
Slide 1/20

Tracking Down Software Bugs
Using Automatic Anomaly Detection

Sudheendra Hangal and
Sun Microsystems India Pvt

Monica S. Lam
Computer Systems Laboratory

Stanford University

ICSE 2002

Presented by:

Fahad Arshad

Slide 2/20

Motivation

• Undetected errors which compromise the results of a

computation can be dangerous

– can lead to catastrophes (e.g Therac-25, Ariane 5 Flight 501)

• Integration of many components often lead to rare bugs

which can take days or weeks to debug (rare corner cases)

• Detecting bugs and hunting for root cause is important

Slide 3/20

Previous Work

• [Ernst et al] detects likely program invariants based on

dynamic program behavior .

• It starts with a specific space of program invariants.

• The Daikon tool, is limited by the fixed set of invariants

hypothesized and checked for.

Slide 4/20

DIDUCE (Dynamic Invariant Detection U Checking Engine)

• DIDUCE extracts invariants dynamically from program

executions

• DIDUCE continually checks program behavior against

the invariants hypothesized up to that point in the

program's run and reports all detected violations.

• When a dynamic invariant violation is detected, the

invariant is relaxed to allow for the new behavior and

program execution is resumed.

Slide 5/20

Usage Models for DIDUCE

• Debugging programs that fail on some inputs:

– DIDUCE can pinpoint differences in behavior between the

successful and the failing runs

– Extract invariants from test cases that pass

– Check invariant violations for cases that fail (reduces

debugging time)

• Debugging failures in long-running programs:

– Some of the hardest bugs to track down are those that occur
only after a program has executed for a long time.

– DIDUCE blindly and continually monitors all the variables in

the program

Slide 6/20

Usage Models for DIDUCE (continued)

• Debugging component-based software:

– For component-based software, train DIDUCE on codes with
same components working correctly, and apply it to check the

behavior of a component in the context of the new software

• Testing programs with inputs for which the correct
outputs are unknown:

– Train DIDUCE on known tests cases, and use the invariants
gathered to check the runs on inputs with no known outputs

• Assisting in program evolution:

– Check the invariants collected before and after the update in a
program

Slide 7/20

DIDUCE Invariants

• DIDUCE system instruments Java programs

– Maintains invariants on the values of a set of tracked
expressions at various program points

– An invariant hypothesis on an expression is satisfied by all the
values that have occurred in the history of the execution so far.

– Invariant is relaxed on seeing a new violating value.

• DIDUCE operates in two modes

– Training Mode:
• DIDUCE silently learns invariants by relaxing invariant hypotheses as

needed

– Checking Mode:
• DIDUCE emits messages about invariant relaxations which occur along

the way

• Training continues in checking mode as well

Slide 8/20

DIDUCE:Instrumented Program Points

• DIDUCE associates invariants with static program points

• DIDUCE allows tracked expressions to be attached to:

– program points which read from or write to objects

– program points which read from or write to a static variable

– procedure call sites

• This design gives visibility to global state of computation

• User provides JAR files, DIDUCE will instrument all the

static program points described above.

Slide 9/20

DIDUCE: Tracked Expressions

• At each instrumented program point

– a set of expressions is maintained, each of which is a function
of the object or variable being accessed.

– An invariant is maintained for each expression in this set,

starting with the strictest invariant assumption at the beginning

– Gradually relaxes the invariant to encompass the values
observed for the expressions.

• Following expressions are tracked by default:

– the value being read or written

– parent object, in the case where a field of an object is accessed

– the difference between the values of the location accessed
before and after a write operation.

Slide 10/20

DIDUCE: Tracked Expressions

• For tracked expressions which are of reference type, map objects to

their run-time types

• Null values are treated as a special run-time type of their own.

Slide 11/20

DIDUCE: Invariant Representation

• Values of all expressions of all types reduced to integers

• Reference type expressions are mapped to an integer which
is the hashcode of the String object for their run-time type

• For each expression's value, the invariant maintains for each
bit position two things.

– 1) the value of that bit the first time the expression was evaluated,

– 2) whether different values have been observed for that bit position

• A violation is reported if differences between the new value
and previous ones are observed in new bit positions

Slide 12/20

DIDUCE: Invariant Representation

• With each expression a tuple of two integers, an initial

value V and a mask M is associated

– The ith bit in M is set to 1 iff the same bit value has always been
observed for that position.

• If the first value of an expression is W then,

– M:= ¬ 0, V := W

• Suppose subsequently an expression returns W`

– If (W` XOR V) ^ M ≠ 0

– Then a violation is reported and invariant is relaxed by

M:= M ^ ¬ (W` XOR V)

Slide 13/20

DIDUCE: Invariant Representation

• DIDUCE keeps track of following properties
– whether the values were only positive or only negative, only

odd or only even

– an approximate upper bound on the value

– which of the bits have constant values

• With this representation, the number of violations
detected for each expression can be no greater than the
number of bits in a word

• The storage required for maintaining invariants is about
three words per tracked expression

Slide 14/20

DIDUCE: Invariant confidence

• Confidence level of an invariant is defined as the ratio
between the number of times the expression has been
evaluated and the number of values the invariant accepts

• Every invariant violation is reported with the change in
confidence levels between the old invariant and the
newly relaxed invariant.

– A large drop in confidence signals a noteworthy invariant
violation.

• Code executed for the first time is reported with a fixed,
user-specifiable invariant confidence change.

Slide 15/20

DIDUCE Implementation

• ByteCode Engineering Library (BCEL) is used to

instrument Java class files and insert calls to the

DIDUCE run time system at appropriate program points

• Source code not required but useful in understanding the

invariant violations reported

• An instrumented program using the default settings

currently runs one to two orders of magnitude slower

Slide 16/20

DIDUCE EXPERIENCES

• DIDUCE was especially helpful in pinpointing late-stage bugs that

occur after many test cases are run.

Slide 17/20

DIDUCE EXPERIENCES: Mailmanage

• Mailmanage crashed on a particular mail box throwing a
cryptic IO Exception.

• Crash apparently occurred in the JavaMail library while

trying to fetch a message from a mailbox

• Both Mailmanage and JavaMail library were instrumented

• DIDUCE was trained on a few mailboxes that worked

correctly and then tested with the failing mailbox

Slide 18/20

DIDUCE EXPERIENCES: Mailmanage

• Figure shows the relevant code identified by the invariant violation

• Invariant violation reported that buffer[index] contained a new value at the end of

while loop.

• Prior to this violation, invariant accepted both a space character and a “)” character

Slide 19/20

DIDUCE EXPERIENCES: Mailmanage

• The bug in this case was not in either Mailmanage or

JavaMail library. It was in IMAP server

• The response by the server contained extra CR-LF

characters, which was an inconsistent with its RFC

• This confused the JavaMail parser, which eventually

threw an exception.

Slide 20/20

DIDUCE EXPERIENCES: Mailmanage

• DIDUCE strengths from this case study

– It detected an anomaly in the input

– Helped the user debug unfamiliar code, isolating the problem

down to the component which actually contained the bug

– Helped in finding bugs in code that was not even instrumented

by finding invariant violations at the interface between

instrumented and uninstrumented domains.

Slide 21/20

DIDUCE EXPERIENCES: Java SSE Library

• On adding a proxy server to the library, an unseen failure in

unrelated parts of the code was observed

• Programmer tried to debug by working backwards from the

point of failure through the rest of the library

• After 2 days of manual debugging, she isolated the problem

to a particular function

• When asked to use DIDUCE, she trained it with correct

runs and ran it on the failing runs in checking mode.

Slide 22/20

DIDUCE EXPERIENCES: Java SSE Library

• DIDUCE reported a high confidence invariant on the return value of a call to
SocketlnputStream.read() method

• This method does not guaranteed to fill the entire array and can return after it

has filled 1 or more bytes.

• The programmer had fundamental misunderstanding of the java.io library

Slide 23/20

DIDUCE EXPERIENCES: Java SSE Library

• DIDUCE was modified to include a simple static check for

immediately discarding the return values from calls to
various flavors of InputStream.read() with a byte array

argument

• Over 80 such examples in the Java 2 Standard Edition and
Enterprise Edition v.1.3 libraries were found, most of which

were likely to be errors.

• This shows the importance of automatic invariant discovery

Slide 24/20

DIDUCE EXPERIENCES: Joeq
• DIDUCE was run in checking mode without training. Initial invariant violations

were ignored

• Joeq failed an assertion while compiling a particular version of the Java Runtime
Library

• Joeq read each entry in the library JAR file, processed it, and entered the name
of the entry into its own hash table.

Slide 25/20

DIDUCE EXPERIENCES: Joeq

• DIDUCE precisely pointed to the source of the problem

– the return value of Hashtable.put() method indicates whether the object being
inserted is already present in hash table

– It returns the existing object if the key matches an element in the
hash table, and NULL otherwise

– The programmer implicitly assumed that the entries in a JAR file were unique,
and ignored the return values

– DEDUCE reported a warning on finding a duplicate entry thus finding the root
cause of the problem

Slide 26/20

DIDUCE EXPERIENCES: MAJC Memory Simulator

• Ten classes were instrumented in the program separately,

and these ten versions were run in parallel

• Invariant violations in the initial part were ignored as it

was considered as the training phase

• DIDUCE discovered two bugs in the simulator that

would otherwise be undetected and found the root causes

of 3 other bugs

• All bugs were serious algorithmic errors

Slide 27/20

DIDUCE EXPERIENCES: MAJC Memory Simulator

• “New code” category
– tracks when execution reaches a program point for the first time

• High confidence invariant violations refer only to the violations
above the confidence change level of 100
– Last stub in the figure is the only bug with a confidence change of over one

million

Slide 28/20

Conclusions

• Finding program anomalies through online dynamic

program invariant detection and checking engine

• DIDUCE is effective in detecting hidden errors and
finding the root causes of complex programming errors.

• Finding bugs that result from algorithmic errors, errors in

inputs, and developers' misconceptions of the APIs.

• Helps programmers locate bugs in unfamiliar code and,

sometimes even in codes that has not been instrumented.

Slide 29/20

QUESTIONS ????

