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Abstract

Efficient 3D perception is critical for autonomous systems—self-
driving vehicles, drones—to navigate safely in dynamic environ-
ments. Accurate 3D object detection from LiDAR data must handle
irregular, high-volume point clouds, variable latency from con-
tention and scene complexity, and tight embedded GPU constraints.
Balancing accuracy and latency under dynamic conditions is crucial,
yet existing frameworks like Chanakya [NeurIPS ’23], LiteReconfig
[EuroSys ’22], and AdaScale [MLSys ’19] struggle with the unique
demands of 3D detection. We present Agile3D, the first adap-
tive 3D system integrating a cross-model Multi-branch Execution
Framework (MEF) and a Contention- and Content-Aware Reinforce-
ment Learning-based controller (CARL). CARL dynamically selects
the optimal execution branch using five novel MEF control knobs:
encoding format, spatial resolution, spatial encoding, 3D feature
extractor, and detection head. CARL uses supervised training for
stable initial policies, then Direct Preference Optimization (DPO) to
finetune branch selection without hand-crafted rewards, presenting
the first application of DPO to branch scheduling in 3D detection.
Comprehensive evaluations show that Agile3D achieves state-
of-the-art performance, maintaining high accuracy across varying
hardware contention levels and 100-500 ms latency budgets. On
NVIDIA Orin and Xavier GPUs, it consistently leads the Pareto
frontier, outperforming existing methods for efficient 3D detection.

CCS Concepts

• Computer systems organization→ Embedded software; •
Computing methodologies → Computer vision problems; •
Human-centered computing → Ubiquitous and mobile com-

puting systems and tools.
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1 Introduction

3D object detection is essential for applications such as autonomous
vehicles, delivery drones, robotics, and AR/VR systems, enabling
safe navigation and obstacle avoidance [2, 28, 56]. LiDAR technol-
ogy, which generates 3D point clouds, forms the foundation of these
systems. However, processing high-volume, irregular point cloud
data on resource-constrained embedded hardware, such as NVIDIA
Jetson boards, is challenging [1, 44]. The challenge is exacerbated
by dynamically fluctuating resource contention, making it critical
to balance accuracy and latency in autonomous systems.

Unlike 2D object detection models that leverage structured im-
age data with stable latency of CNN-based models, 3D detection
must contend with the irregularity and sparsity of point clouds,
requiring specialized encoders for voxelization and sparse con-
volutions. These operations significantly increase computational
demands, leading to latency variability. For instance, the latest 3D
model, DSVT [53], requires 13 TFLOPs of computation per sec-
ond, far exceeding the NVIDIA Orin GPU’s theoretical peak of 5.3
TFLOPs [22], and even more so for less powerful platforms like the
NVIDIA Xavier (~1.4 TFLOPs). In practice, real-world deployments
rarely achieve peak performance due to resource sharing among
concurrent applications, exacerbating latency unpredictability and
complicating latency constraints like the 10-20 Hz acquisition rates
of modern LiDAR systems [3, 45]. This gap highlights the need for
adaptable 3D detection solutions optimized for resource and latency
constraints, especially in cost- and energy-sensitive scenarios.
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Significant progress has been made in developing 3D object
detection models. Early works such as PointNet [32] and Point-
Net++ [33] pioneered feature extraction from point clouds, while
two-stage models like PV-RCNN [42] combined voxelization and
point-wise feature abstraction to enhance detection accuracy. Fully
trainable models, including VoxelNet [69] and SECOND [60], im-
proved representational capabilities, whereas efficiency-focused de-
signs like PIXOR [61] and PointPillar [23] reduced inference latency.
Advanced detection heads like CenterPoint [64] and Part-𝐴2 [43],
alongside transformer-based architectures like DSVT [53], have
further pushed detection accuracy. Despite recent progress, exist-
ing models are designed and evaluated on server-class GPUs under
ideal conditions, neglecting the resource contention and latency
constraints of real-world applications. For instance, models such as
CenterPoint [64], Part-𝐴2 [43], and DSVT [53] fail to dynamically
adapt to fluctuating resource contention and latency SLOs, falling
short of LiDAR operation rates (10-20 Hz), when deployed on a less
powerful edge device (e.g., the Nvidia Orin GPU).

In parallel, adaptive systems for 2D workloads have been exten-
sively studied recently, focusing on balancing accuracy and latency
under service-level objectives (SLOs) or resource constraints, partic-
ularly in video processing tasks. Representative examples include
Chanakya [15], LiteReconfig [58], and AdaScale [7], designed for
2D object detection in videos. In 2D detection, branch variations1
are typically achieved by tuning hyperparameters within a single
DNN model, without retraining or structural changes. We term
this approach “single model branching,” which enables lightweight
adjustments ideal for 2D workloads by tuning hyperparameters
without retraining. In contrast, “cross-model branching” employs
multiple models to address varying requirements.

Extending these 2D techniques to 3D workloads presents two
major challenges. First, adjustments to parameters like voxel size
require retraining of the model, due to the way such changes funda-
mentally alter the input data representation. For example, variations
in voxel or pillar size affect how the point cloud is divided into grids
(spatial resolution) and how spatial features are encoded. These
shifts disrupt downstream computations, such as sparse convolu-
tions, rendering pre-trainedweights incompatible with themodified
data structure. Consequently, the model must be retrained or ex-
tensively fine-tuned to restore performance, making single-model
branching impractical for 3D systems. This limitation necessitates
cross-model branching for 3D workloads, enabling dynamic adap-
tation to diverse input characteristics and resource constraints. Al-
though cross-model branching increases memory usage, the lower
memory footprint of 3D models (Sec. 3.1.1) makes it both feasible
and advantageous. Second, unlike 2D models that process pixels
defined on regular grids with stable latency, 3D models handle
irregular point clouds, and thus exhibit higher latency variability
under resource contention (Sec. 3.1.2). This key difference leads to
significant variance in latency when executing the same branch
(i.e., the same single model) across different input point clouds
even without contention. Such variability necessitates innovative
scheduling techniques to dynamically select execution branches in
response to changing input content and resource contention.
1A branch is a distinct DNN configuration tuned via hyperparameters (“knobs”) to
ensure consistent latency and accuracy across diverse inputs.

These complexities expose a critical gap: existing frameworks lack

the mechanisms to dynamically adapt 3D object detection to simulta-

neous variations in input content and resource contention. Bridging

this gap demands the development of novel, resource-aware systems

capable of balancing accuracy and latency at runtime, while adher-

ing to stringent SLOs across diverse deployment environments. Such
adaptive 3D detection systems face three key challenges: First,
embedded devices are resource-constrained and often run multiple
applications, leading to resource contention. Second, transitioning
from 2D to 3D detection requires specialized 3D encoders, which
involve operations like voxelization, voxel encoding, and sparse
convolutions, significantly increasing system complexity. Lastly,
systems with tight latency budget must simultaneously handle dy-
namic external conditions (e.g., content variability across scenes and
latency SLOs) and internal constraints (e.g., hardware contention
from co-existing applications).

To address these challenges, we presentAgile3D, the first adap-
tive, contention- and content-aware 3D object detection system tailored

for embedded GPUs. At its core, Agile3D employs a Multi-branch
Execution Framework (MEF) with five novel control knobs: en-
coding format, spatial resolution, spatial encoding method, 3D
feature extractor variants, and detection heads (Sec. 3.3). These
control knobs enable over 50 unique model configurations, allow-
ing the system to adapt its execution strategy based on input data,
resource availability, and system SLOs. Notably, the first four of
these five control knobs are specifically designed for 3D point cloud
object detection, distinguishing Agile3D from previous 2D adap-
tive frameworks [7, 20, 36, 58, 65]. While the MEF facilitates dy-
namic operation, the Contention- and Content-Aware RL-based
(CARL) controller guarantees system adaptability through fine-
grained scheduling. CARL dynamically selects optimal branches
at runtime, addressing variability in input content, hardware con-
straints, and latency SLOs. Traditional RL-based controllers, such
as Chanakya [15], depend on human-designed reward functions,
which often lead to suboptimal results. CARL overcomes this limi-
tation by employing Direct Preference Optimization (DPO) [35], a
method that eliminates the need for manual reward tuning by learn-
ing directly from preference comparisons. While DPO is widely
used in domains like Large language models (LLMs) with human-
labeled “good” and “bad” outputs, CARL adapts this concept for
3D detection by leveraging a heuristic beam search oracle to label
optimal branches. This approach replaces the need for extensive
manual labeling, ensuring efficient training and robust adaptability.
As a result, CARL achieves superior accuracy and adaptability in
complex 3D tasks, even under dynamic runtime conditions.

We evaluate Agile3D on three major benchmarks—Waymo [45],
nuScenes [3], and KITTI [14]—covering diverse scenarios and com-
plexities, using NVIDIA Jetson Orin and Xavier GPUs. Agile3D
consistently achieves high accuracy across latency SLOs (100-500
ms) and contention levels. It outperforms adaptive system con-
trollers such as Chanakya [15] and LiteReconfig [58], and static 3D
models like DSVT [53], CenterPoint [64], and PointPillars [23] by
1-5% accuracy, while adhering to the latency constraints.

We summarize our contributions as follows:
1. We present Agile3D, the first adaptive 3D object detection sys-
tem for embedded GPUs, designed to adapt seamlessly to varying
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contention levels and latency SLOs while maintaining robust perfor-
mance across diverse datasets (e.g., Waymo, nuScenes, and KITTI).
Agile3D leverages five novel control knobs to dynamically opti-
mize latency-accuracy trade-offs, effectively addressing the unique
challenges of 3D object detection.
2. We design and implement two controller variants: a CARL con-
troller for dynamic, high-contention environments and a light-
weight Look-up Table-based controller for contention-free scenar-
ios. The CARL controller combines supervised training with DPO
fine-tuning, eliminating manually tuned rewards and improving ac-
curacy. Using a heuristic beam search, our fine-tuning automatically
labels optimal branches, significantly reducing manual effort.
3. Agile3D delivers significant accuracy gains (1-5%) over state-
of-the-art (SOTA) baselines such as Chanakya [NeurIPS ’23] and
LiteReconfig [EuroSys ’22], while maintaining practical SLOs (100-
500 ms) across varying contention levels. It consistently excels
on diverse datasets and operates efficiently on NVIDIA Orin and
Xavier platforms.

2 Background

2.1 3D Object Detection Algorithms

Point Cloud Data. LiDAR generates unordered, irregular, and
sparse point clouds for spatial mapping [24]. Grid-based methods 2
structure this data through voxelization [69], balancing efficiency
and computational cost. Hard Voxelization (HV) restricts points per
grid cell, while maintaining fixed grid dimensions, causing detail
loss in dense areas. Dynamic Voxelization (DV) removes point-per
cell caps (allowing unlimited points per cell) but retains fixed grid
dimensions. This results in two inefficiencies: dense regions may
retain noise rather than discriminative features; sparse regions
waste computation on empty grid cells.

Local Processing for Sensors. Efficient sensor data processing on
embedded GPUs, like LiDAR and cameras, relies on lightweight
DNNs [18, 19, 25, 47, 55, 67]. While resource-efficient, these models
lack adaptability to dynamic latency SLOs and input variability,
limiting their real-world utility.

2.2 Adaptive 2D Vision Systems

Recent advances in adaptive computer vision systems have focused
on addressing dynamic latency SLOs and adapting to varying lev-
els of resource contention by responding intelligently to input
content characteristics [7, 15, 20, 21, 36, 59, 65]. Configurations
are implemented through dynamic adjustments within a single
model [7, 21, 57] or ensembles leveraging multiple models or ex-
its [11, 51]. Customized lightweight networks tailored to datasets
further enhance efficiency [10]. These methods balance latency
and accuracy, ensuring stable performance under dynamic condi-
tions. While effective for 2D tasks, these approaches face significant
challenges when extended to 3D systems. As discussed in Sec. 3.1,
transitioning to 3D introduces greater computational demands, ir-
regular data structures, and the need for more sophisticated content
reasoning. Unlike 2D systems, where model parameters can be dy-
namically adjusted without retraining, 3D detection often requires
retraining or structural modifications for changes like voxel size.
2Here, “grid” refers to both voxel and pillar formats.

These modifications alter data representations and computation
flows, rendering single-model branching infeasible. Furthermore,
3Dmodels experience higher latency variability under resource con-
tention, complicating stable performance in dynamic environments.
These limitations emphasize the need for novel adaptive mechanisms

specifically designed for 3D detection. Such mechanisms must account

for retraining requirements, fluctuating contention, input variability,

and latency constraints to achieve robust performance.

2.3 RL with Feedback

Reinforcement Learning with Human Feedback (RLHF) [8, 27, 31]
integrates human preferences into LLM training. First, LLMs are
pre-trained on large datasets via unsupervised learning. They are
then fine-tuned using human-labeled data through supervised learn-
ing, followed by further fine-tuning via reinforcement learning that
leverages human feedback. A reward model evaluates outputs, and
RL techniques like Proximal Policy Optimization (PPO) [41] refine
the policy to align with human expectations. Though effective,
RLHF requires a complex pipeline with an auxiliary reward model.
DPO [35] simplifies this by bypassing the reward model, directly
optimizing policy using preference pairs. The model is trained to
favor preferred outputs over less favorable ones via a contrastive
loss function, offering an efficient mechanism for preference-based
optimization. Inspired by RLHF and DPO, we adapt these meth-
ods for multi-branch scheduling in Agile3D. Here, the controller
(analogous to the language model) selects optimal branches under
latency and contention levels. Using preference pairs generated by
an Oracle controller, DPO optimizes branch selection policies with-
out an intermediate reward model, improving system performance
by tailoring LLM-inspired techniques to 3D detection.

3 Motivation and Design

Our work addresses the unique challenges of designing an adaptive
3D object detection system.We demonstrate fourmotivation studies
and present the key challenges in Sec. 3.1, provide an overview of
Agile3D in Sec. 3.2, introduce the cross-model MEF in Sec. 3.3, and
present our contention- and content-aware RL-based controller
design in Sec. 3.4.

3.1 Motivational Studies

3.1.1 2D vs. 3D Detection. To highlight the need for adaptive 3D
systems, we compare structural and latency distribution differences
between 2D and 3D detectors.While 2Dmodels process dense, struc-
tured images, 3D detectors handle unordered, sparse point clouds,
requiring a 3D Encoder for spatial feature extraction, which intro-
duces unique latency and computational demands. Study Setup.

We benchmark widely used 2D models (Faster RCNN [38], Sparse
RCNN [46], Dynamic RCNN [66], SSD [26], YOLOF [5], TOOD [12])
and 3D models (SECOND [60], PointPillars [23], CenterPoint [64]
with CP-Voxel and CP-Pillar variants). Results and Findings. As
shown in Fig. 1, latency distributions differ significantly between
2D and 3D models. In 2D, the Backbone dominates latency (47%-
78%), followed by the Neck (4%-21%) and Detection Head (16%-47%).
For 3D models, the 3D Encoder accounts for 21%-44% of latency,
surpassing the Backbone (15%-36%) in absolute computational de-
mand. This highlights the inefficiency of adaptive 2D techniques
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Figure 1:Comparison of execution time and model size for 2D and 3Dmodels.

3D models require higher computation for point clouds but offer better

memory efficiency, averaging 20.53 MB versus 203.32 MB for 2D models.

Figure 2:Mean latency with standard deviation across branches.

Higher contention increases variability and limits branches

within the 500 ms SLO, emphasizing the need for contention-

and content-aware 3D controls.

Figure 3:Comparison of 3D models—SECOND, PointPillars, CP-Voxel,

and CP-Pillar—at different spatial resolutions. Key insight: No single

model dominates across all latency ranges, motivating the need for

adaptive switching among models.

when applied to 3D systems, as 3D models require specialized en-
coders to process point clouds into structured spatial features. A
counter-intuitive observation is that 3D models are significantly
more memory-efficient than 2D models (purple bars in Fig. 1). 2D
models on COCO average 203.32 MB, whereas 3D models on KITTI
average 20.53 MB—nearly one-tenth the size, despite KITTI point
clouds containing 45% of COCO’s image data volume. This compact-
ness reflects the efficiency of 3D models in leveraging sparse point
clouds and voxelization to capture essential spatial information
with fewer parameters. Unlike 2D models, which process dense
color, texture, and background information, 3D models focus on
spatial structure, efficiently encoding occupied regions and surface
geometry, thereby reducing memory requirements.

3.1.2 High Latency Variance of 3DModels. Maintaining low latency
violations is crucial in autonomous systems to ensure timely re-
sponses across different scenarios. Significant latency variability in
3D models highlights the need for a contention- and content-aware
controller. Study Setup.We measure the latency of all branches3
in the MEF on an embedded GPU under different contention levels.
Contention levels are calibrated as detailed in Sec. 4.4; higher levels
indicate greater resource contention. For each branch, we compute
3In Agile3D, “branch” and “model” are used interchangeably.

the mean latency, standard deviation, and coefficient of variation
(i.e., stddev/mean) to capture stability, with lower values indicat-
ing greater consistency. Results are reported for branches with
mean latencies under 500 ms. Results and Findings. As shown in
Fig. 2, latency variability increases significantly with higher con-
tention levels. The coefficient of variation ranges from 2.62% to
11.91% under no contention, 2.83% to 13.34% under light contention,
1.94% to 14.13% under moderate contention, and 2.13% to 21.38%
under intense contention, with heavier models exhibiting higher
variance. Two types of latency variance are observed: 1. Within-

Branch Variance: Variability caused by differences in input point
cloud density. Dense or cluttered point clouds require more pro-
cessing, increasing latency compared to sparser inputs, worsening
as contention increases. 2. Between-Branch Variance: Differences
arise due to architectural variations across branches. Operations
like grouping, sampling, voxel encoding, and sparse/dense convo-
lution introduce varying computational demands, causing model
latency variability. 3D models exhibit significant latency variability
under resource contention and dynamic inputs. A contention- and
content-aware controller is critical to adapt execution paths, reduce
latency violations, and ensure reliable performance.

3.1.3 Need for Multi-Model Design. In autonomous systems, la-
tency and accuracy requirements vary based on environmental
conditions, system speed, and operational demands. Agile3D is
designed to adapt to these dynamic scenarios, ensuring consis-
tent performance across conditions. Study Setup. We evaluate
four 3D models: SECOND, PointPillars, CP-Voxel, and CP-Pillar,
each tested with five grid sizes on Xavier boards. Results and

Findings. The observed behaviors, shown in Fig. 3, are as follows:
[SECOND]: accuracy 40%-70%, latency 58-143 ms; [PointPillars]: ac-
curacy 52%-65%, latency 53-147 ms; [CP-Voxel]: accuracy 62%-67%,
latency 94-371 ms; [CP-Pillar]: accuracy 53%-63%, latency 74-186
ms. The relationship between spatial resolution (grid sizes) and
detection accuracy is nuanced, especially for different object sizes
and classes. For smaller objects, such as pedestrians, higher spatial
resolution (smaller grid sizes) improves accuracy due to better fea-
ture representation. For instance, the PointPillars model PP-0.12
achieves higher accuracy in pedestrian detection (44.46%) compared
to PP-0.16 (40.24%). However, for larger objects like cyclists and
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Figure 4: Visualization of diverse point clouds: Vehicles [L], Pedestrians [M], and a mix of Pedestrians, Cyclists, and Vehicles [R]. Ground-truth

boxes are green, with top branch predictions for Pedestrians red, Cyclists orange, and Vehicles blue. The top-5 model ranking varies by context:

for [L], pillar-based models prevail due to the straightforward geometry; for [M], voxel and center-based detection excel due to their robustness

to smaller, varied orientations; and for mixed-object scenes [R], the complexity defies simple explanations, motivating Agile3D’s multi-branch

and content-aware controller design.

cars, higher resolution yields fewer gains, as these objects are more
easily detectable at lower resolutions due to better global feature
aggregation. For example, PP-0.16 outperforms PP-0.12 in detecting
cyclists (65.23% vs. 58.73%) and cars (75.98% vs. 69.53%). No single
model consistently occupies the Pareto frontier under all conditions.

This emphasizes the importance of an intelligent system that bal-
ances accuracy and latency under varying SLOs to ensure robust
performance, and we adopt this approach in designing Agile3D.

3.1.4 Need for Content-Aware Design. To handle diverse contexts
in autonomous systems, we employ a content-aware design to select
the best branch at runtime, where each branch is an independent
model (Sec. 3.3-3.4). These branches enhance detection accuracy
across varied scenarios, highlighting the adaptability of our multi-
model and content-aware approach. Study Setup. We examine
three point clouds with different object compositions: vehicles only
(Fig. 4[L]), pedestrians only ([M]), and a mix of pedestrians, cyclists,
and vehicles ([R]). Each subfigure lists the top-5 branches by ac-
curacy. Results and Findings. Fig. 4 reveals notable variability
in the optimal branches across contexts. In vehicle-only scenes
([L]), pillar-based models perform best, as they are suited for sim-
pler environments with large objects and limited vertical detail. In
pedestrian-only scenes ([M]), CP-Voxel models excel due to their
ability to detect smaller objects with complex vertical features and
diverse rotations. In mixed-object contexts ([R]), top-performing
models include CP-Pillar, SECOND, and CP-Voxel, highlighting the
challenge of selecting a fixed model for complex content. Models
with anchor-based Detection Heads work well for axis-aligned ob-
jects ([L]), while center-based Detection Heads are better suited for
non-axis-aligned objects ([M]). The variability in optimal model

selection across contexts necessitates a flexible, multi-model, and

content-aware approach. Agile3D provides the adaptability to ac-

count for the dynamic content in autonomous systems.

3.1.5 Key Challenges. Building on the motivational studies,

we identify the following challenges:

• Techniques from adaptive 2D systems are inadequate for 3D: Exist-
ing adaptive 2D techniques, such as Chanakya [15] and LiteRecon-
fig [58], struggle with 3D due to the differences in model structure
and latency distribution. Specialized 3D models require a dedicated
3D Encoder to convert raw data into spatial features, adding com-
plexity absent in 2D tasks. Optimizing 3D system’s latency and

accuracy performance demands novel approximate mechanisms
and a tailored controller design.
• Inflexibility of the 3D models: The 3D Encoder plays a critical role
in encoding sparse point cloud data into structured spatial features,
unlike the 2D images processed directly by CNN-based 2D Back-
bones. Adjusting voxel or pillar sizes in 3D significantly impacts
feature map dimensions and necessitates model retraining due to
the fixed input requirements of fully connected layers widely used
in the 3D Encoder. Unlike the resizing flexibility of 2D models, this
adds rigidity to 3D models, complicating system-level design and
requiring specialized handling.
• Interdependencies in system design: In Agile3D, a dependency-
driven approach is necessary due to the tight interconnections
between the 3D Encoder, 3D Backbone, and Detection Head com-
ponents. Unlike in 2D systems, where control knobs can be tuned
independently, 3D models require coordinated adjustments across
all modules. These interdependencies make it essential to design
adaptive 3D systems that can dynamically reconfigure the entire
pipeline—spanning from the 3D Encoder to the Detection Head—to
ensure efficient operation under varying spatial resolutions.
• Necessity for contention- and content-aware design: The signifi-
cant latency variance observed in 3D models, caused by factors
like input variability and resource contention, emphasizes the need
for dynamic control mechanisms that adapt to changing condi-
tions. Furthermore, the nuanced relationship between accuracy
and latency, influenced by input content and model architecture,
demonstrates that no single model consistently performs optimally
across all scenarios. A robust contention- and content-aware ap-
proach is essential, as the optimal model choice varies depending
on the context.

3.2 Approach Overview

We design Agile3D to dynamically adapt to resource contention
and input content while meeting strict latency requirements. At
its core, Agile3D features an MEF comprising diverse execution
branches managed by the runtime CARL controller. Each branch
leverages five tunable modules (“knobs”) across critical 3D detection
components. These knobs allow Agile3D to flexibly balance latency
and accuracy, extending grid-based 3D detection methods for di-
verse performance tuning. The system buffers and preheats theMEF
in memory on embedded devices during the initial phase, enabling
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Figure 5:Agile3D integratesMEF andCARL for dynamic branch selection based on input content, contention levels, and latency SLOs. Supervised

training with DPO fine-tuning and five control knobs (CK) ensure adaptability across diverse scenarios.

sub-1 ms branch switching and ensuring timely responsiveness.
With the CARL controller’s contention- and content-aware strategy,
Agile3D achieves high accuracy and low latency violation ratio
across diverse scenarios. Fig. 5 illustrates how MEF and CARL en-
able Agile3D to function as the first adaptive 3D detection system
operable on embedded GPUs.

3.3 Design of MEF

3.3.1 Agile3D’s Control Knobs. In designing Agile3D, we care-
fully select five control knobs based on domain knowledge and our
analysis of key stages in the 3D object detection pipeline in Sec. 3.1
(e.g., Fig. 1 highlights the importance of the 3D Encoder, Fig. 3
shows the effects of voxel and pillar sizes, and Fig. 4 demonstrates
how different 3D models excel under various scenarios). Compared
to traditional knobs for 2D image data [7, 15, 58], these control
knobs are tailored to key stages in processing point cloud data,
providing a more significant impact on the latency and accuracy of
3D detection models.
#1. Point Cloud Encoding Format: Defines how raw point cloud
data is encoded, either into voxels (3D cuboids that capture volu-
metric information) or pillars (vertical columns with no vertical
segmentation). Voxel partitioning captures finer spatial details, en-
hancing accuracy but increasing computation. Pillar partitioning is
more efficient but loses some height information, making it suitable
for less complex scenes.
#2. Spatial Resolution: Adjusts voxel or pillar sizes to control the
granularity of spatial information, balancing the trade-off between
speed and detail. Larger partitions reduce detail and computational
load, while smaller partitions capture more detail at the cost of
higher latency.
#3. Spatial Encoding (HV vs. DV): Determines how point clouds
are voxelized. HV uses fixed grids, limiting points per grid and total
number of grids, and improving stability. DV adapts to data density
by eliminating these two limitations, which makes it more dynamic
but may sacrifice some stability.
#4. 3D Feature Extractor: Chooses the neural network type for
high dimension 3D feature extraction. Transformers work with
both voxel and pillar data for high accuracy but are computationally
intensive. Sparse CNNs are effective for voxel-based data, while 2D
CNNs suit pillar-based formats, though they lose some 3D detail.
#5. Detection Head: Defines the method for object localization
and recognition. Anchor-based one uses predefined anchors for
efficiency but struggles with diverse object orientations. Center-
based one better handles rotated or hybrid objects (e.g., vehicles at
intersections), though more computationally demanding.

By incorporating these five knobs, the MEF in Agile3D offers
a highly adaptive and configurable framework, ensuring strong
performance for 3D object detection with tight latency budget and
under resource contention.

3.3.2 Synergy among Control Knobs. The control knobs are inter-
dependent, impacting both computational efficiency and detection
accuracy. The key synergies among these control knobs are:
#1. Synergy among encoding format, spatial resolution, 3D feature

extractor, and detection head: Choosing a encoding format for point
clouds requires compatible resolution, and a 3D feature extractor
supporting this format. For instance, if we choose voxels as the
encoding format, we need to select an appropriate voxel size from
the available options, choose a feature extractor that can efficiently
process voxel-based feature maps (e.g., sparse 3D CNN), and adjust
the detection head to accommodate the intermediate feature map
sizes resulting from different voxel sizes. Such a model may require
a simpler Backbone to balance the computational load arising from
the increased complexity of 3D Encoder [23, 63, 64]. This constraint
helps the system meet target latency and processing speed.
#2. Spatial resolution and model retraining: Modifying voxel or pillar
sizes changes the dimensions of the model’s intermediate feature
maps, often requiring retraining of specific feature extraction and
prediction layers. 3D Encoders with PointNet-based feature extrac-
tors [64, 69] rely on fixed input dimensions in fully connected lay-
ers; therefore, adjusting the resolution necessitates separate models
retrained from end-to-end to achieve optimal accuracy.
#3. Impact of spatial encoding on latency and its variability: The
choice between HV and DV impacts the stability of data processing
latency in both the spatial encoding step and subsequent mod-
ules, including the Backbone and Detection Head. As discussed in
Sec. 3.3.1, HV ensures stable latency by using a fixed number of
grid cells and points per grid—a strategy that provides predictabil-
ity at the expense of losing detail in dense regions and incurring
computational overhead from processing empty areas. In contrast,
DV removes fixed caps, allowing unlimited points per grid cell and
dynamically adjusting grid allocation based on input data density.
This approach reduces inefficiencies in sparse areas and captures
more detail in dense regions. However, DV’s reliance on dynamic
point aggregation introduces variability in latency, as processing
times fluctuate with changes in input density. In summary, HV-
based models ensure stable latency but sacrifice accuracy due to
fixed grid limits, whereas DV-based models enhance accuracy but
compromise latency predictability.
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Impact on System Design. These dependencies indicate that tun-
ing one control knob may require adjustments to others, rendering
it impractical to optimize these parameters within a single model
as is common in 2D systems. Agile3D addresses this challenge by
employing cross-model branching, with each branch optimized for
a specific set of control knob configurations. This approach enables
broad adaptability to meet diverse operational requirements.

3.4 Design of Controller

The controller’s main objective is to dynamically select the optimal
branch at each timestamp that satisfies the latency SLO and maxi-
mizes accuracy, given the current input point cloud and hardware
contention. The optimization can be formulated as:

𝑏𝑜𝑝𝑡 = argmax𝑏∈B 𝑎𝑐𝑐(𝑏, 𝑋,𝐶) s.t. 𝑙 (𝑏, 𝑋,𝐶) + 𝑙𝑐 + 𝑙𝑜 ≤ 𝑙𝑠 , (1)

where B denotes the set of available branches, 𝑋 represents the
input point cloud, 𝐶 is the contention level, and 𝑎𝑐𝑐(𝑏,𝑋,𝐶) and
𝑙(𝑏,𝑋,𝐶) are the accuracy and latency of branch 𝑏, respectively.
Here, 𝑙𝑐 denotes the controller’s latency cost, 𝑙𝑜 is the branch-
switching overhead, and 𝑙𝑠 indicates the latency SLO.

A direct solution to this optimization problem is impractical at
runtime due to latency that varies dynamically with input content
and contention, as well as unknown accuracy beforehand. There-
fore, we employ RL techniques to predict the optimal branch. This
approach involves two phases: offline training and online prediction.
In the offline phase, each branch undergoes profiling on embedded
GPUs using a previously unseen dataset, enabling the controller to
learn input- and branch-specific latency and accuracy character-
istics. During the online phase, the trained controller selects the
optimal branch that meets the latency SLO and maximizes accuracy.
Next, we detail our controller design.

3.4.1 CARL Controller. Our CARL controller dynamically sched-
ules tasks by considering contention levels and input content. It
employs supervised training for initial learning, followed by DPO
fine-tuning with preference labels provided by the Approximate
Oracle controller using Beam Search (AOB, Sec. 3.4.2). DPO re-
fines branch selection through preference comparisons instead of
absolute scores, ensuring efficient optimization.

We frame branch scheduling as a Markov Decision Process
(MDP), and consider learning CARL using RL. Formally, the states,
actions, and rewards for the MDP are defined as follows. At each
timestep 𝑖 (𝑖 = 0, . . . , 𝑡 ), the state 𝑆𝑖 comprises the current input
point cloud 𝑋𝑖 , previous detection results 𝐷𝑖 , and the current con-
tention level𝐶𝑖 . Formally, the state is represented as 𝑆𝑖 = (𝑋𝑖 , 𝐷𝑖 ,𝐶𝑖 ).
The actions are the branch selections from the MEF, defined as
𝑏𝑖 ∈ B where B is the set of all possible branches. CARL selects
a proper branch 𝑏𝑖 based on the current state 𝑆𝑖 so as to optimize
the overall efficiency and accuracy. Unlike standard RL, we do not
assume an explicit reward for each action, as rewards will be im-
plicitly provided by preference-based optimization in DPO. Further,
we consider a discrete set of latency SLOs {𝑙} and train separate
models for individual latency SLOs.

CARL’s Structure. The controller comprises a policy model, which
is updated during training, and a reference model, which remains
frozen and serves as a stable baseline for calculating the DPO loss,

Figure 6: The CARL controller uses a shared architecture for policy

and reference models, integrating GD-MAE for 3D features, trans-

formers for prior detection results embedding, SSM for sequence

processing, and positional embeddings for latency objectives, en-

abling adaptive branch selection.

as shown in Fig. 6. Both models share the same architecture, map-
ping an input state 𝑆𝑖 to a probability of actions (i.e., choosing
branches) 𝑝(𝑏𝑖 |𝑆𝑖 ). The model starts with raw point clouds 𝑋𝑖 using
GD-MAE [62], an efficient 3D feature extraction framework. GD-
MAE leverages sparse representations and self-supervised masked
autoencoder pre-training on LiDAR data to learn unbiased geomet-
ric features. This approach reduces the reliance on labeled data
and enhances generalization performance in downstream tasks.
The extracted features are combined with tokens generated from
Transformer [52] layers, which encode previous detection results
𝐷𝑖 into embeddings. These embeddings provide historical context
for informed decision-making. The combined features are passed to
a Structured State-Space Model (SSM) [16], enabling the controller
to model temporal dependencies across consecutive frames. The
SSM output is enhanced with a positional embedding representing
contention 𝐶𝑖 , which encodes the current contention level in the
feature space. Finally, the concatenated features pass through a
multi-layer perceptron (MLP) to generate the action distribution,
enabling effective branch selection aligned with latency objectives.

Supervised Training. We use supervised learning to train the
CARL controller, aligning its initial policy with the Oracle’s target
action 𝑏opt (provided by AOB, Sec. 3.4.2) for a given system state 𝑆 ,
predicting an action distribution 𝜋 (𝑏 |𝑆). The training objective is
to minimize the cross-entropy loss between the prediction and the
target shown in Eq. 2:

min𝜋 L𝐶𝐸 (𝜋 (𝑏 |𝑆), 𝑏opt), (2)

DPO Training. While supervised learning optimizes decisions at
each timestamp independently, DPO enhances the CARL controller
by considering sequences of actions over time. This approach en-
ables the controller to balance short-term and long-term trade-offs,
achieving superior overall performance. We initialize the policy
model 𝜋 and reference models 𝜋ref from the supervised-trained
model. For each state 𝑆 , we generate positive-negative action pairs
(𝑏𝑝 , 𝑏𝑛). The positive action 𝑏𝑝 is selected using the AOB, while
the negative action 𝑏𝑛 is sampled from the reference model 𝜋ref.
As a result, the positive actions are often more favorable than the
negative ones. The policy 𝜋 is our controller. In traditional DPO
training, both positive and negative actions are derived from the
reference model, with human annotations used to identify the posi-
tive action. In our approach, the AOB replaces human annotations
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for determining the positive action, but the underlying preference-
comparison mechanism remains unchanged. The training objective
is formulated as maximizing the expected log-sigmoid difference be-
tween the preferred and non-preferred branch probabilities relative
to a reference policy shown in Eq.3.

max
𝜋

E(𝑆,𝑏𝑝 ,𝑏𝑛 )∼D log𝜎
(
𝛽 log

𝜋 (𝑏𝑝 |𝑆)
𝜋ref(𝑏𝑝 |𝑆)

− 𝛽 log
𝜋 (𝑏𝑛 |𝑆)
𝜋ref(𝑏𝑛 |𝑆)

)
, (3)

where 𝛽 is a hyperparameter controlling the degree of divergence
from the reference model 𝜋ref, andD represents the dataset of pref-
erence comparisons. This training objective leverages preference
comparisons to fine-tune the policy model, aligning it with the
AOB controller’s decisions and thereby enhancing sequence-level
performance. During training, the target policy 𝜋 is updated, while
the reference policy 𝜋ref is kept frozen.

3.4.2 Oracle Controller. The Oracle controller represents the the-
oretical upper bound for content-aware scheduling by selecting
the optimal branch for each point cloud with full knowledge of
ground-truth accuracy. However, implementing such an Oracle is
infeasible, as identifying the optimal branch under contention and
latency constraints requires an exhaustive search across all branch
combinations—a computationally prohibitive task. To approximate,
we employ an AOB, which efficiently identifies near-optimal branch
schedules by iteratively refining a limited set of top candidates. AOB
serves two main purposes: #1. Training Labels for CARL: AOB
generates optimal branch selections per frame, used to fine-tune
CARL via DPO, helping CARL approximate Oracle-level perfor-
mance in dynamic environments. #2. Benchmarking: Comparing
Agile3D’s performance to AOB provides insights into adaptability
and areas for optimization under varying conditions.

3.4.3 Online Distribution-Aware Look-Up Table (DA-LUT)-based

Controller. Wealso consider a baseline controller with a distribution-
aware look-up table to address branch execution variability (Sec. 3.1.2).
This DA-LUT controller leverages offline profiling data (mean/-
variance of latency and accuracy) for efficient branch selection.
Assuming Gaussian latency distributions, it calculates confidence
levels (e.g., 99%) to minimize latency violations while maintaining
SLOs. The controller stores key-value pairs in the format <branch,
contention, latency mean, latency std, accuracy> and incurs only
1 ms overhead. Lightweight and content-agnostic, the DA-LUT
controller excels in low-contention scenarios where latency fluc-
tuations are minimal, outperforming baselines without requiring
complex content reasoning.

4 Implementation

4.1 Hardware and Software

Hardware.We train Agile3D on NVIDIA A100 GPUs and evalu-
ate it on two NVIDIA Jetson platforms: Orin: 12-core ARM CPU,
2048-core Volta GPU, 64GB RAM; Xavier: 8-core ARM CPU, 512-
core Volta GPU, 32GB RAM. For stable performance, we set both
platforms to max power mode and disable Dynamic Voltage and
Frequency Scaling. Software: We develop Agile3D using Python
and PyTorch, based on the OpenPCDet [50] codebases. Artifacts
are open-sourced at https://doi.org/10.5281/zenodo.15073471

Table 1: 2D models’ contention levels with concurrent 3D workloads.

Transformer-based models (e.g., ViT [9]) exhibit higher contention

than convolutional models (e.g., MobileNet [34], EfficientNet [48]).

Models MobileNet EfficientNet ResNet50 ViT
Variants V4 V3 V2 B0 B3 B5 N/A Medium Base

Contention
Levels (%) 32 36 31 28 30 42 43 62 69

4.2 MEF Training

We construct MEF by integrating and enhancing a diverse set of 3D
detectors, including DSVT [53], CenterPoint [64], DV [68], PointPil-
lars [23], and SECOND [60]. Rather than naïvely aggregating these
models, Agile3D systematically calibrates and optimizes each com-
ponent to achieve a balanced trade-off between inference latency
and detection accuracy. To ensure optimal performance, we cali-
brate voxel-based detectors along the x and y dimensions (0.1–0.9
m) and adjust the z-dimension (0.1–0.2 m) to align with LiDAR
sensor configurations. For pillar-based models, we calibrate the
x and y dimensions (0.24–0.9 m) while preserving z-heights ac-
cording to dataset specifications. This distinction arises because
voxel-based models require finer z-granularity to capture vertical
details, whereas pillar-based models prioritize lateral coverage. We
tune the detectors in MEF to leverage their strengths in addressing
the challenges of 3D point clouds. For large datasets like Waymo
and nuScenes, we employ DV for efficiency and center-based heads
for complex scenes. Each detector uses model-specific setups with
standardized preprocessing and augmentations (e.g., rotation, scal-
ing, and flipping along the X and Y axes). Our original MEF consists
of nearly 100 branches, which we prune down to approximately 50
based on profiling results on a hold-out profiling set. This process
retains only those branches near the Pareto frontier during offline
profiling, and reduces overall memory consumption.

4.3 Contention Generator (CG)

We enhance the GPU CGs from Chanakya [15] and LiteRecon-
fig [58], adapting them to simulate real-world workloads better.
Building upon the original CGs, our enhancements introduce syn-
thetic contention to mimic the contention level from several 2D
models running concurrently with the main 3D task. This setup
emulates practical embedded systems where 2D models (e.g., pro-
cessing camera data) and 3D models (e.g., processing LiDAR data)
share GPU resources. Given the diversity of 3D models and their
varying sensitivity to contention, we streamline the evaluation by
selecting a representative medium-compute-intensity 3D model
(DSVT-Pillar with pillar size 0.66). Additionally, prior CG mea-
sures GPU utilization offline as a standalone process, neglect-
ing resource sharing during concurrent execution [13]. This ap-
proach fails to capture real contention on mobile GPUs accurately.
To address this limitation, we introduce a metric that quantifies
the latency impact of CG on the primary 3D task, defined as
Contention Level = (1 − 𝐿wo/𝐿w) ∗ 100%, where 𝐿w / 𝐿wo denote
the latency with and without contention, respectively.

Table 1 summarizes the contention levels induced by common
2D models, which range from 28% to 69%, lighter from the mo-
bile CNN models and heavier from the vision transformer models.
Given the significant variability in contention levels, we select four
representative levels—[38, 45, 64, 67]%—from our CG for evaluation.

https://doi.org/10.5281/zenodo.15073471
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To enhance clarity and usability, we categorize these levels as Light,
Moderate, Intense, and Peak, which are used consistently throughout
our experiments.

4.4 CARL Training

We collect latency and accuracy data to train the controller, us-
ing distinct datasets to avoid overfitting. Training, profiling, and
testing datasets are split by time of day, weather, and location to
ensure diverse coverage, with each set containing samples from
different conditions that help mitigate overfitting to specific sce-
narios. We profile all branches on two embedded GPUs under vary-
ing contention levels, recording per-sample inference latency. The
sample-level accuracy trains the CARL controller to make intelli-
gent decisions, while the data set-level accuracy guides the DA-LUT
controller, ensuring efficient decisions for less dynamic scenarios.
During CARL controller training, we sample sequences of consec-
utive point clouds 𝑋 from the offline profiling data and randomly
generate contention levels 𝑐𝑖 for each sequence. The controller takes
the state as input and selects a branch as the action. We retrieve
the corresponding latency and accuracy from the offline profiling
data. We train the controller 318,900 episodes using the AdamW
optimizer with batch size 16 and a learning rate of 1e-5.

5 Evaluation and Results

We present our experiment setup in Sec. 5.1. In Sec. 5.2, we compare
Agile3D with prior adaptive controllers under various resource
contention conditions and latency SLOs. In Sec. 5.3, we evaluate
Agile3D under varying contention levels. In Sec. 5.4, we compare
Agile3D with SOTA static models in contention-free scenarios.
In Sec. 5.5, we examine different controller training strategies for
Agile3D. In Sec. 5.6, we demonstrate the effectiveness of our con-
trol knobs. In Sec. 5.7, we present several microbenchmark results,
including the system overhead, Pareto frontier distributions, and
the influence of voxel/pillar size on model performance.

5.1 Experimental Setup

Datasets. Weprimarily evaluate Agile3D onWaymo dataset [45]—
one of the largest datasets for point cloud based 3D object detection
in urban driving scenarios. To demonstrate the generalization of
Agile3D, we also evaluate two other driving datasets: nuScenes [3]
and KITTI [14]. Waymo includes 1,150 sequences, with 798 / 202
/ 150 for training / validation / testing. We split the training set
further (637 / 161 for training / profiling) and use the validation set
for testing. nuScenes contains 1,000 sequences, with 700 / 150 / 150
for training / validation / testing. We partition the training set into
630 / 70 for training / profiling, and use the validation set for testing.
KITTI has 7,481 training and 7,518 testing samples. The training
set is split into 3,340 / 372 / 3,769 for training / profiling / testing.
These benchmarks lack annotations for testing sets, thus reporting
results on the validation set is a standard practice [6, 53, 58, 64, 69].
Our splits ensure rigorous evaluation with unseen test data.

Metrics. Waymo: mean Average Precision (mAP) with IoU thresh-
olds of 0.7 (vehicles) and 0.5 (pedestrians/cyclists) for LEVEL2 diffi-
culty. nuScenes: NuScenes Detection Score (NDS) combines mAP
with five complementary metrics for comprehensive evaluation.

KITTI : mAP is averaged across classes and difficulty levels at 40
recall positions.

Adaptive Controller Baselines. Our controller baselines include
adaptive methods for 3D object detection, leveraging the same MEF.
Chanakya [15]: originally designed for 2D workloads, we adapt its
RL-based, content-aware control approach to handle the increased
complexity and dynamic nature of 3D point cloud processing. This
adaptation involves carefully engineering the reward structure and
integrating it with MEF, which requires significant effort due to
the higher dimensionality and dynamic contention characteristics
inherent to the 3D setting. LiteReconfig [58]: originally designed as
a lightweight contention- and content-aware controller for video
detection, LiteReconfig is extended to 3D workloads by recalibrat-
ing its contention sensitivity and content-awareness mechanisms.
This recalibration is non-trivial, given the higher dimensionality,
dynamic contention patterns, and increased computational com-
plexity inherent in 3D tasks. DA-LUT : Our LUT based controller
described in Sec. 3.4.3.Oracle (AOB): The oracle controller described
in Sec. 3.4.2. By using the same set of control knobs for all meth-
ods, these controller baselines comprehensively cover a range of
scheduling strategies. DA-LUT is based on LUT, LiteReconfig uses
supervised learning, and Chanakya considers RL. In addition, AOB
provides an upper bound.

Static Model Baselines. We include seven static 3D models as our
baselines when comparing with Agile3D under contention-free sce-
narios, includingDSVT [53]: a Transformer-based model with Voxel
and Pillar variants, highlighting SOTA 3D encoders; CenterPoint
(CP) [64]: Voxel and Pillar variants with center-based heads for ro-
bust object localization; Part-𝐴2 [43]: a two-stage detector refining
proposals for better accuracy and box scoring; PointPillars (PP) [23]:
an efficient 2D convolution-based 3D detector; SSN [70]: an ex-
tension to PP with shape-aware grouping for improved geometric
features; PV-RCNN [42]: a combination of voxel and point-based
abstraction for enhanced detection accuracy. SECOND [60]: a model
using sparse convolutions for efficient voxel-based processing.

5.2 Accuracy-Contention Pareto Frontier

Our main experiment evaluates the end-to-end performance of
Agile3D under varying contention levels (Light, Moderate, Intense,

and Peak) and across multiple latency SLOs (500, 350, and 100 ms)
on the Orin GPU using the Waymo dataset. These latency SLOs
are designed for driving scenarios, where LiDAR point clouds are
typically acquired at 10 Hz [45], whereas many existing systems
process these point clouds at only 2 Hz [3]. Moreover, these latency
SLOs are challenging for 3D detection on mobile devices even
without contention (see Sec. 3.1.2).

The accuracy of Agile3D, in comparison to the baselines, are
summarized in Fig. 7. [CARL+MEF] denotes our full design, while
[DA-LUT+MEF] represents a simpler variant. We combine the prior
adaptive controllers Chanakya and LiteReconfig with our MEF
and retrain them, resulting in [Chanakya+MEF] and [LiteRecon-
fig+MEF]. Across all latency SLOs, Agile3D maintains a latency
violation ratio below 10% and outperforms all adaptive controller
baselines by a noticeable margin. For example, under Intense con-
tention, Agile3D achieves 1.6-3% higher accuracy than the best
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Figure 7: End-to-end evaluation of Agile3D across varying contention levels (Light / Moderate / Intense / Peak) and latency SLOs (500 ms [L], 350

ms [M], and 100 ms [R]) using the Waymo dataset and on Orin GPU. Agile3D consistently achieves superior accuracy, shining on the Pareto

frontier across all contention levels and latency SLOs.

Figure 8: Agile3D adapts to changing con-

tention levels on the Waymo test set on Orin

under 500 ms latency SLO. Baselines fail to

adapt to dynamism.

Figure 9:Agile3D onWaymo (Orin) under three

latency SLOs (100, 350, 500 ms): Activating

more control knobs improves accuracy and sat-

isfies lower latency SLOs.

Figure 10: Switching overhead between branches

(on Orin, Xavier). Y-axis: source, X-axis: desti-

nation branches. Mean overhead <1 ms with

pre-buffered models.

adaptive method while meeting latency requirements. It is note-
worthy that although Agile3D underperforms the oracle AOB, the
performance gap is limited to 2–5%. Chanakya’s original design
does not consider hard latency SLOs, thus leading to the worst
performance. Collectively, these results highlight Agile3D’s su-
perior performance in a critical real-world application domain—
autonomous driving—despite device contention and tight latency
SLOs. Under contention scenarios, static approaches fail in most
cases; therefore, they have been omitted from Fig. 7 for clarity.

5.3 Adapting to Dynamic Contention

Agile3D features the ability to adapt to dynamic contention changes
on the fly. We further evaluate this ability by simulating dynamic
contention levels using the Waymo test set. Specifically, we split
the test set into ten segments and process each segment under
randomly shuffled contention levels, ensuring compliance with the
500 ms latency SLO. We perform smoothing within each contention
level region for ease of interpretation, but observe that even the
fluctuations rarely violate the latency SLO. Fig. 8 illustrates that
Agile3D dynamically adjusts to changing contention on the fly,
meeting latency requirements while optimizing performance. Static
models like DSVT-Pillar and DSVT-Voxel fail to adapt, either vio-
lating the latency SLO or under-utilizing the latency budget. These
results highlight Agile3D’s strong capability to respond to dynamic
conditions changes at runtime.

5.4 Accuracy-Latency Pareto Frontier

We further evaluate the performance of Agile3D without con-
tention. By removing contention, this scenario offers a theoretically
interesting case for assessing accuracy-latency trade-offs and com-
paring Agile3D to SOTA static 3D object detection models. Due to

the dense LiDAR data, experiments on the Waymo and nuScenes
datasets are conducted on the Orin platform. In contrast, the KITTI
dataset, with its lower data density and smaller detection range, is
evaluated on the more resource-constrained Xavier platform. Ad-
ditionally, we focus on DA-LUT for nuScenes and KITTI datasets
due to their limited annotated data.

Figs. 11 to 13 illustrate Agile3D’s accuracy-latency trade-offs
versus baseline 3D models under no contention, evaluated across
three datasets. OnWaymo (Orin, Fig. 11), Agile3D exceeds baselines
in both accuracy and latency, demonstrating adaptability within
the 50 to 350 ms SLO range. Given the 200 ms SLO as an example,
while the baselines SECOND, PP, CP-Pillar, and CP-Voxel meet
the latency SLO, Agile3D achieves superior accuracy, surpassing
them by 4-11%. For nuScenes (Orin, Fig. 12), Agile3D outperforms
all baselines in both accuracy and inference speed (2-4X faster
speed, 7-16% higher accuracy). Additionally, it achieves accuracy
levels comparable to DSVT-Pillar while majorly improved speed
(1.3x). The same insights can be observed from the KITTI dataset
(Xavier, Fig. 13), Agile3D can always satisfy the 150 ms SLO, while
most of the baselines fail. While PP and CP-Pillar variants meet
latency SLOs, Agile3D surpasses them in accuracy by 3-7%. These
trends hold consistently across all datasets, highlighting Agile3D’s
superiority in dynamic settings.

5.5 Comparing Training Strategies

A key design choice of Agile3D lies in its training strategy—a
combination of supervised pre-training with DPO fine-tuning. This
is a sharp contrast to DA-LUT (statistical modeling), LiteReconfig
(supervised training) and Chanakya (Q-learning). We fix the con-
trol knobs and evaluate the effects of training strategies. Table 2
presents the results on the Waymo dataset and using Orin GPU.
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Figure 11:Waymo Performance (Orin). Agile3D

achieves 1-10% higher accuracy than DSVT, CP,

Part𝐴2
, SECOND, and PPwhile adapting to 100-

400 ms SLOs – operating 2.8-8X faster than

baselines (230-850 ms for the same 64% mAP).

Figure 12: nuScenes Performance (Orin). Ag-

ile3D demonstrates 4-16% accuracy gain over

CP, SSN, and PP, while meeting 100-250 ms

SLOs, outperforming baselines needing 120-

800 ms (1.2-4X slower).

Figure 13: KITTI Performance (Xavier). Ag-

ile3D maintains 2-7% higher accuracy than

CP, PP, and SECOND under 50-150 ms latency

SLOs, where baselines require 60-375 ms (1.3-

2.3X slower).

Figure 14: Pareto Frontier: DSVT branches ex-

cel in accuracy, while CP branches optimize

latency, balancing performance.

Figure 15: Voxel/pillar size vs. performance:

Smaller sizes do not consistently improve ac-

curacy despite higher costs.

Figure 16: Smaller voxels enhance AP for

smaller objects (e.g., pedestrians and cyclists)

but offer diminishing returns for vehicles.

We additionally include the vanilla LUT that ignores the variance
of latency, as well as the oracle AOB as the upper bound. While
vanilla LUT achieves top accuracy in some cases, it suffers from
the highest latency violations (up to 49.95%). Supervised learning
(LiteReconfig) and RL (Chanakya) both reduce the violation rate,
yet at the cost of decreased accuracy. Instead, Agile3D’s training
strategy (supervised learning with DPO fine-tuning) strikes a bal-
ance, achieving robust performance with low latency violations
across varying contention levels.

Table 2: A comparison among training strategies including oracle

AOB, vanilla LUT, statistical modeling (stat), supervised learning

(SL), reinforcement learning (RL), and supervised learning followed

byDPOfine-tuning (SL+DPO). Accuracy (%), latency (ms), and latency

violation rate (%) under 500 ms latency SLO are reported using Orin

GPU. Gray: infeasible settings with either latency violations over

10% or using an oracle; Bold: best accuracy within the 10% limit.

Controller Light Moderate Intense Peak

AOB 74.38/385/0.65 73.53/378/0.61 70.46/364/0.09 70.15/359/1.14
Vanilla LUT 71.45/506/48.76 70.90/501/49.95 68.97/505/48.35 68.21/472/37.41
Stat 70.90/430/3.29 69.84/381/0.10 67.10/340/0.63 65.97/328/0.74
SL 69.87/285/0.00 69.87/340/0.00 67.08/340/0.63 65.96/328/0.74
RL 68.09/347/0.34 67.62/262/0.37 66.76/347/0.23 63.71/181/0.00
SL+DPO 70.99/415/5.27 70.18/407/0.14 68.73/477/1.14 66.68/362/5.64

5.6 Effects of Control Knobs

Moving forward, we benchmark the effects of control knobs on
Agile3D’s performance under varying conditions. Fig. 9 illustrates
the accuracy under various latency SLOs (100 ms, 350 ms, and 500
ms) with different control knobs, using the Waymo dataset and
Orin platform. The results suggest that activating more control
knobs enables Agile3D to meet stricter latency SLOs and improve

accuracy. Higher latency SLOs provide additional slack, further
boosting performance with the same number of knobs. We conduct
this experiment using both Orin and Xavier, observing a similar
trend. However, detailed results are omitted due to space constraints.
These findings supports our design of control knobs (Sec. 3.3.1) and
demonstrates the role of these knobs in adapting and optimizing
performance across datasets and hardware platforms.

5.7 Microbenchmarks

System Overhead. Agile3D introduce system overhead in three
respects: memory to buffer all branches, switching overhead within
theMEF, and controller overhead. Agile3D buffers allMEF branches
(i.e., individual models) in memory, because of the efficient 3D
model structures discussed in Sec. 3.1.1, the MEF uses <8 GB of
RAM, well below the memory capacity of modern mobile devices.
The switching between branches will introduce a minor branch-
switching overhead. Fig. 10[L], [R] shows this overhead on Orin and
Xavier. Pre-buffering limits overhead to under 1 ms, as transitions
only require memory to GPU cache operations. In contrast, loading
models from disk causes latency spikes exceeding 200 ms. Disk
to GPU cache switching costs are 2,394x higher on Xavier (335.16
ms vs. 0.14 ms) and 839x higher on Orin (209.86 ms vs. 0.25 ms).
During inference, the controller does not need to be triggered on
every point cloud because of the consistency of consecutive point
clouds, the average overhead from the controller is about 1ms for
DA-LUT or 8ms for CARL. The total overheads represent only a
small fraction of the total latency budget (200–500 ms).

Pareto Frontier Distributions. Fig. 14 presents the Pareto fron-
tiers of all branches, reported on Waymo using Orin. The results
illustrate individual branch contributions to the accuracy-latency
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spectrum. DSVT branches dominate the high-accuracy region, re-
flecting their precision, while CP branches excel in the low-latency
region due to their efficiency. Voxel-based models achieve the high-
est accuracy, whereas pillar-based models prioritize efficiency.

Voxel/Pillar Size vs. Performance. Figs. 15 and 16 illustrates the
impact of voxel/pillar sizes on DSVT performance using theWaymo
data on Orin. Smaller voxel sizes theoretically offer higher reso-
lution but do not consistently enhance accuracy. Pedestrians and
cyclists are more sensitive to voxel size, with accuracy ranging
from 62-74% and 64-72%, respectively, while vehicles show limited
variation (64-69%). Overly fine-grained voxelization struggles to
capture holistic spatial patterns needed for larger objects. Addition-
ally, smaller sizes increase computational workload and latency,
producing larger intermediate feature maps that limit efficiency
gains despite theoretical benefits.

6 Related Works

Adaptive Vision Systems for Mobiles. Efficient data processing
for LiDAR or cameras on resource-limited mobile devices poses a
significant challenge due to strict latency requirements and lim-
ited computational resources. Lightweight DNNs, whether hand-
crafted [18, 19, 67] or designed via neural-architecture search meth-
ods [25, 47, 55], address resource limits yet fundamentally lack run-
time adaptability to varying SLOs or input content. Recent works
introduce adaptability, either within single models [7, 21, 57, 59] or
ensembles [11], leveraging techniques like early exits [51, 57], in-
put simplification [29, 37], mixture of experts [39], or task-specific
designs [10]. Specifically, adaptive 2D object detection has been
explored in video domains [7, 15, 58, 59], often employing multi-
branch designs [20, 36, 65]. However, as detailed in Sec. 3.1, these
techniques are inadequate for 3D detection due to sparse data struc-
tures and irregular computations in point clouds, leading to high
variance in latencies.

Systems for Serving DNN Models. The systems community has
explored model selection techniques to satisfy latency and accuracy
SLOs. INFaaS [40] automates model and hardware selections for
cloud platforms like AWS but is unsuitable for embedded devices or
the streaming data. Clockwork [17] ensures tail-latency SLOs when
scheduling DNNs on GPUs in cloud environments but lacks mobile
deployment. Jellyfish [30] combines data and DNN adaptation for
latency guarantees in edge networks, relying on desktop-level GPUs.
OFA [4] trains a versatile model pruned for deployment but lacks
runtime adaptability. HAT [54] optimizes transformers for specific
hardware pre-deployment, while ElasticViT [49] uses NAS to train
ViT supernets and select optimal subnets for deployment. These
systems primarily target cloud or edge computing. In contrast, our
work addresses low-latency solutions for 3D object detection in
autonomous driving tasks, ensuring latency and accuracy SLOs
directly on embedded GPUs where data is generated.

7 Discussion

Generalizability of Agile3D. To achieve optimal performance,
Agile3D requires offline MEF training, profiling, and CARL con-
troller training using datasets collected from each specific dataset
hardware configuration (e.g., Waymo, nuScenes, and KITTI, which

utilize different vehicles and LiDAR sensors). Given the available
datasets, Agile3D adheres to standard machine learning practices,
incurring only a one-time training cost per dataset setup. Such re-
training is essential because datasets inherently vary across diverse
hardware and environmental conditions (e.g., vehicles, LiDAR con-
figurations, and cities worldwide). Future work should investigate
online training strategies using real-time profiling data, potentially
enabling Agile3D to generalize effectively to previously unseen
hardware setups and operating environments.

Evaluation under real-world scenarios. We evaluate Agile3D
under synthetic contentions in a laboratory environment. Synthetic
contention has been widely adopted in prior studies, including
SOTA approaches such as Chanakya [15] and LiteReconfig [58], due
to its effectiveness in creating reproducible training and evaluation
scenarios. Future work should consider evaluating performance
under realistic GPU resource-sharing conditions.

8 Conclusion

Agile3D, our adaptive 3D object detection system for embedded
GPUs, excels in achieving SOTA accuracy while consistently meet-
ing stringent runtime latency SLOs across diverse resource con-
tention levels. By leveraging theMEF and CARL controller, Agile3D
efficiently buffers all 3D models in GPU memory, enabling rapid
model switching within 1 ms. The system features two comple-
mentary and innovative controllers: #1. CARL Controller: designed
for high contention scenarios with significant latency ranges, com-
bines supervised training with DPO fine-tuning. This enables it
to dynamically adapt to resource and input fluctuations, ensur-
ing optimal performance. #2. DA-LUT Controller: Optimized for
contention-free scenarios, it efficiently selects execution branches
with minimal overhead. Across multiple datasets and hardware plat-
forms, Agile3D demonstrates superior adaptability and accuracy-
latency trade-offs. It consistently meets latency SLOs—100-500 ms
on Waymo (Orin), 100-250 ms on nuScenes (Orin), 33-75 ms on
KITTI (Orin), and 50-100 ms on KITTI (Xavier)—while achieving up
to +3% over adaptive controllers like Chanakya and LiteReconfig,
and +7% accuracy gains over 3D detection models such as DSVT,
CenterPoint, and PointPillars. With its robust performance under
varying contention levels and ability to meet stringent latency con-
straints, Agile3D emerges as a leading solution for adaptive 3D
detection on embedded GPUs.
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