Making Web Services Dependable

L.E. Moser, P.M. Melliar-Smith and Wenbing Zhao
International Conference on Availability, Reliability, and Security (ARES’06).

Present By
Gaspar Modelo Howard
Ratsameetip Wita

DCSL Reading Group 12/04/2007

Outline

• Introduction
• WS Dependability Specification
• Dependability in WS Architecture using fault tolerance technique
• Conclusion
Introduction

- Basic Web Service Standard
 - eXtensible Markup Language (XML)
 - Simple Object Access Protocol (SOAP)
 - Web Service Description Language (WSDL)
 - Universal Description Discovery and Integration (UDDI)

Potential widespread usage of WS

Figure 1. Use of Web Services in business-to-business activities that span multiple enterprises.
New problems rising

- One transaction involves multiple WS.
 - Multi-enterprise business activity.
 - One participant can effect another enterprise.
- One WS involves multiple components.
 - All must be dependable.

![Diagram of web services architecture]

High availability issue

- Business activity is comprising of multiple web services.
- If one of involving web services unavailable, all of the others are affected.
- Availability of business process << availability of any component.
- Let $n =$ # of tiers in WS architecture within enterprise
 $m =$ # of WS of different enterprise involved in business activity
 $p =$ probability of any tiers in enterprise fail
 $(1-p) =$ probability that they do not fail
 Probability of the whole business activity that not fail
 $q = (1-p)^{mn}$
High availability issue

- For l independent business activity, probability of all of them are not fail is
 \[r = q^l = (1-p)^{mn} \]

Data consistency issue

- Detecting and correcting inconsistency are difficult, time consuming and expensive due to spanning to multiple business activity.
 - Three-phase commit protocol/ replicated coordinator
- Multiple local transaction with compensating transaction is currently used in business activity.
 - High error rate and high risk of data inconsistency
- Prevent both locking of data from failed transaction and potential inconsistency from incorrect compensation are essential for business activity
WS Dependability Specifications

- Reliable Messaging
 - WS-Reliable Messaging and WS-Reliability specification.
 - Application-level reliable messaging protocol over SOAP.
 - Acknowledgement and retransmission with different QoS, e.g. at least once, at most once, exactly once, source order delivery.
 - Lack of topics of message persistence and fault recovery.

- Transaction and Business activity
 - WS-Transaction
 - Protocol for atomic distributed transaction commitment
 - Based on two-phase commit protocol (2PC)
 - Provide data consistency
 - WS-Business Agreement
 - Support long-running transaction
 - Determine business activity should roll forward or roll back
 - WS-Coordination
 - Describes an extensible framework for providing protocols that coordinate the actions of distributed applications.
 - Strict consistency/ proper subset of participant

Figure 4. Reliable messaging protocol stack.
Multi-component Web service

![Diagram of Web Services architecture](image)

Figure 5. Three-tier Web Services architecture.

Dependability in WS Architecture

- Can be achieved using fault tolerance technique.
 - Application logic
 - Replication on Web sever, Servlet, J2EE Application server
 - Transaction Coordinator
 - Non-blocking 2PC protocol
 - Exactly-once semantic for clients’ invocations.
 - Database Server
 - Web Service Registry
 - Business Activities
 - Extension of WS-Coordination and WS-Business activity specification
 - Reservation-based coordination protocol (by same author)
Fault tolerant Web server

- Building on top of WS-RMP
- Extension of RMP on recovery from fault (SOAP failover)
 - Restore WS to checkpoint state.
 - Restore TCP connection.
 - Replay logged receive message subsequently from the checkpoint.
 - Detect and suppress all delivered message during fault.

Figure 6. Fault-tolerant Web server.

Replication in Three-tier Web service Architecture

Figure 7. Fault-tolerant three-tier Web Services architecture.
Replication in Three-tier Architecture

Figure from: Moser L. et al, Unification of Transactions and Replication in Three-Tier Architectures Based on CORBA, IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2005
Reservation-based coordination protocol

- Avoiding compensation transaction.
- Extension of WS-Transaction specification.
- Two-phase protocol
 - Reservation phase
 - Set involved resources as reserved
 - Coordinator determine reservation confirm/cancel by business rules.
 - Confirmation phase
 - Coordinator send confirmation/cancel message.

Reservation-based VS. Locking

- Application control resource reserved status.
- User-Resource Owner Agreement contract is used to determine reservation fee.
- Immediate notification when resources are reserved so application can find appropriate action.
 - For locking, application need to wait until timeout or lock is released.
Conclusion

• Describing Web service specification involving dependability.
• Possibility of using fault tolerance in web services with concerning business activity.
• Performance evaluation is needed.