

Goals	
 Create an emergency response system by covering an area with sensor nodes During an emergency sensors should be able to provide real time information about location, size, and extent of the disaster area 	
• The location and identities of first responders in the disaster area should be known	
DCSL: Dependable Computing Systems Lab Slide 2/29	

R-Robust		
• In realistic sensor networks radio range is not highly predictable, so for a practical implementation we must be able to accept some errors		
$A \oplus B = (A \setminus B) \cup (B \setminus A)$ Definition 1 An identifying code \mathbb{C} over a given graph (V, E) is said to be r-robust if $I_{\mathbb{C}}(u) \oplus A \neq I_{\mathbb{C}}(v) \oplus B$	G =	
 for all u, v ∈ V and A, B ⊆ V with A , B ≤ r. So up to r node insertions or deletions of any identifying set does not prevent unique location identification 		
• R-robustness can be determined by the minimum symmetric difference		
$d_{\min}(\mathbb{C}) \triangleq \min_{u,v \in V} I_{\mathbb{C}}(u) \oplus I_{\mathbb{C}}(v) $	$ \begin{array}{l} r\text{-ID-CODE}(G, \mbox{ a}, r) \\ \mathbb{C} = V \\ \mbox{if } d_{\min}(\mathbb{C}) \leq 2r \end{array} $	
Theorem 3 A code \mathbb{C} is r-robust if and only if $d_{min}(\mathbb{C}) \ge 2r + 1.$	do EXIT for each vertex $x \in a$ do $D = \mathbb{C} \setminus \{x\}$ if $d_{\min}(D) \leq 2r$	
	$ \begin{array}{l} \mathbb{C} = \mathbb{C} \\ \mathbf{else} \mathbb{C} = D \\ \mathbf{return} \ \mathbb{C} \end{array} $	
DCSL: Dependable Computing Systems Lab Slide 12/29		

