
Slide 1/20DCSL, Purdue University

Disruption Tolerance in a Distributed
E-Commerce System

Saurabh Bagchi
Dependable Computing Systems Lab

School of Electrical and Computer Engineering
Purdue University

sbagchi@purdue.edu

http://shay.ecn.purdue.edu/~dcsl

Slide 2/20DCSL, Purdue University

Outline

• What is disruption tolerance & Motivation

• Adapative Disruption Tolerant System

• Disruption Detection

• Our Approach

• System Design

• Results

• Disruption Containment and Response

• Conclusions

Slide 3/20DCSL, Purdue University

What is Disruption Tolerance?
• Causes of system downtime

– Naturally occurring failures: hardware, software, interfaces
– Malicious intrusions: internal, external

• Disruption = Failure + Intrusion
• Similarities in approach to tolerate the two causes

– Both cause system to be unavailable or degraded in functionality
– Sometimes root cause cannot be distinguished
– Sometimes response is identical (e.g., take component offline and bring in a

diverse spare)
• Dissimilarities in approach to tolerate the two causes

– Number of coincident events
– Counter-response

Slide 4/20DCSL, Purdue University

Motivation
• Handling failures and intrusions under same framework gives the following

advantages
– Reduce overhead: Example – A separate detection routine for each sub-

system is not required
– Leverage synergy between two actions: Example – A component that is

compromised due to an intrusion need not be recovered from a natural fault
• What is tolerating disruption?

– Not enough to simply detect: Large volume of intrusion detection systems,
error detection protocols

– Need to address the other phases of the process: Diagnosis, Containment,
Response

– The phases are closely coupled in their cost metrics: A pinpointed diagnosis
reduces the cost of recovery

Slide 5/20DCSL, Purdue University

Our Approach: Adaptive Disruption Tolerant
System (ADTS)

Application
Layer

Information
Systems
Layer

Network
Layer

ADTS

System
Information

Response
Data

Monitored Data
User profiles/credentials; Transaction/activity Log

OS Audit Log, Network Service/Traffic Log

Policy Base
Business Rules, Access Rules

Network Policy Base

D
ia

gn
os

is
 M

od
ul

e

D
is

ru
pt

io
n

 C
on

ta
in

m
en

t M
od

ul
e

R
ec

ov
er

y
M

od
ul

e

D
is

ru
pt

io
n

To
le

ra
nc

e
M

od
ul

es

Cost-Adaptivity
Module

System State
Configuration, System loads

(CPU, traffic, service, etc)

Attacker
Profiler
Module

Parameter (P, T)
Computation Module

Disruption Classifier
Module

Temporal
Coverage Models

Classification &
Disruption Tree

Generation Module

Vulnerability/
Incident Database

Disruption
Information Base

Coverage
Computation

Module

D
is

ru
pt

io
n

D
et

ec
tio

n
M

od
ul

e

Adaptive, Disruption Tolerance Sub-System (ADTS)

System Information

Slide 6/20DCSL, Purdue University

Disruption Detection
• Initial phase of disruption tolerance process
• Based on previous approach to intrusion detection systems (IDS)
• IDSs are based on two alternative choices

– Anomaly based: Specify the normal behavior
– Misuse based: Specify the patterns of attacks

• Metrics for evaluating IDSs
– False positives, or False alarms
– False negatives, or Missing alarms

• Our approach: Collaborative Disruption Detection Systems (CODDS)
– Multiple detectors specialized for different parts of system
– Manager infrastructure for combining alarms from multiple detectors
– Rulebase at manager to decide on appropriate response

Slide 7/20DCSL, Purdue University

CODDS Approach
• Motivation

– Single IDS can have false positives (false alarms) or false negatives (missed
alarms)

– Single IDS is specialized for certain kinds of attacks
– Timing based correlation from multiple detectors may indicate useful

characteristics of attack such as propagation speed

N/W
layer

System
layer

Application
layer

Manager

Dxx
Elementary Detector

Message Queue

Application
layer

N/W
layer

System
layer

D1 D2

D3 D4CT

Application
layer

N/W
layer

System
layer

D5

D3 D4CT

CT Connection Tracker

Keys

N/W
layer

System
layer

Application
layer

Manager

Dxx
Elementary Detector

Message Queue

Application
layer

N/W
layer

System
layer

D1 D2

D3 D4CT

Application
layer

N/W
layer

System
layer

D1 D2

D3 D4CT

Application
layer

N/W
layer

System
layer

D5

D3 D4CT

CT Connection Tracker

Keys

Slide 8/20DCSL, Purdue University

CODDS Components
• Elementary Detectors (EDs): Specialized detectors distributed through the

system
– The EDs maybe off-the-shelf and minimal change is required for integration

into CODDS
– Different hosts may have different configurations of EDs

• Message Queue (MQ): Communication layer for multiple CODDS components
– Secure through a shared key and hash digest

• Connection Tracker (CT): Kernel level entity to track which process has active
connection on which port

• Manager: Workhorse of CODDS responsible for collating alerts from EDs and
generating a combined alert which is expected to be more accurate
– Can take into account local alerts from individual hosts to make a global

determination

Slide 9/20DCSL, Purdue University

Manager Architecture
• Manager communicates with other entities through MQ and has shared key with

each ED
• Manager components are

– Translation engine: Translates native alert formats into CODDS format
– Event dispatcher: Dispatches the event to the appropriate host’s Inference

Engine instance
– Inference Engine: Matches the received events against the Rule Objects to

come up with a determination of disruption.
• A separate instance of the Local Inference Engine for each host
• A Global Inference Engine for correlating the results from the local

engines
• Rule Objects store the rules, one for each class of disruption

– Combining Engine: If multiple types of inference engine, this combines the
detection decision from each

Slide 10/20DCSL, Purdue University

Manager Architecture

Host 1

Rules

Inference
Engine

Host 2 Host N

………….

Event Dispatcher

From ED

Translation Engine

Rules

Global Inference
Engine

Combining Engine

Rules

Inference
Engine

Combining Engine

Rules

Inference
Engine

Combining Engine

Combining Engine

Host 1

Rules

Inference
Engine

Host 2 Host N

………….

Event Dispatcher

From ED

Translation Engine

Rules

Global Inference
Engine

Combining Engine

Rules

Inference
Engine

Combining Engine

Rules

Inference
Engine

Combining Engine

Combining Engine

Slide 11/20DCSL, Purdue University

Graph-Based Inference Engine

A

B

C

D

E

2

1

2

4

1

Rule Object #1

S
3 A

B

C

D

E

2

1

2

4

1

Rule Object #1

S
3

•Rules are represented as
graphs
•Nodes are events and Edges
represent sequencing of events
•Edge weights represent
assurance values indicating
likelihood of sequence

• Assurance Value (AV) for a disruption given by sum of edge weights
• An event is matched with a rule object if it is fusionable, i.e., belongs to the

same disruption instance
• Discounted Assurance Value (DAV) for partial matches

)DAV AV Partial path length Complete path length= ×(⁄

Slide 12/20DCSL, Purdue University

Bayesian Network Based Inference Engine
• In a Bayesian Network, the nodes represent random variables and edges the

direct influence of one variable on another
• Three step process for creating rule object

– Nodes to represent events
– Edges to represent conditional probability relations among the events
– Creation of table with conditional probability values

OpenSSL
Attack

1100

Snort

1101

LibSafe

1002

SIGSEGV

1004

0.90.1TRUETRUE

0.20.8TRUEFALSE

0.70.3FALSETRUE

0.10.9FALSEFALSE

TRUEFALSE

LibSafe
SnortOpenSSL

Attack

0.90.1TRUETRUE

0.20.8TRUEFALSE

0.70.3FALSETRUE

0.10.9FALSEFALSE

TRUEFALSE

LibSafe
SnortOpenSSL

Attack

0.70.3TRUE

0.30.7FALSE

TRUEFALSE

Snort
OpenSSL

Attack

0.70.3TRUE

0.30.7FALSE

TRUEFALSE

Snort
OpenSSL

Attack • Bayesian Network
toolbox used for solving
• Input is fusionable event
stream
• Output is conditional
probability of root (the
disruption)

Slide 13/20DCSL, Purdue University

CODDS System: Current Implementation

A p a ch e w eb
serv er

L ib sa fe
S n o rt

S y sm o n ito r

C o u n term ea su re
a g en t

M a n a g er

N etfilter

E x te rn a l
N e tw o rkIn te rn a l N e tw o rk

L in u x K ern e l

B lu e : n e tlin k
R ed : O S A P I & in te rface
G reen : m essag e q u eu e lib ra ry

: D is ru p tio n T o leran ce
d e tec tio n co m p o n en t

: D is ru p tio n T o le ran ce
resp o n se co m p o n en t

: D is ru p tio n T o le ran ce
m an ag em en t co m p o n en t
A rro w s

A p a ch e w eb
serv er

L ib sa fe
S n o rt

S y sm o n ito r

C o u n term ea su re
a g en t

M a n a g er

N etfilter

E x te rn a l
N e tw o rkIn te rn a l N e tw o rk

L in u x K ern e l

B lu e : n e tlin k
R ed : O S A P I & in te rface
G reen : m essag e q u eu e lib ra ry

: D is ru p tio n T o leran ce
d e tec tio n co m p o n en t

: D is ru p tio n T o le ran ce
resp o n se co m p o n en t

: D is ru p tio n T o le ran ce
m an ag em en t co m p o n en t
A rro w s

Web Client
Web

Server
Appl.
Server

Database

1. Create profile
2. Browse catalog
3. Create shopping cart
4. Check out shopping cart

Slide 14/20DCSL, Purdue University

CODDS Elementary Detectors

• Application level: Libsafe. Middleware to intercept “unsafe” C function calls
and prevent stack overflow attacks.

• Network level: Snort. Sniffs on incoming network packets and matches against
rulebase to perform misuse based detection.

• Kernel level: Sysmon. Home-grown new detector.
– Intercepts system calls for file accesses and executions.
– Takes a set of rules for disallowed accesses or executions

• Can be specified using wildcards or directory tree
– Intercepts signals of interest that can flag illegal operations.

• SIG_SEGV to indicate segmentation violation that may be caused by
buffer overflow

Slide 15/20DCSL, Purdue University

Simulated Disruptions
• Disruptions which are of type intrusions are simulated for our experiments.
• Three classes of disruptions, multiple types within each class, and multiple

variants within each type
– Buffer overflow: Can be used to overwrite parts of stack and write and

execute malicious code
• Apache chunk attack
• Open SSL attack

– Flooding: Overwhelm the network with redundant or malicious packets
causing a denial of service

• Ping flood
• Smurf

– Script based: Exploit poorly written scripts which do not do input validation
to execute arbitrary commands

• Used unchecked open() and system() calls

Slide 16/20DCSL, Purdue University

Results: Performance – Without Disruptions
• Measured without and with disruptions
• 30 web clients running concurrently
• Transactions per second of workload transaction measured
• When multiple EDs present, manager with both Inference Engines is deployed

13.21

12.88
12.76

12.66 12.72

12.52
12.61

12.47

12.88 12.82
12.73 12.69

12.00

12.40

12.80

13.20

13.60

No detector Libsafe Sysmon Snort Libsafe +
Sysmon

Sysmon +
Snort

Snort +
LibSafe

LibSafe +
Snort +
Sysmon

(NF) Snort (NF) Snort
+ Libsafe

(NF) Snort
+ Sysmon

(NF)
Libsafe +
Snort +
Sysmon

T
ra

ns
/s

ec

No Disruption
• Degradation overall: 3.95% with Snort rules modified, 5.60% without
• Degradation due to Sysmon alone: 3.46%

Slide 17/20DCSL, Purdue University

Results: Performance – With Disruptions

• OpenSSL Attack performance degradation is 6.33%
• Chunk Attack performance improves!!!

– Having Libsafe prevents core dumping
• Highest performance degradation due to Matlab Bayesian Network toolbox

11.19

12.30

13.13

12.30

10.00

11.00

12.00

13.00

14.00

No ED All EDs No ED All EDs

Chunk Attack Chunk Attack Open SSL Attack Open SSL Attack

T
ra

n
s/

se
c

Slide 18/20DCSL, Purdue University

Results: Accuracy of Detection
Snort Libsaf

e
Sysmon
(Signal)

Sysmon
(File)

CIDS

No attacks Yes (1807,1933) No No No No attack

Open SSL Yes (1881,1887) No Yes R1 Yes

Open SSL variant No No Yes R1 Yes

Apache Chunk Yes (1807,
1808, 1809)

Yes Yes R1 Yes

Smurf 1000 Yes (499) No No No Yes

Smurf 500 No No No No No

Ping Flooding Yes (523, 1322) No No No Yes

Script No No No Yes Yes

• Yes: Detected. Figures in parentheses are the rule numbers within Snort.
Sysmon(File) is the file access detection part, Sysmon(Signal) is the illegal
signal detection part; R1: The attack was not successful in creating a file.

Slide 19/20DCSL, Purdue University

Disruption Containment & Response
• Representation model used is Disruption DAG
• Algo #1: Compute the Compromised Confidence Index (CCI) of each node and

classify it as candidate for response
• Algo #2: Decide on response based on CCI of node, Disruptivity Index (DI) of

response and Effectiveness Index (EI) of response action
A1

B1 C1

D1 Y1

V1 X1

Z1 M

A2

B2 C2

X Y

D2

X2 Y2

AND arc

OR arc

{S3,S4,S5}ESS

{S1,S2}CSS

4R4NC

3R3VWC

2R2WC

1

Disruptivity
Index

R1SC

ResponseNode
Class

Response Table

Slide 20/20DCSL, Purdue University

Conclusion
• Goal is to provide tolerance for causes of system downtime, be it natural failures

or malicious intrusions
• Detection is the first phase and is best done by using multiple specialized

detectors and combining their alerts into a system wide alert
• The combined alert is shown to be more accurate and efficient
• A CODDS Manager designed for the system
• A distributed e-commerce based platform used for demonstration
• Simply detection is not enough, containment and response are subsequent

phases that are also important

