Cycle Sharing Systems

Jagadeesh Dyaberi
Dependable Computing Systems Lab
Purdue University

Outline

- Introduction
- Design of Program
- Security
- Communication
- Architecture
- Implementation
- Conclusion

What is cycle-sharing?

Sharing CPU resources across a network so that all machines function as one large supercomputer.

Cycle sharing model across the Internet

- Why Internet?
 - 93 million connected hosts
 - Rapid growth in computing power
 - Revolutionary expansion of mobile devices like cellular phones and PDA's.

- Examples of Cycle Sharing Systems
 - > SETI @ Home
 - > Mersenne Prime Search
 - > Distributed.net
 - > XtremWeb

Global Computing Issues

- Scalability
 - Scale to hundreds of thousands of nodes
- Heterogeneity
 - Across hardware, OS and basic software
- Availability
 - Owner sets limits on resource
- Fault Tolerance
 - Must accept frequent faults while maintaining performance
- Security
 - Protection from malicious or erroneous manipulations
- Dynamicity
 - Varying configuration, communication latency

Two Ways of using XtremWeb

1. Worker

- Volunteer Machine
- Registers with the administration server
- Contributes when idle

2. Collaborator

- Setup their own global distributed application
- Works for the main XtremWeb
 - i. Idle
 - ii. Has no work to send to his community of PC's.

Security and Native Code Execution

- Native code execution -> High Performance
- Ad-hoc verification process
 - i. Only trusted institutions can propose code
 - ii. Code is tested on dedicated workers
 - iii. Code is encrypted before downloading to workers
 - iv. Code download uses a private-public key to secure transaction
 - v. Worker sends back a checksum of code to server which verifies it

- Communication between Worker and Server
 - Three protocol layers
 - First level (connection) Enable connection between entities behind firewall or a proxy
 - Second level (transport) Responsible for reliable and secure transport
 - 3. Third level (protocol) RPC API

Communication between Worker and Server

Worker Architecture

- Implementation
 - Java
 - Easily portable
 - Not related to performance but to security and portability
 - Calls to specific OS functionalities C

Server Architecture

- Pool of Applications
- Pool of Jobs
- Accounting Modules

Server Architecture

Scheduling

- Dispatcher
 - 1. Selects tasks from the task pool and forwards to the scheduler.
 - 2. Priority is set by minimum ratios of tasks running per application.

Scheduler

- 1. Tasks are scheduled in a FIFO scheme.
- 2. Determines task that may be run by a worker.

Implementation

- Java, PHP and Perl
- MySQL database
- Volunteers and Administrators interact though a Web interface

Fault Tolerance

- Uses Fault-Tolerant MPI implementation.
 - Programmer may save results periodically in case of an entire restart
 - MPI hides faults from programmer by using a fully automatic fault detection and recovery.
 - Pessimistic logging principle to tolerate N concurrent faults. (N = total number of MPI processes)

Fault Tolerance

MPICH-V1 MPICH-V2 Channel Checkpoint **Event Memories** Scheduler Loggers Network Network Dispatcher Dispatcher Checkpoint Checkpoint servers servers Computing Computing Nodes + Nodes **Communication Daemons**

Implementation

- Projects implemented
 - AIRES
 - Protein Folding by Mutations

Conclusion

- Global Computing systems are concerned with ease of deployment.
- Fault tolerance is critical since there are external threats
- Threats come from application, data and the computing nodes.

References

[1] Fedak, G., et al. XtremWeb: A Generic Global Computing System in Computing Cluster and the Grid. 2001. Brisbane: IEEE

[2] Fedak, G., et al. Computing on Large Scale Distributed Systems: XtremWeb Architecture, Programming Models, Security, Tests and Convergence with Grid. Future Generation Computer Systems, 21(3):417-437, March 2005.