Epidemic Multicast

(Mike) Yu Cheng

Outline

- Definition, properties of epidemic multicast
- Why is it so special? Advantages over other algorithms
- Take a look at some proposals
Epidemic?

- Outbreak of a contagious disease which spreads rapidly and widely
- SIR/SEIR (Susceptible, Exposed, Infected, Recovered)
- Example: Flu

Epidemic (gossip) Algorithms

- Inspired by the theory of epidemics of infectious disease
- “Infect” as many nodes as possible
- In networking: send the message to as many host as possible
- Have been applied to many problems, e.g., multicast in ad hoc networks, reliable recovery, etc.
Basic concepts of gossip algorithms

- Nodes/Hosts periodically compare their states and reconcile inconsistencies with others
- Randomly decide when and with whom each participant will gossip
- States can be missing messages or packets, etc.

Basic Concept: A Gossip Round

- A chooses randomly another host to gossip with, say B
- A sends to B information about the messages A has received or missed
- A and B will reconcile the states by exchanging messages

A has messages 1, 2, 4
B has messages 1, 2, 3, 5
Basic Concept: Different Ways of Communication

- Pulling/ negative
- Pushing/ possible

Example: Current state: A has messages 1, 2, 4, 5

Pushing: “I have messages 1, 2, 4, 5, I will give them to you”

Pulling: “I need message 3! I will take it from you”

Basic Concept: Different Ways of Communication (continue…)

- For Pulling strategy, gossip is triggered only when a host realizes it has lost a message
- For Pushing, gossip must take place periodically.
- A mixed approach is possible
Advantage of using gossip algorithms

- Decentralized. When a node fails, the system will not fail
- Probabilistic. Randomly picking a node to gossip
- Every nodes/hosts share the same amount of load
- Simple to implement
- Scalable

Flat gossiping multicast

- There are N number of hosts/nodes
- Each group member that receives the multicast gossips about it for log(N) rounds
- During each round, the group member select B other members uniformly at random (flatly) and send them a copy of the multicast message
- A round can be a fixed interval at the member. B can also be constant
Problem with flat gossiping

- Large networks, for example, wide area networks, or corporate VPN that spans several locations, are structured as a hierarchy of domains.
- Internet is a perfect example as well (AS, class networks, subnets, etc.)
- Flat gossiping generates substantial network traffic into and out of these domains.
- Creates significant network overhead on connection core routers, bridges, and links.

Example:

- In each gossip round:

 O(N) gossip messages in each round go across the router. Therefore the router bandwidth usage grows linearly with group size.
Leaf Box Hierarchy

- Assume group size = N
- The number of leaf box = N/K (K is a constant)
- There is a map function H that maps members to one of N/K leaf boxes
- Each leaf box has a Log$_k$N -1 digit address
- Subtrees of height j (0<= j <= Log$_k$N -1)
- Leaf boxes whose address match in the most significant (Log$_k$N -1-j) digits

Example:

- K = 2
- N = 8
- Each box has (3-1) = 2 digit address
- Subtrees of height (0<= j <=2)
Example (Mapping function):

- Contiguous Mapping:
 Assigns to each network domain a set of leaf boxes that are contiguous in the lexicographic space of leaf box addresses.

Views of a member

- Each member M_i maintains a view that consists of $\log_k N$ subviews.
- There are $\text{viewFactor} \times \log_k N$ members in each subview.
- Members in the subviews are chosen randomly.
Example (views)

- viewFactor = 1
- K = 2
- N = 8
- # of subviews = 3
- View member = 3 * 1 = 3

Picture from [1]

Example (target choice probabilities):

- A subtree of height l has probability of picking:

 \[p_l = \frac{1}{l^{1/1}} \times p(N, K) \]

 \[p(N, K) = \left[\sum_{j=0}^{\log_K(N) - 1} \frac{1}{K^{l+1}} \right]^{-1} \]

- Prefer target near the leaf box hierarchy

Picture from [1]
• Constant K (e.g. 2)
• Group Size N (e.g. 8)
• Number of Leaf Box = $\frac{N}{K}$ (e.g. $8/2 = 4$ boxes)

• There are $\log_{K} N$ level of subtrees (e.g. $\log_{2} 8 = 3$)

- Subtree 0^*
- Subtree 1^*

- Leaf Box 00
- LB 01
- LB10
- LB11

- Each host has a view (member list)
- There are $\log_{K} N$ subviews (e.g. $\log_{2} 8 = 3$)
- Number of hosts in each subview = viewFactor * $\log_{K} N$ (e.g. $1*\log_{2} 8 = 3$)

- H5’s view
 - Subview[0]: H1, H3, H7
 - Subview[1]: H1, H2, H4
 - Subview[2]: H4

- Subtree $*$

- H1, H2, H3
- LB 01
- LB10
- LB11
• Select a subview with probability $P = \frac{1}{K^{i+1}} \cdot p(N, K)$

• Pick a host uniformly at random from that subview

Result:

Avg. Domain boundary load/Gossip per round

Picture from [1]
Result:

- Flat: Dropping starts at 0.75
- LBH: Dropping starts at 0.3

Reference: