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Linear layer leakage attacks

Linear layer leakage is a class of data reconstruction attacks that inserts fully-connected (FC) layers into a benign

model to leak user data. The strengths of the attack include:

Scalability: The inserted layer size can be increased to work with larger batch sizes or aggregation while main-

taining high leakage rate.

Single round attack: Only a single training round is required

Perfect reconstruction: Images recovered by the server are near perfect reconstructions of the client data.

Datatype domain agnostic: The attack is not limited to images and can work regardless of the datatype domain.
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Figure 1. Basic linear layer leakage through an inserted FC layer.

Scalability problems

When secure aggregation is used in FL, linear layer leakage privacy attacks such as Robbing the Fed [2] can still

maintain high leakage rate by linearly increasing the FC layer size with the number of clients. However, this leads

to several problems:

Model size: The FC layer size increase directly leads to a multiplicatively larger number of parameters in the

model.

Communication cost: Clients also incur a significant communication cost increase when receiving models and

sending updates due to model size.

Detectability: With 100 clients, the size of the FC layer can easily scale to over 10,000 units. This abnormally

large layer is much more detectable.

Application of sparsity on attacks

This large increase in model overhead from prior work comes from an incorrect perspective on attacking ag-

gregated updates. Since linear layer leakage requires enough parameters to store the image pixel information,

this requires a model large enough for all images across all clients. Attacking the aggregate update as a large

super-batch results in individual clients incurring the entire overhead.

However, even for an aggregate attack, client models only need enough parameters to store their individual

batch of images. All other parameters can be zero. This creates very sparse attack layers that allows for sparse

tensor storage and operations to decrease resource overhead.

Our MANDRAKE attack

The Mandrake [3] attack utilizes sparsity to improve aggregated leakage:

Identity mapping sets: Client leakage is separated by sending customized convolutional kernels to each client

such that only one set of connections is non-zero. These kernels push the input images through different channels

for each client.

Leakage: The FC layer following the convolutional layer leaks the images.
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Figure 2. Mandrake attack architecture.

Only the number of kernels increases with more clients instead of the FC layer size.

Parameters: The absolute number of parameters is ≈ 1
2 compared to current SOTA Robbing the Fed. The number

of non-zero parameters per client is only ≈ 1
N .

Leakage quality: Even with the use of sparsity, the reconstructed images are still near exact copies of client data.
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Figure 3. Tiny ImageNet reconstructions from a client with a batch size of 64 using Mandrake.

Leakage rate, model size, training time

Using sparsity with the Mandrake attack, the additional model size added and computation time added by the

attack is 327× and 3.34× smaller than Robbing the Fed for 1000 clients on Tiny ImageNet respectively.
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Figure 4. (a) Client model size overhead and (b) training time for 1-1000 clients for Robbing the Fed compared to Mandrake using a

sparse and dense tensor representation on Tiny Imagenet (32 × 32 × 3).

The added model size from the sparse attack barely changes regardless of the number of clients being attacked.

Clients
Robbing

the Fed

Dense

weights

Sparse

weights

MNIST

(28x28x1)

100 153.2 77.3 4.6

1000 1532.2 766.4 4.6

CIFAR-100

(32x32x3)

100 600.1 303.0 18.0

1000 6001.0 3003.3 18.3

Tiny ImageNet

(64x64x3)

100 2400.1 1212.1 72.1

1000 24001.0 12012.4 72.4

ImageNet

(256x256x3)

100 38400.9 19392.8 1152.8

1000 384001.7 192193.1 1153.1

Table 1. Comparison of model size overhead (MB) using different datasets with batch size 64 and 100 and 1000 clients. At 1000

clients on ImageNet, the sparse representation adds a 1.1GB overhead while Robbing the Fed adds 375GB.

Despite having a much smaller added model size and computation time, the leakage rate of the sparseMandrake

attack maintains near equivalent leakage rate to Robbing the Fed.

Sparse

Mandrake

Robbing

the Fed

CIFAR-100 77.5% (4957) 77.1% (4931)

MNIST 71.0% (4546) 75.1% (4803)

Tiny ImageNet 77.8% (4978) 77.7% (4970)

Table 2. Total leakage rate of sparse Mandrake and Robbing the Fed on various datasets. For all three datasets, 100 aggregated clients

and batch size of 64 were used for 6400 total images.
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