Overview of Research in Dependable Computing Systems Lab

Saurabh Bagchi

Dependable Computing Systems Lab School of Electrical and Computer Engineering Purdue University sbagchi@purdue.edu

http://shay.ecn.purdue.edu/~dcsl

DCSL: Dependable Computing Systems Lab Slide 1/15

Dependable Computing Systems Lab

- Sponsors
 - National Science Foundation
 - Purdue Research Foundation
 - Avaya Labs
 - Motorola Labs
 - Intel
- Members
 - Nipoon Malhotra
 - Gunjan Khanna
 - Padma Varadharajan
 - Yu-Sung Wu
 - Issa Khalil
 - Mark Krasniewski
 - Yen-Shiang Shue
 - Jin-Yi Wang

- Bingrui Foo
- Bryan Rabeler
- Tyler Olsen
- Blake Matheny

DCSL: Dependable Computing Systems Lab Slide 2/15

Where is DCSL?

- EE 34
 - 5 Linux machines
 - 2 PCs
 - HP Laserjet 1500 printer
- Civil G239
 - Sensor network testbed with 16 Berkeley Mica 2 motes
 - 2 Linux machines (pyxis & carina)

- Physics 50
 - Sensor network testbed with 8 Berkeley Mica motes
 - 1 Linux machine (ibase5)

Who's Who in DCSL?

- Provision keeper: Gunjan (Fall 03), Gunjan (Spring 04)
- Librarian: Issa (Fall 03), Issa (Spring 04)
- Webmaster: Hank (Spring 04)
- Welcome to grad school for Bingrui and congrats on his undergraduate honor

DCSL: Dependable Computing Systems Lab Slide 3/15

PURDUE

What happened to Gunjan?

DCSL: Dependable Computing Systems Lab Slide 4/15

Logistics

- Planning document detailing goals, deliverables (publications, code) to be submitted by each of you by January 28 (2 weeks from today). Find the document at:

 www.ece.purdue.edu/~sbagchi/Research/GroupInternal/Admin/spring2004_plandoc
- Weekly (or bi-weekly) meeting slots to be finalized by end of this week (January 16)
- Code checkin to CVS
 - At every major point in the project, typically at least once a month
- Writeups
 - 3-5 page writeups on work to be submitted 2nd and 4th Monday of the month
 - I will review the writeups and send back to you with edits and comments

DCSL: Dependable Computing Systems Lab Slide 5/15

Project #1: Distributed Disruption Tolerant System

- Distributed e-commerce platform subjected to natural failures and malicious attacks to services
- Disruptions = Attacks + Failures
- Objective is to tolerate disruptions, not just detect
- Different phases: Detection, Diagnosis, Containment, Response.
- E-commerce testbed with multiple servers (web, application, etc.) installed in MSEE 206 (Distributed Multimedia Systems Lab)
- Project Members:
 - Here: Arif Ghafoor, Eugene Spafford, Yu-Sung Wu, Bingrui Foo, Blake Matheny, Tyler Olsen
 - Outside: Tim Tsai, Sachin Garg, Navjot Singh (Avaya Labs)

PURDUE

Project #1: Distributed Disruption Tolerant System

- Paper:
 - "Collaborative Intrusion Detection System (CIDS): A Framework for Accurate and Efficient IDS"
 - Appeared in ACSAC, December 2003.
 - Hank presented in Las Vegas on December 9, 2003.
 - "ADEPTS: Adaptive Intrusion Containment and Response using Attack Graphs in an E-Commerce Environment"
 - Submitted to IEEE Dependable Systems & Networks (DSN) in Italy June 28-July 1, 2004.
 - Appeared as CERIAS Tech Report TR2003-32.
 - "SCIDIVE: A Stateful and Cross Protocol Intrusion Detection Architecture for Voice-over-IP Environments"
 - Submitted to IEEE Dependable Systems & Networks (DSN) in Italy June 28-July 1, 2004.
 - Appeared as CERIAS Tech Report TR2003-33
- Goals for this semester:
 - JOURNAL
 - * ACM Transactions on Information and System Security (TISSEC)

Internal deadline: April 15

CONFERENCE

* ACM CCS: Deadline - May 3, Conference - Oct 25-29, DC; URL:

otto://www.acm.org/sigsac/ccs/CCS2004/

Internal deadline: May 2

DCSL: Dependable Computing Systems Lab Slide 7/15

Project #2: Self-Checking Network Protocols

- Goal is to provide highly available network services (e.g., SIP, reliable multicast) in distributed environment
- Challenges in today's distributed systems
 - Large number of network protocol participants
 - No access to source code or machine on which code is running
 - Often soft real-time guarantees
- Our Approach:
 - Distributed monitor to observe external interactions and diagnose misbehavior or malfunction
 - A rulebase using temporal logic and fast matching algorithms
 - Hierarchical monitor structure to monitor local and global interactions
- Project Members
 - Here: Gunjan Khanna, Padma Varadharajan
 - Outside: Ravi Iyer, Zbigniew Kalbarczyk (UIUC)
- Status:
 - Implementation single level monitor done
 - Limited support for multi-level monitor and filtering at lower level
 - Experiments (scalability and accuracy) performed with system running reliable multicast

DCSL: Dependable Computing Systems Lab Slide 8/15

Project #2: Self-Checking Network Protocols

- Papers
 - "Failure Handling in a Reliable Multicast Protocol for Improving Buffer Utilization and Accommodating Heterogeneous Receivers", Accepted for publication in the 10th IEEE Pacific Rim Dependable Computing Conference in Tahiti, Mar 3-5, 2004.
 - "Distributed Monitors for Detection of Misbehavior in Large Scale
 Distributed Systems", In submission to IEEE Transactions on Parallel &
 Distributed Systems.
- Goals for this semester
 - IEEE SRDS: Deadline April 2; Conference Oct 18-20, Brazil; URL: http://www.srds2004.ufsc.br/
 Internal deadline: Apr 1

DCSL: Dependable Computing Systems Lab Slide 9/15

Project #3: Dependable Ad-hoc and Sensor Networks

- Ad-hoc and sensor networks built of unreliable components and deployed in hostile or uncertain environments
- Goal is to provide middleware that provides a robust platform keeping environment constraints in mind
 - Energy constraint
 - Computational power constraint
 - Security constraint
- Project Members:
 - Here: Ness Shroff, Nipoon Malhotra, Michael Krasniewski, Longbi Lin, Issa Khalil, Bill Chappell, Catherine Rosenberg
- This project is funded by Intel's equipment grant and NSF's Engineering Directorate's grant under the Sensors program

DCSL: Dependable Computing Systems Lab Slide 10/15

PURDUE

Project #3: Dependable Ad-hoc and Sensor Networks

Papers:

- "Analysis and Evaluation of Topological and Application Characteristics of Unreliable Mobile Wireless Ad-hoc Network", To appear in the 10th IEEE Pacific Rim Dependable Computing Conference in Tahiti, Mar 3-5, 2004.
- "Fault Tolerant Energy Aware Data Dissemination Protocol in Sensor Networks", Submitted to IEEE Dependable Systems & Networks (DSN) in Italy June 28-July 1, 2004.
- "SECOS: Key Management for Scalable and Energy Efficient Crypto On Sensors", Submitted to IEEE Dependable Systems & Networks (DSN) in Italy June 28-July 1, 2004.

Goals for this semester:

JOURNAL:

* IEEE Journal on Special Areas in Communication (JSAC) Special issue on Security in wireless ad-hoc networks: Deadline Oct 1, 04, Acceptance June 1, 05; http://www.argreenhouse.com/society/I-SAC/Calle/socurity_adhoc_btrel Internal deadline: Summer 2004

* ACM Mobicom: Deadline - Mar 15, Conference - Sep 26-Oct 1, Philadelphia; URL:

Internal deadline: Mar 14

* ACM Sensys: (For prev year) Deadline - Apr 8; Conference - Nov 5-7, Los Angeles; URL: Internal deadline: April 7

DCSL: Dependable Computing Systems Lab Slide 11/15

Project #3: Dependable Ad-hoc and Sensor Networks

- Mobility to help network characteristics
 - Intelligent mobility patterns to improve connectivity, coverage, diameter
- Robust data aggregation from sensor nodes to base station
 - Robust to failures of intermediate nodes and compromised nodes
 - Sensitive to energy budget of each node
- Secure message communication in sensor networks
 - Efficient protocol for encryption of messages
 - Scalable and energy parsimonious key distribution protocol
- Testbed of 20 Berkeley motes

Project #4: Architecture Approach to Software Robustness

- Goal: Use idle hardware resources, such as additional execution contexts in SMT or CMP, for checking software
- Memory checks are biggest bang for buck
 - Large class of software errors
 - Easy to automate
- Approach
 - Devise detection routines
 - Minimize synchronization between detection and application routine
 - Devise hardware extensions that enable fast information transfer from one to the other
- Story so far:
 - SMT based simulator created for simple monitoring routines
 - Performance results show substantial improvement over baselines all monitoring in software running in same execution context
- Project Members: Prof. T. N. Vijaykumar, Yen-Shiang Shue, Jin-Yi Wang, Yu-Sung Wu

DCSL: Dependable Computing Systems Lab Slide 13/15

New Projects

- Reliability for OpenMP applications
- Members: Rudi Eigenmann, Bryan Rabeler
- Motivation is to have reliability for OpenMP applications running on Software Distributed Shared Memory
- Novelty: Use SDSM for reliability, rather than performance
- Goals for this semester
 - ACM Supercomputing: Deadline Apr 19; Conference Nov 6-12, Pittsburgh; URL: http://www.sc-conference.org/sc2004/
 Internal deadline: Apr 18

PURDUE

Reading Group Spring 2004

- EE 317 Wednesday 5-6.30
 - Possibility of change to accommodate schedule conflicts?
- Format change:
 - We will discuss a focused topic instead of individual papers.
 - The topic may involve multiple papers, typically between 3 and 5.
 - The discussion may take 2-3 meetings.
 - I will provide an initial set of papers, but you will need to augment it.
- First topic: Intrusion detection in wireless networks
 - Discussion leader: Issa

DCSL: Dependable Computing Systems Lab Slide 15/15

