performance metrics

• It exploits clustering rules that were originally develop

for single-node hardware failures, to predict failures in

distributed environments

• Experiments with different fault injections showed that

failures can be predicted with look-ahead time to allow

proactive recovery

