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What is Disruption Tolerance?
• Causes of system downtime 

– Naturally occurring failures: hardware, software, interfaces
– Malicious intrusions: internal, external

• Disruption = Failure + Intrusion
• Similarities in approach to tolerate the two causes

– Both cause system to be unavailable or degraded in functionality
– Sometimes root cause cannot be distinguished
– Sometimes response is identical (e.g., take component offline and bring in a 

diverse spare)
• Dissimilarities in approach to tolerate the two causes

– Number of coincident events
– Counter-response
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Motivation
• Handling failures and intrusions under same framework gives the following 

advantages
– Reduce overhead: Example – A separate detection routine for each sub-

system is not required
– Leverage synergy between two actions: Example – A component that is 

compromised due to an intrusion need not be recovered from a natural fault
• What is tolerating disruption?

– Not enough to simply detect: Large volume of intrusion detection systems, 
error detection protocols

– Need to address the other phases of the process: Diagnosis, Containment, 
Response

– The phases are closely coupled in their cost metrics: A pinpointed diagnosis 
reduces the cost of recovery
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Our Approach: Adaptive Disruption Tolerant 
System (ADTS)
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Disruption Detection
• Initial phase of disruption tolerance process
• Based on previous approach to intrusion detection systems (IDS)
• IDSs are based on two alternative choices

– Anomaly based: Specify the normal behavior
– Misuse based: Specify the patterns of attacks

• Metrics for evaluating IDSs
– False positives, or False alarms
– False negatives, or Missing alarms

• Our approach: Collaborative Disruption Detection Systems (CODDS)
– Multiple detectors specialized for different parts of system
– Manager infrastructure for combining alarms from multiple detectors
– Rulebase at manager to decide on appropriate response
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CODDS Approach
• Motivation

– Single IDS can have false positives (false alarms) or false negatives (missed 
alarms)

– Single IDS is specialized for certain kinds of attacks
– Timing based correlation from multiple detectors may indicate useful 

characteristics of attack such as propagation speed
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CODDS Components
• Elementary Detectors (EDs): Specialized detectors distributed through the 

system 
– The EDs maybe off-the-shelf and minimal change is required for integration 

into CODDS
– Different hosts may have different configurations of EDs

• Message Queue (MQ): Communication layer for multiple CODDS components
– Secure through a shared key and hash digest

• Connection Tracker (CT): Kernel level entity to track which process has active 
connection on which port

• Manager: Workhorse of CODDS responsible for collating alerts from EDs and 
generating a combined alert which is expected to be more accurate 
– Can take into account local alerts from individual hosts to make a global 

determination
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Manager Architecture
• Manager communicates with other entities through MQ and has shared key with 

each ED
• Manager components are 

– Translation engine: Translates native alert formats into CODDS format
– Event dispatcher: Dispatches the event to the appropriate host’s Inference 

Engine instance
– Inference Engine: Matches the received events against the Rule Objects to 

come up with a determination of disruption. 
• A separate instance of the Local Inference Engine for each host 
• A Global Inference Engine for correlating the results from the local 

engines
• Rule Objects store the rules, one for each class of disruption

– Combining Engine: If multiple types of inference engine, this combines the 
detection decision from each
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Manager Architecture
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Graph-Based Inference Engine
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•Rules are represented as 
graphs
•Nodes are events and Edges 
represent sequencing of events
•Edge weights represent 
assurance values indicating 
likelihood of sequence

• Assurance Value (AV) for a disruption given by sum of edge weights
• An event is matched with a rule object if it is fusionable, i.e., belongs to the 

same disruption instance
• Discounted Assurance Value (DAV) for partial matches

)DAV AV Partial path length Complete path length= ×(   ⁄   
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Bayesian Network Based Inference Engine
• In a Bayesian Network, the nodes represent random variables and edges the 

direct influence of one variable on another
• Three step process for creating rule object

– Nodes to represent events
– Edges to represent conditional probability relations among the events
– Creation of table with conditional probability values
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CODDS System: Current Implementation
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CODDS Elementary Detectors

• Application level: Libsafe. Middleware to intercept “unsafe” C function calls 
and prevent stack overflow attacks.

• Network level: Snort. Sniffs on incoming network packets and matches against 
rulebase to perform misuse based detection.

• Kernel level: Sysmon. Home-grown new detector.
– Intercepts system calls for file accesses and executions.
– Takes a set of rules for disallowed accesses or executions

• Can be specified using wildcards or directory tree
– Intercepts signals of interest that can flag illegal operations.

• SIG_SEGV to indicate segmentation violation that may be caused by 
buffer overflow
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Simulated Disruptions
• Disruptions which are of type intrusions are simulated for our experiments.
• Three classes of disruptions, multiple types within each class, and multiple 

variants within each type
– Buffer overflow: Can be used to overwrite parts of stack and write and 

execute malicious code
• Apache chunk attack
• Open SSL attack

– Flooding: Overwhelm the network with redundant or malicious packets 
causing a denial of service

• Ping flood
• Smurf

– Script based: Exploit poorly written scripts which do not do input validation 
to execute arbitrary commands

• Used unchecked open() and system() calls
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Results: Performance – Without Disruptions
• Measured without and with disruptions
• 30 web clients running concurrently
• Transactions per second of workload transaction measured
• When multiple EDs present, manager with both Inference Engines is deployed
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Results: Performance – With Disruptions

• OpenSSL Attack performance degradation is 6.33%
• Chunk Attack performance improves!!!

– Having Libsafe prevents core dumping
• Highest performance degradation due to Matlab Bayesian Network toolbox 
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Results: Accuracy of Detection
Snort Libsaf

e
Sysmon 
(Signal)

Sysmon 
(File)

CIDS

No attacks Yes (1807,1933) No No No No attack

Open SSL Yes (1881,1887) No Yes R1 Yes

Open SSL variant No No Yes R1 Yes

Apache Chunk Yes (1807, 
1808, 1809)

Yes Yes R1 Yes

Smurf  1000 Yes (499) No No No Yes

Smurf  500 No No No No No

Ping Flooding Yes (523, 1322) No No No Yes

Script No No No Yes Yes

• Yes: Detected. Figures in parentheses are the rule numbers within Snort. 
Sysmon(File) is the file access detection part, Sysmon(Signal) is the illegal 
signal detection part; R1: The attack was not successful in creating a file.
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Disruption Containment & Response
• Representation model used is Disruption DAG
• Algo #1: Compute the Compromised Confidence Index (CCI) of each node and 

classify it as candidate for response
• Algo #2: Decide on response based on CCI of node, Disruptivity Index (DI) of 

response and Effectiveness Index (EI) of response action
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Conclusion
• Goal is to provide tolerance for causes of system downtime, be it natural failures 

or malicious intrusions
• Detection is the first phase and is best done by using multiple specialized 

detectors and combining their alerts into a system wide alert
• The combined alert is shown to be more accurate and efficient
• A CODDS Manager designed for the system
• A distributed e-commerce based platform used for demonstration
• Simply detection is not enough, containment and response are subsequent 

phases that are also important


