
Slide 1/50

 Achieving High Survivability in Distributed
Systems through Automated Response!

Yu-Sung Wu
Dependable Computing Systems Lab (DCSL) &

The Center for Education and Research in Information Assurance and
Security (CERIAS)

School of Electrical and Computer Engineering
Purdue University

Slide 2/50

Survivable Systems and Intrusion Response!
•  Modern life heavily depends on computer systems

– An inter-connected world
– Physical boundaries disappearing

•  Intrusions/security attacks to these systems occur
– Malware / botnet / sophisticated attacks against organizations

•  GhostNet – a suspected cyber espionage network of over 1,295 infected
computers in 103 countries (30% of which are high-value targets) in
2009

Slide 3/50

Survivable Systems and Intrusion Response

•  Ways to make a system survivable

– At design/implementation phase
•  Eliminate vulnerabilities
•  Policy / Access Control / Cryptography / Software Engineering

– Challenge : “User Friendliness” (e.g. everybody likes User Access
Control in Windows Vista or SELinux ?)

–  In production phase
•  Use IDS to identify misuses/anomalies

–  system logs checking / system call hooking / network packet
sniffing / virus scanning / VMM-based root kit detection..

•  Perform incident/intrusion response
– Containment and Recovery
– Stay transparent under normal operations
–  Intervene only when attacks are detected

Intrusion Response System
(focus of this work)

Slide 4/50

Existing Automated Response System

•  Traditional Anti-Virus (AV) Product

–  Scan / Quarantine virus-infected files

•  Host-based Intrusion Prevention System (HIPS)
–  An integration of (host-based) firewall, system-level action control,

vulnerability detection and sandboxing on top of a traditional AV product.
–  Monitor malicious activities

•  virus, probing from network, attempt to modify critical entries in system
registry, visiting phishing websites…

–  Response actions
•  Block access to known phishing websites
•  Quarantine infected files
•  Lock-up internet connection
•  Request user permission to continue on with suspicious activities

–  Norton 360, McAfee Total Protection, TrendMicro Internet Security Pro…

Slide 5/50

Existing Automated Response System

•  Network-based IPS (NIPS)

–  A purpose-built hardware/software to inspect network traffic
•  Content-based detection

–  worm infections / hacks…
•  Rate-based detection

–  for denial of service attack
•  Protocol-analysis

–  existence of large amount of data in the User-Agent field of an HTTP
request,…

–  Constantly engaged proactive response actions
•  Rate-limiting, traffic sanitization, IP address / port-number black/whilte-listing

–  Reactive response actions
•  Drop connection, terminate session, update firewall rules

–  Cisco IPS 4200 Series, 3Com Unified Security Platforms, Juniper SSG, …

Slide 6/50

•  Stand-alone systems / Minimal collaboration among IDS/
IPS boxes.
– Attacks against distributed systems cause correlated damages to

multiple system components.
– Correlation of alerts improves both the detection accuracy and

the understanding of an attack in distributed systems

Existing Automated Response System:
Shortcomings

Slide 7/50

•  Static mapping between detector and response action
–  Example: If “/bin/sh” is detected in network traffic (potential attempt to

create a shell), then “black-list the source IP”.
•  What if the response is not effective? What if it’s a false alarm? What if the

created shell only has limited privilege and is not really harmful?

•  Pure NIPS or pure HIPS strategy is often not desirable
–  NIPS alone at the perimeter of a system

•  Limited view of attack manifestations
•  False alarm can cause degradation of system performance
•  Some organizations are interested in letting attack keeps propagating into the

system till a point when significant damage is imminent

–  HIPS alone inside the system
•  Rely on host data for detection
•  More intrusive to applications
•  Last line of defense

Existing Automated Response System:
Shortcomings

Slide 8/50

Thesis Statement	

•  BASELINE Model of Automated Response in Distributed Systems

–  A collection of (detectors, response actions) pairs :
•  {(D1,R1), (D2,R2),…, (Dk,Rk), …, (DN,RN)}

–  For each pair, a mapping fk : Dk→Rk

–  fk is designed based on expert knowledge
•  Proposed Model of Automated Response in Distributed Systems

–  The set of all the detectors D and the set of all the response actions R

–  History of past attacks H
–  A mapping f : (D,H) →R
–  f is designed to maximize expected system survivability based on the

information accumulated in H and detectors D
–  f is designed to tolerate new types of attacks

Slide 9/50

Thesis Statement	

•  Evidence is proposed to show the validity of the

following hypotheses:
– The proposed model describes a set of responses, from which

the expected system survivability is the upper bound of the
expected system survivability from any set of responses
generated from the BASELINE model.

–  In a practical system, it is possible to identify cases when the
proposed model yields a higher system survivability than the
BASELINE model.

–  It is possible that the use of history information in the proposed
model can further improve system survivability.	

Slide 10/50

Contribution (till Prelim)

•  A Unified Framework for Automated Response in

Distributed systems
– Our system provides an integration over “detectors” found in

existing IDS systems and “response actions” found in existing
IPS systems.

•  Enable the collaboration of IDS / IPS technologies originally scattered
across a system

•  Dynamic Automated Response
– The binding between detectors and response actions are

determined dynamically based on
•  severity of the attack
•  the effectiveness of response
•  the cost of response

•  => ADEPTS

Slide 11/50

Contribution (post Prelim)

•  Adaptive Automated Response

–  Estimate the actual escalation of attack steps
•  avoid unnecessary responses

–  Estimate the effectiveness of response actions
•  avoid ineffective responses

•  Response for Attack Variants
–  Use history of past similar attacks to improve response for new attack

variants
•  Optimality of Response Actions

–  To quantify how good a set of response actions from an IRS is
–  How to generate a set of (close to) optimal response actions in the runtime

•  Response for Zero-day Attacks
–  Online attack graph generation based on system configuration and alerts
–  Conceptualization of attack graphs

•  => SWIFT & ORIGIN (Zero-day Attacks)

Slide 12/50

Attack Model!
•  Multi-step (multi-stage) attack

– Attack originates outside the network
– Each step achieves certain privilege on a service
– Elevated privilege is used to compromise a connected service
– Ultimately some end goal is sought to be achieved

•  gaining read access to the credit card database
•  launching a DDoS to a targeted victim

Slide 13/50

Multi-Stage Attack Example!

1.  Malware
downloaded
as an e-mail
attachment
to CFO’s
office PC.

1.  Malware
downloaded as
an e-mail
attachement.

2.  CFO opens the
e-mail, and the
malware gets
the CFO’s
security
password
through
keystroke
recording.

1.  Malware
downloaded as an e-
mail attachement.

2.  CFO opens the e-
mail and the
malware gets the
CFO’s security
password through
keystroke recording.

3.  The hacker uses the
CFO’s password to
transfer money from
the corporate bank
account into his
bank account.

R1
R2

R3

R1: Remove the malware with anti-malware tools.

R2: Change the CFO’s security password.

R3: Freeze the corporate account.

1.  …

2.  …

3.  …

4.  Corporate
account is
emptied.

Slide 14/50

I-GRAPH!
•  An attack graph that models all potential (worst-case scenario)

attack steps and their causal relations for a target system
–  Can be built with techniques such as Sheyner [S&P’02], Ou [CCS’06], …

Slide 15/50

Attack Snapshot!

IDS Alert	

Attack Snapshot #1	

SSL Module buffer
overflow in Apache

host 1	

Execute arbitrary
code on Apache host

1	

Illegal access to http
document root	

Attack Snapshot #2	

Attack Snapshot #3	

Slide 16/50

Dynamics between attack and responses!
•  Successive attack snapshots created for incoming IDS alerts

a
b c

d

a
b

a
b c

d

f RX RY RZ

X Y Z

b c
d

f
a

v w
y I-GRAPH	

•  Assuming an attack includes three “snapshots” X, Y, and Z
•  Each snapshot includes I-GRAPH nodes which have been achieved as part of the

attack thus far
•  Following each snapshot k, SWIFT determines a response combination Rk (a set of

response actions) to deter the escalation

h

h

Slide 17/50

Impact Vector!
•  A system has transaction goals and security goals that it needs to

meet through the time of operation
–  Example: provide authentication service & preserve privacy of sensitive

data
•  Attacks are meant to impact some of these goals
•  Deployed responses also impact some of these goals

–  For example, by temporarily disabling some functionality for legitimate
users as well

•  Assume the impact can be quantified through a vector Iv
–  Each element in the Iv corresponds to the impact on each transaction/

security goal ∈ [0, ∞]

v1	

 v2	

 vk	

 vk+1	

 vm	

Impact on system transactions Impact on system security goals

Iv	

Slide 18/50

Optimality of Response Actions!
•  We formally define the cost for a response combination

(a set of response actions) RCi as:

•  The response combination RCi is said to be optimal for a
given attack if it achieves the minimal Cost(RCi)
–  In ADEPTS, optimality achieved “per node and per out-going

edge”

Iv(nk) : Impact from reaching an attack step node nk	

Pr(nk): Probability of reaching node nk	

Iv(rk) : Impact from deploying the response rk	

Slide 19/50

Determine Pr(nk): Compromised Confidence Index!
•  Goal is to determine the probability of each attack step being

achieved

na	

Detector x Detector y
e.EPF 	

For an edge e connecting node na to nb in I-GRAPH with response r : 	

r	

e.EPF : The edge propagation factor of edge e. This models an adversary’s likelihood of
taking this edge	

nb	

Slide 20/50

Determine Pr(nk): Bayesian Inferencing!

n3. Attack Step 3

n2. Attack Step 2

n1. Attack Step 1

rx. Response X

ry. Response Y

n2 T F

ry T F T F

n3=T 0.2 0.9 0 0

n1 T F

rx T F T F

n2=T 0.3 0.8 0 0

n1=T 0.2

rx=T 0.4

ry=T 0.5

Slide 21/50

•  Limit the response search space for a snapshot s to a subset of I-
GRAPH, namely the Domain Graph D(s)

•  D(s) includes critical nodes from I-GRAPH
–  A node n is critical if |Prob(n)*Iv(n)| is greater than a given threshold
–  Also include nodes on the path leading to critical nodes

Domain Graph!

a

b c

d

e
f

h

j

k

g

i
The current
snapshot s

(achieved attack
steps)

Domain Graph D(s)

: achieved

: non-achieved / non-critical
: non-achieved / critical

Slide 22/50

Utilize History from Similar Attack	

•  Variations in attacks are common

1a. Backdoor
malware via

drive-by
download	

1b. Backdoor
malware via
P2P Sharing	

2. Backdoor
malware
executed	

2. Backdoor
malware
executed	

3. Unauthorized
Remote login	

3. Unauthorized
Remote login	

rx	

rx	

ry	

ry	

rx : Disallow execution of the downloaded file	

ry : Block connections from external network	

Slide 23/50

Utilize History from Similar Attack	

•  Similarity of Attack Snapshots

•  History information from a similar attack snapshot
– EI values of responses
– EPF values of edges
– Effective Response Combinations

Slide 24/50

Summary of the process in SWIFT!

Detection
framework

Attack Graph
for attack k

Create new
snapshot or load

snapshot from ATL

sN

Create Domain Graph
Identify Similar

Attack Snapshots
in ATL

Attack Snapshots for Attack k

{s0,D0} → {s1,D1} →…→ {sN-1,DN-1} → {sN,?}

sN

Prepare response
candidates

GA: Populate
Chromosome Pool

Seed good
responses
of sN in pool

{SA(sN)}

DN

GA Solver

Alerts

…

Evaluate effectiveness of
deployed responses
{RC0,RC1,..RCN-1}.

Update {s0,s1,..,sN-1} in ATL

DN

DN

Response
Combination RCN

sN: attack snapshot, DN: domain graph
Edges represent flow of information, encircled numbers in a box represent the temporal ordering in the
execution flow (3 happens before 4, while 3a and 3b are concurrent, BA implies step occurs between attacks)

sN EPF

1 2

3a

3b 4

BA
5

6

Slide 25/50

Approximate O.R.D. with Genetic Algorithm

•  We proved Optimal Response Determination (O.R.D.) to

be NP-hard by mapping the Set Covering Problem to it

Encode the set
RC of responses
applicable within
D(s) into
chromosomes;

Fitness of
chromosome
related to cost

Apply Genetic
Algorithm Solver:
Crossover/
Mutation/Elitism

Pick the best
chromosome (the
best response
combination) as
the approximate
solution to ORD

Preserve the top
chromosomes for
future attacks that
have similar
snapshots as s

Slide 26/50

Experimental Testbed!

•  A three-tier e-commerce system as the reference basis for
constructing attack scenarios

Slide 27/50

Experimental Setup

•  Detectors and Response Actions:

–  SNORT
–  Iptables
–  LIDS (program / file MAC. similar to SELinux)
–  Kill process (the kill command on UNIX-like systems)
–  Bank Credit Card Account Activity Monitor
–  File Access Monitor (log file access that falls outside a pre-defined

white-list)
•  BASELINE (LOCAL RESPONSE)

– Snort is configured to block source IP address, which emanates
malicious traffic via Snort rule action and Iptables

– Bank CC Account Monitor freezes account when suspicious
transaction is detected

–  Mimic what we see as the current mainstream IDS / IPS / IRS
deployment paradigm

Slide 28/50

Two Sample Attack Scenarios

Steps	

 Scenario 0	

 Scenario 1	

0	

 Exploit Apache
mod_ssl buffer

overflow.

Use php_mime_split
(CVE-2002-0081) buffer overflow to

insert malicious code into Apache.

1	

 Insert malicious
code.

'ls' to list webstore document root and
identify the script code informing the

warehouse to do shipments.

2	

Ip/port scanning to

find vulnerable
MySQL server.

Send shipping request to warehouse
and craft the request form so that a
warehouse side buffer overrun bug
fills the form with a victim's credit

card number.

3	

 Buffer overflow
MySQL to create a

shell (/bin/sh).
Unauthorized orders are made. 	

4	

 Use malicious shell
to steal information
stored in MySQL. 	

Slide 29/50

•  Survivability Metric

Name	

 Weight	

Browse webstore	

 10	

Add merchandise to shopping cart	

 10	

Place order	

 10	

Charge credit card	

 5	

Admin work	

 10	

Illegal read of file	

 20	

Illegal write to file 	

 30	

Illegal process being run	

 50	

Corruption of MySQL database	

 70	

Confidentiality leak of customer information
stored in MySQL database	

100	

Unauthorized orders created or shipped	

 80	

Unauthorized credit card charges	

 80	

Cracked administrator password 	

 90	

Transactions

Security Goals

Slide 30/50

Survivability Improvement over Local Responses

Effect of confidentiality attack on survivability Steps	

 Scenario 0	

0	

 Exploit mod_ssl
buffer overflow in

Apache.

1	

 Insert malicious
code.

2	

Ip/port scanning to

find vulnerable SQL
server.

3	

 Buffer overflow
MySQL to create a

shell (/bin/sh).

4	

 Use malicious shell
to steal information
stored in MySQL. 	

Time over the process of injecting 1 attack instance	

ADEPTS initiates killing the
malicious process after step 1. 	

BASELINE Snort/Iptables fails to act
in time to stop the escalation of
attack at step 0~1.	

Slide 31/50

Effect of illegal transactions on survivability Scenario 1	

Use php_mime_split (CVE-2002-0081)
buffer overflow to insert malicious code
into Apache.

'ls' to list webstore document root and
identify the script code informing the
warehouse to do shipments.

Send shipping request to warehouse and
craft the request form so that a
warehouse side buffer overrrun bug fills
the form with a victim's credit card
number.

Unauthorized orders are made.	

Time over the process of injecting 1 attack instance	

Survivability Improvement over Local Responses

Slide 32/50

ADEPTS v.s. SWIFT on E-Commerce Attack Scenario!

Attack scenarios 3 and 4, used for experimental evaluation.
Dashed box: AS 3, Thick box : AS 4; Thin box: Common to AS 3 and AS 4.
Effectiveness of R60 set erroneously low and others set erroneously high.

Exploit ssldump vuln.
On web server

Access web server
admin site

Brute force admin
password

Ping or traceroute to
webserver 1

Run portscanner on
web server 6

16 18

Copy cracker tool to
webserver 40

Install vuln. scanner
on web server 56

Run port scanner 9 Exploit rpc.statd on
app controller 50

Brute force root pwd.
on app controller 53

14

Copy cracker tool to web
server using tftp 40

Connect to
MySQL 36

Modification queries on
database tables 37

9, 14

14

45 66

71
56,57,71

37, 60 25, 60

6

Dashed line: AS3, Thin solid line: AS3 and AS4, Thick line: AS4

Slide 33/50

ADEPTS v.s. SWIFT on E-Commerce Attack Scenario

•  SWIFT has consistently lower |Iv| than ADEPTS
•  For AS3, ADEPTS’ performance is wildly fluctuating since it deploys responses

close to nodes that are achieved
–  Such responses can fail more often due to insufficient time for full deployment

•  For AS4, the performance of SWIFT and baseline are closer
–  There are more local responses available

AS3	

 AS4	

Slide 34/50

Response for Attack Variants!
(a) Execute AS4 15 times, then execute AS3; (b) Execute AS3 15 times, then

execute AS4

•  Difference lies in resilience to first attack instance
•  Lower |Iv| implies SWIFT would be able to respond better to damaging attacks, if

an attack with shared stages has been observed before

(a)	

 (b)	

AS3

Slide 35/50

ORIGIN : Response for Zero-day Attacks

•  Challenge

–  Zero-day attacks exploit unknown vulnerabilities
•  Assume “generic” detectors can pick up some of the attack stages

–  Buffer overflow detectors / Array bounds check (Java, C#, …)
–  Application level detector (e.g. excessive # of failed logins)
–  Deletion / modification of key system files / registry

•  Contributions
–  Online modeling of Zero-day attacks from detectable attack stages

•  Can’t assume an I-GRAPH encompassing all possible zero-day attacks
–  Conceptualization: abstract the knowledge in ATL to deal with Zero-day

attacks
•  Many zero-day attacks bear similar concepts from past attack: Example:

implanting malware => stealing credentials => unauthorized activity

Slide 36/50

Online modeling of Zero-day Attack

•  Define an attack stage as a pair of (detector alert D, component C)

–  Literally, receiving alert D from a detector associated with component C in
the protected system.

•  An object-oriented description of the configuration of the protected
system
–  Components in the system
–  Detectors associated with components
–  Connection flows between associated components/detectors

•  Information flow
•  Privilege propagation flow

•  Generate attack graph for an ongoing attack in the runtime

Slide 37/50

Conceptualization of Attack Graph

•  Conceptualize the component and the detector alert for

each Attack Stage.

Base	

OS	

File	

PasswdShadow
Files	

NFS
Files	

GotEffect	

DoS	

NetworkDoS	

ContentChange	

UpdateFiles	

CreateFiles	

Base	

C : PasswdShadow Files	

D : UpdateFiles	

C_Lv: 3
D_Lv: 4	

C : PasswdShadow Files	

D : ContentChange	

C_Lv: 3
D_Lv: 3	

C_Lv: 2
D_Lv: 3	

C : File	

D : ContentChange	

C_Lv: 2
D_Lv: 2	

C : File	

D : GotEffect	

Slide 38/50

Conceptualization of Attack Graph!
•  Conceptualized attack may match with an attack in the

ATL

JavaArraryIndexOutO
fBoundException /

Account Applet

DBDataInconsist /
MySQL

DoS / Account Applet

r1
r2

Mem Error /
Program

ContentChange /
Program

DoS / Program
r1 r2

Heap Overflow /
Tomcat

Delete Files / MySQL DoS / MySQL
r1 r2

Conceptualized attack graph

r1: Disable connection from tomcat/applet
to MySQL

r2: Rollback to last data files
checkpoint

A1:

A2:

AC:

Slide 39/50

ORIGIN / Response for Zero-day Attacks

•  Experiment Overview

– Use three attack scenarios which bear similarities after being
conceptualized

•  MIT LLDoS (used in many attack graph publications)
•  MalExec (Ou CCS’06)
•  ModSSL (synthetically created with EPF / EI parameters contradicting

with the other two scenarios)

– Compare |Iv| with/without conceptualization
•  SWIFT and ADEPTS perform almost like BASELINE

– The topologies of zero-day attacks are assumed non-existent in the
I-GRAPH.

– ORIGIN does not use pre-built I-GRAPH
– Response EI tuning in SWIFT and ADEPTS is the only advantage

from our IRS over a BASELINE

Slide 40/50

Response for Zero-day Attacks	

Running LLDoS with No conceptualization	

from MalExec	

Slide 41/50

Response for Zero-day Attacks	

Running MalExec with No conceptualization	

from LLDoS	

Slide 42/50

Response for Zero-day Attacks	

Running LLDoS with conceptualization	

from MalExec	

Slide 43/50

Response for Zero-day Attacks	

Running MalExec with conceptualization	

from LLDoS	

Slide 44/50

Response for Zero-day Attacks	

Running MalExec with conceptualization	

from ModSSL	

Slide 45/50

Response for Zero-day Attacks	

from ModSSL	

Running MalExec with No conceptualization	

Slide 46/50

Conclusion!
•  Propose a unified framework of dynamic and adaptive

automated response system for distributed systems
–  Improved survivability over existing baseline solution

•  Define a framework to reason about and approach the
optimality of responses
– Further improved survivability by finding and deploying

globally optimized response

•  Use conceptualization to utilize history from past attacks
to achieve effective responses to Zero-day Attacks

Slide 47/50

Further Work!

•  Share history information about attacks across systems
– Similar to sharing virus / malware signatures nowadays
– Aim to shorten / eliminate the adaption phase

•  Conceptualization can hurt
– This occurs when using poisonous history from a

conceptualized past attack whose characteristic is actually very
different from the current one being handled

Slide 48/50

Response for Zero-day Attacks	

•  AS : MIT LLDoS	

1. Stack Buffer
Overflow in
Sadmind at X	

2. Cat entry
into passwd /
shadow at X	

3. Telnet into
X	

4. Install DoS
code on X	

5. Launch DoS

to Y	

A. Kill Sadmind	

B. Disable write
access to passwd /

shadow	

C. Disable read
access from

passwd / shadow	

M. Kill Telnetd	

F. Iptables block
connection [machine

(running DoS code) to
X’s gateway]	

E. Iptables block
connection [X’s
gateway to Y’s

gateway]	

D. Iptables block
connection [Y’s

gateway to the DoS
victim in Y]	

Slide 49/50

Response for Zero-day Attacks	

•  AS : MalExec

•  AS : ModSSL	

1. Heap Buffer
Overflow in

Apache	

2. Upload malware
to NFS Server	

3. Workstation user
executes malware	

G. Kill Apache	

 H. Disable write
access to NFS	

J. Iptable block
connection [WebServer

to NFS]	

I. Disable read
access from NFS	

K. Iptable block
connection [NFS to

Workstation]	

1. Stack Overflow
in mod_ssl at X	

 2. Spawn a shell

child process at X	

L. Kill Apache	

Slide 50/50

Proof of Thesis Statement #1	

