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Abstract— A fully tested autonomous system works pre-
dictably under ideal or assumed environment. However, its
behavior is not fully defined when some components mal-
function or fail. In this paper, we consider automated guided
vehicle (AGV), equipped with multiple sensors, executing a
traversal task in a static unknown environment. We have
analytically studied the system, computed a set of performance
and safety metrics, and validated it with simulation results in
Webots. We have also analyzed the effect on system performance
under independent and correlated sensing errors. We have
also performed sensitivity analysis to identify the most critical
components in any given system; and this can be utilized to
increase the reliability of the system and its conformance to
safety objectives.

Index Terms— Reliability, Safety, Sensing Error, Sensor Sen-
sitivity, Autonomous Systems, Robotics.

I. INTRODUCTION

Autonomous systems are increasingly making their way
deeper into industries like automobile, manufacturing, logis-
tics, etc. However, automation raises many concerns and the
major ones stem from safety and reliability of the system
while maintaining acceptable performance. For example, one
of the concerns is the throughput of the system, e.g., the
number of orders a fulfilment center is able to complete
within a given time-frame. But, from the safety perspective,
it is important to estimate, as an example, the probability
of a collision between autonomous vehicles on the factory
floor. These concerns are, however, generic and applicable
across all domains.

Mobility is an essential task for most autonomous systems.
In this paper, we consider an automated guided vehicle
(AGV) performing the basic task of autonomously traveling
to a specified location. The travel path is determined by
some independent planner, given a floor-plan with known
static obstacles in it. However, there may be temporary static
obstacles on the planned path, unknown to the planner. For
example, in a warehouse a box or a shelf may fall on the
AGV’s planned path. In such scenario, the AGV’s intrinsic
obstacle avoidance procedure has to take appropriate action.

The problem of obstacle avoidance for an AGV in an
unknown environment is a well-studied problem [16], [20].
Obstacle detection and avoidance is a local decision aided
by its sensors. Imperfections in sensors result in inaccurate
estimation of the AGV’s environment. Further, inaccuracies
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may get compounded through the software stack that pro-
cesses the sensor readings and may lead to unsafe actuation.
Additionally, the error may accumulate over multiple pro-
cessing cycles, leading to catastrophic failure. Imperfection
anywhere in the processing cycle may cause collision with
other entities including humans in its vicinity [19], and
therefore pose safety related concerns. A more elaborate
discussion on sensing error classification and their effect
on a robotic system can be found in [6], [14]. The key
contributions in this paper are as follows:

• We have developed a generic analytical model of traver-
sal task of an AGV, with obstacle avoidance maneuver
and which incorporates imperfections in sensors. We use
this model to derive analytical solutions to estimate a set
of performance metrics, which can be used to improve
system performance and reliability.

• We analyzed the sensitivity of the sensor errors on
these performance metrics. Sensitivity analysis helps
in identifying the most critical components in a given
system and can increase the reliability of the system
even before the actual deployment enhancing the overall
safety or reliability of the deployed system.

• We experimentally evaluated the proposed model with a
set of different AGVs equipped with different types of
sensors, under Webots simulation framework and also
with a physical robot. We studied the effect of both
independent and correlated sensing errors. We found
experimental results mostly conforms our model.

We present a brief literature survey, in Sec. II, on algo-
rithms and models on autonomous traversal. We propose a
generic motion-model of an AGV in Sec. III and derive
various performance metrics. In Sec. IV, we present our
experiments and the results, which show that our analytical
model, although simplistic, is able to describe the system
with requisite fidelity. Finally, in Sec. V, we present our
concluding remarks with scope of future work in this context.

II. RELATED WORK

In this paper, we present a generic motion model of an
AGV in a partially known environment and analytically
evaluate the effect of sensing errors on the performance and
safety of the AGV. The problem of autonomous motion and
obstacle avoidance for unmanned vehicles is well studied
in literature [18]. Researchers usually concentrate on a
particular aspect of autonomous systems. For example, there
are proposals on analytical models for obstacle character-
istics [8], obstacle detection and collision avoidance [16],
[20], path planning [13], motion planning and control [10],
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and other aspects associated with autonomous motion. Safety
is intrinsically related to these problems and is well studied
in literature [3], [7]. Ensuring safety through demarcation
of safety zones around robots is widely used in industrial
automation domain. Distance threshold based red-yellow-
green zone demarcation is a common approach for vehi-
cles [15]. In [19] the authors offer a solution to ensure safety
in human-robot collaborative work-space. The safety concept
is capable of establishing both manually defined safety zones
and dynamically generated safety zones that are based on
robot joint positions and velocities, thus offering a maximum
free space around the robot w.r.t. its users. On the other hand,
techniques like formal verification perform static analysis on
a certain autonomous system to certify it to be safe [11].
Modelling the system accurately is the central problem for
such approaches.

To operate reliably an autonomous system must be capable
to handle uncertainties arising, not only from the environ-
ment in which it is operating, but also uncertainties arising
within and [21] presents an interesting discussion on these
aspects. Authors in [17] present an analytical method of
estimating the probability of collision under sensing error.
Authors in [12] presents a safe autonomous navigation which
incorporate different types of uncertainties in modelling
and perception system. While the authors in [2] presents a
verification framework for planned maneuvers which incor-
porates sensor noise among other uncertainties arising out of
inexact estimation of initial state of the vehicle and frictional
coefficients.

In this paper, we present a generic motion model of
AGVs with obstacle avoidance, and the model is sensitive
to sensing imperfections. Such a model is useful to analyze
its movement in environment with unknown obstacles and
imperfect sensing. This model can also be used to analyze
the performance degradation of the system due to aging.

III. AGV TRAVERSAL MODEL

In any autonomous system, the hardware and software
components are closely inter-linked. Typically the relation
is non-linear and varies across components and therefore it
is difficult to create a detailed analytical model of the system.
Instead, we model the behavior of an AGV from the point of
view of a traversal task, with the aim to produce a generic
model, which incorporate the effect of sensing imperfections.
The model will enable us to study the effect of sensing
inaccuracies relative to a set of defined metrics.

A. Problem Definition

An AGV is given a traversal task to move from
its present location S(x0, y0) to a target location
D(xN , yN ) following a planned path. The planned
path is described as a sequence of N piece-wise
linear segments and is represented as a sequence of
way-points [(x0, y0), (x1, y1), (x2, y2), . . . (xN , yN )],
[(xi, yi), (xi+1, yi+1)] : 0 ≤ i < N) denotes one line
segment. It travels the segments with a constant velocity of
v. The vehicle is equipped with a set of sensors, possibly

heterogeneous in nature, to detect obstacles on its path.
An on-board control software processes sensor readings
and generates actuation signals for its driving wheels.
The sensor readings are processed in a single duty cycle
(sense→ compute→ actuate) of duration τ .

Given that some unknown obstacles are on its planned
path, we need to estimate the travel time to D, including
additional effort to avoid obstacles. With imperfect sensing,
the vehicle may react erroneously and this not only can
affect the distance to travel but also generate possibilities
of collision with obstacles. We consider two performance
metrics - the estimated completion time of the task i.e. the
traversal time, and the number of possible collisions when
the sensors are imperfect. The objective is to - a) study
the performance of the system under imperfect sensors, for
both uncorrelated and correlated failure models, b) estimate
the sensitivity of each of the individual sensors, as well as
identify the critical sensors.

In the following sections we present a traversal model
for an AGV and derive analytical models for performance
metrics.

B. Model Assumptions

In order to develop an analytical model, we make some
simplifying assumptions. The obstacles are assumed to be
static. The obstacles can occur randomly on the path, but
follow some well-defined distribution. The distribution cor-
responds to the center of the area the obstacle occupies.
Similarly the area the obstacles occupy (i.e. the size) is
random, but independent but identically distributed. The
velocity of the vehicle is also assumed to be constant in this
formulation irrespective of the fact that it may be negotiating
a bend. We also assume that AGVs are holonomic. In the
following sub-sections, we present our model to capture
the traversal behavior of an AGV and derive closed form
analytical expressions as estimates of traversal times and
collision count under imperfect sensing.

C. Motion Model

The model presented here is based on the perception of the
AGV w.r.t. unknown obstacles on its path. The AGV can be
in one of the three zones - red, yellow or green, relative to its
nearest obstacle. The AGV is in red zone when the nearest
obstacle is within rR distance, it is in yellow zone when the
distance is in between rY and rR (rY > rR), otherwise it is
in green zone. Fig. 1 depicts red and yellow zones, and the
rest of the space is in green zone. The vehicle follows its
planned path when it is in the green zone. However, when
a vehicle enters the yellow zone, first it performs evasive
maneuvers to get around the obstacle and then re-plans its
path to eventually merge with its earlier planned path. We
assume here, the re-planned path does not differ drastically
from its previous planned path. Below we describe a traversal
model based on such obstacle avoidance method.

Let the length of the planned path between S and D be d.
Also let the total travel time of the vehicle be denoted as T,
which we need to estimate. T is a random variable dependent
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Fig. 1. Deviated path of the vehicle (marked in dashed line) due to obstacle
avoidance maneuver when it detects an obstacle (solid black rectangle) in
its yellow zone

on the distribution of obstacles and their sizes and we attempt
to express this relation as closed form expression. Following
the duty cycle of sensing, the traversal model is made discrete
in time, with time quantum equal to the duty cycle τ .
Therefore, there are T/τ duty cycles within its traversal
duration. Without loss of generality, the following analysis
is performed with τ = 1 for simplifying the presentation and
computation. So, the following analysis estimates T as the
number of duty cycles required to complete a traversal task.
Estimation of time is, therefore, 1/τ times the number of
duty cycles.

At every time instance the vehicle always travels v dis-
tance. Obstacle avoidance maneuver increases the remaining
traversal distance and consequently time whenever the vehi-
cle enters the yellow or red zone. Let, at the time instance
t, the estimated distance to be traversed by the vehicle to
reach the target location from its present location is denoted
as dt. So, when a traversal task is initiated, the estimated
distance to be traversed by the vehicle be d0 = d. Let the
probability of detecting an obstacle in each time cycle be p.
Hence, with probability p the obstacle maneuver is triggered
and the vehicle takes the alternative longer path, shown as
dashed line in Fig. 1. With this model of traversal, we can
now present the following recurrence,

d0 = d, dT = 0, dt+1 = (1− p)(dt − v) + p(δ1 + δ2) (1)

According to our model, the traversal algorithm triggers
obstacle avoidance maneuver when the sensors identify ob-
stacles within the yellow zone. Also any obstacle entering the
red zone is assumed to collide with the vehicle. Therefore,
the embedded processing endeavors to guide the vehicle in
such a manner such that no obstacle enters the red zone.
The navigation system is also assumed to drive the vehicle
such that the obstacle is in the green zone. So the minimum
distance of the nearest obstacle is always rY . The obstacles
are modeled as convex objects with mean radius of µR. The
estimation of deviated path length, in reference to Fig. 1, is
as follows:

δ1 = µR + rY

δ2 =
√

(dt − v)2 + δ21 = (dt − v)

√
1 +

(
δ1

dt − v

)2

≈ (dt − v)

(
1 +

1

2

(
δ1

dt − v

)2
)

[assuming δ1 � dt − v]

= (dt − v) +
δ21

2(dt − v)

Now, with these estimations, Eq. 1 is expanded and simpli-

fied as follows:

dt+1 = (dt − v) + p

(
δ1 +

δ21
2(dt − v)

)
=⇒ dt − dt+1 = v − pδ1

(
1 +

δ1
2(dt − v)

)
Since we assume δ1 � (dt−v), δ1/(2(dt = d0−dT−v)) 
0, and therefore, approximately, dt − dt+1 = v − pδ1. The
recurrence can be simply solved by summing both sides,

l.h.s.,
∑T
t=0 (dt − dt+1) = d0 − dT = d

r.h.s.,
∑T
t=0 (v − pδ1) = T (v − pδ1)

Since, l.h.s. = r.h.s.,

T =
d

v − pδ1
=

d

v − p (µR + rY )
(2)

Region of interest 

Obstacle Obstacle

AGV

𝝁R
𝝁R

rY
rR

Fig. 2. Obstacles within the Region of interest (RoI) of the vehicle affects
the planned path of the vehicle as it moves forward

We model the unknown obstacles to follow some stochas-
tic distribution with mean µO, which defines the density
distribution of centroids of obstacles in the area. As the
vehicle traverses, the expected probability to encounter an
obstacle is p = A× µO, where A is the area for the region
of interest (RoI) to the vehicle. This area affects alteration
in motion (refer to Fig. 2). The planned path of the vehicle
changes when an obstacle enters the yellow region. As the
vehicle traverses, the perimeter of the RoI advances, bringing
possible obstacle within RoI. As the vehicle moves with
a speed of v, the perimeter of RoI sweeps new area of
size v × π(µR + rY ). We are interested to compute the
probability of obstacles in the new sweep area which is
p = A × µO = vπ(µR + rY ) × µO The estimation of the
traversal time is the expected value of the random variable
T and takes the following form,

E[T] =
d

v − (vµOπ(µR + rY )) (µR + rY )

=
d

v

1

1− µOπ(µR + rY )2
(3)

D. Faulty Sensor

In a practical scenario the readings from the sensors are
not always perfect. Imperfections are due to manufacturing
defects (internal) or change in environmental conditions
(external), like fog or increase in suspended particles in air,
etc.. Here, we can compute the deviation (δ1) the vehicle
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is likely to take in presence of error in its distance sensors.
First, let us consider the simplest case where only one sensor
is used for obstacle detection.

Let us denote the sub-region of yellow zone which is not
part of the red zone, i.e. [rR, rY ], as the yellow band and
the width of the yellow band be bY = rY − rR. The control
algorithm always endeavors to ensure that the vehicle does
not enters yellow or red zones. When the vehicle is able
to detect the obstacle on its path while it enters the yellow
zone from green zone, the vehicle needs to travel bY distance
away from the obstacle to return to safe zone.

A collision is said to happen when the vehicle enters the
red zone from the yellow zone due to sensor failure. The
failure to detect obstacle while in the yellow zone, given
that sensing is imperfect, is a conditional case. An obstacle
is present in the yellow zone and the sensor fails to detect
it to be in the yellow zone when the associated sensing
error is more than the yellow band width (ε > bY ). So, the
probability of failure to detect obstacle in yellow zone, when
it is there, is denoted as Pr(DYOY ), where OY is the event
that an obstacle is in its yellow zone and DY denotes event
of failure to detect the obstacle in yellow zone and where,
Fε is the CDF of the error distribution associated with the
sensor.

Pr(DYOY ) = Fε(ε > bY ) = 1− Fε(bY )

In Fig. 2, we endeavor to elucidate the condition for a RoI
for the vehicle’s sensing system. The figure shows the case
when the planned traversal path leads the vehicle through two
obstacles on both sides. In order to pass through the narrow
path between them, the vehicle need to sense their presence.
The boundary condition of the place of the obstacle is when
their periphery just touches the yellow zone as the AGV
passes through them. If the relative distance between the
obstacle is more than that, sensing one of them is sufficient.
We define the area marked with bold dotted blue as the RoI
when the vehicle begins its movement through the narrow
path between the obstacles. The sensing system should detect
obstacles at the periphery of the region to be identified as
them being in the yellow region. Since obstacles behind do
not interfere with the traversal, the RoI is a semi-circular
space. The obstacles at the periphery are of interest to start an
obstacle avoidance maneuver. Since the obstacles have mean
diameter of 2µR, the obstacle can be present in a semicircular
band of width 2µR at distance of rY from the vehicle. So
the probability of obstacles in this periphery is,

Pr(OY ) = FO
(π

2

(
(2µR + rY )2 − r2Y

))
= FO (2πµR(µR + rY ))

where, FO is the CDF of the distribution of the obstacle
centroid in the given space.

Therefore the conditional probability, that the sensor fails
to detect an obstacle given the object is in the yellow zone,
is expressed as Pr(DY |OY ) and is computed as,

Pr
(
DY | OY

)
=
Pr
(
DYOY

)
Pr(OY )

=
1− Fε(bY )

FO(2πµR(µR + rY ))
(4)

The imperfect sensing affects obstacle avoidance maneuver
and hence its path; and introduces possibility of collision.
First we incorporate modification required to cater in sensing
imperfections to our estimation of task completion time.
When the obstacle is not detected within the yellow zone and
it enters the red zone, the vehicle is required to maneuver

in such a way that the obstacle is no longer found in its
red zone before performing obstacle avoidance maneuver.
In this case it traverses additional bY distance. So, δ1 =
(1 − Pr(DY |OY ))(µR + rY ) + Pr(DY |OY ) (µR + rY +
bY ) = (µR+ rY )+Pr(DY |OY )× bY (refer to Fig. 1). The
recurrence solution in Eq. 3 is modified as follows,

E[T] =
d

v − vµO(µR + rY )
(
µR + rY + Pr(DY |OY ) bY

)
=

d/v

1− µO(µR + rY )
(
µR + rY + bY Pr(DY |OY )

) (5)

Let us estimate the number of collisions. For this we note
that the semantics of the safety regions around the vehicle
implies that the vehicle tries to ensure that no obstacle is
found in the red zone. Semantically any obstacle entering
the red zone is equivalent to collisions and we count the
expected number of times obstacle enters the red-zone as the
number of collisions. The estimated distance traveled by the
vehicle is v×E[T]. So, the area under surveillance during its
traversal is vE[T]×2(µR+rY ). Since the density of obstacles
in the arena is µo, the expected number of obstacles in the
path is 2vE[T](µR + rY )× µo. Hence the expected number
of collisions is:

E[CC] = 2vµO(µR + rY ) E[T] Pr(DY |OY )

=
2d µO (µR + rY ) Pr(DY |OY )

1− µO(µR + rY )(µR + rY + bY Pr(DY |OY ))
(6)

E. Multi-sensing and Sensitivity Analysis

In this section we consider scenarios where multiple sen-
sors are installed on a vehicle for sensing obstacles around it.
This is usually the design of most of the autonomous vehicles
where multiple heterogeneous sensors are used to facilitate
more accurate perception of the environment around. The
importance of a sensor reading is based on the motion of
the vehicle. For example, when the vehicle moves forward,
the sensors which detect obstacles ahead of the vehicle are
more important than the rear sensors; while the rear ones are
more important when the vehicle is backing up.

In this context we define the sensitivity of a sensor as
the deviation in the estimated performance measure of the
system with the deviation of the sensor reading from its
expected value due to error. The sensing error is modelled
as a random value taken from a distribution with a mean µε
and deviation be σε. For sensitivity analysis, deviation of the
error is more important than its mean, since a known mean
error can be easily handled by the processing unit treating it
as an offset.

When there are multiple sensors, and each of these sensors
is associated with its own error distribution model with
variation σεi (for the ith sensor). The mean µε of error
distribution for the overall system, as discussed earlier, are
related to those of the individual sensors (µεi ) by some
transfer function and is denoted in our model as σε = φ( ~σε),
where ~σε = {σεi : 0 ≤ i < n}.

Given a system performance measure M which is a
function of sensing error, expressed as M(σε), sensitivity
of a sensor is defined as,

∂M(σε)

∂σεi
=
∂M(σε)

∂σε

∂φ( ~σεi)

∂σεi
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For example, when the performance measure is the travel
time of the vehicle, sensitivity of a sensor is expressed as,

∂E[T]

∂σεi
=

E[T]2vµO(µR + rY )

d

∂Pr(DY |OY )

∂σε

∂φ( ~σεi)

∂σεi
(7)

In the following section we present our experiments, the
specific model for the experimental setups, and compare the
estimations from the model with the experimental results.

IV. EXPERIMENT AND DISCUSSION

To validate our model we performed various experiments
both with a simulation system as well as with a physical
robot. We model the obstacle distribution as gamma dis-
tribution and sensing errors as Gaussian distribution. The
closed form solutions of the performance metrics, described
in Sec. III, are computed in Sec. IV-A. Sec. IV-B presents
our experiment setups, followed by comparative analysis of
our model with experimentally collected data.

A. Model Specific to Experiment
We assume obstacles are randomly distributed following

gamma distribution with parameters (k, θ). Therefore, µO =
kθ. Also, k, θ ≥ 0. Since the obstacles are detectable
by sensing systems, they are comparable to the vehicle in
dimension. This implies that the gamma distribution is not a
flat distribution and hence k ≥ 1. Since, we represent µO as
the density of obstacle in the arena, the additional constraint
is 0 ≤ µO ≤ 1. The CDF of gamma distribution is expressed
as,

FO(x) =
1

Γ(k)
γ
(
k,
x

θ

)
Also we assume the sensing errors follow normal distribution
N(µε = 0, σ2

ε ) [9]. The CDF of normal distribution is,

Fε(x) =
1

2

[
1 + erf

(
x

σε
√

2

)]

The conditional probability of detection of failure can be
computed as follows.

Pr(DY | OY ) =
Γ(k)

2

1− erf(bY /σε
√

2)

γ(k, 2πµOµRrY (µR + rY )/k)
(8)

where, θ = µO/k replaced in the gamma distribution.

ds2

ds1

ds0

ds3 ds4
ds5

ds6

ds7ds8

Khepera III

(a) Proximity sensors and
safety zone demarcation for
Khepera III

(b) Simulated arena with heterogeneous
obstacles

Fig. 3. Experiment setups

B. Experimental Setup

Our simulation were performed in the Webots simulation
framework [5] using three different AGVs - Khepera III
(K3), Pioneer 3-DX (P3-DX), and Pioneer 3-AT (P3-AT),
equipped with different sensors described in Table I. The
working models of these AGVs along with the sensors are
already available with the Webots system. We generated an
25 m-sq arena bounded by walls in the simulation system,
in which the AGVs perform assigned traversal tasks of
various lengths. Different number of obstacles, with random
dimensions, are placed randomly in the arena. The same
set of experiments were performed both under perfect and
imperfect sensing system. Out of these three AGVs, only
Khepera III is equipped with an array of proximity sensors
and their positions are depicted in Fig. 3(a), and hence this
AGV is used for our experiments for correlated sensing
error condition described in Sec. IV-C.4. The following sub-
section outlines behaviour of the control subsystem driving
the robots in Webots system.

Input : D = (xd, yd) ; // Destination location

Data :
−−→
ThR = {ThiR : 0 ≤ i < n} ; // Red-zone

Data :
−−→
ThY = {ThiY : 0 ≤ i < n} ; // Yellow-zone

begin
1 while Current location is not D do
2 SENSE:

~S = Read proximity sensor values;
zone = green, yellow, or red, based on proximity

readings, ~S, indicating the distance between the
vehicle and the nearest obstacle;

3 COMPUTE:
if zone = Green then

Align pose towards D using GPS and Compass;
Move forward;

else
4 if zone = Y ellow then

Apply Braitenberg algorithm [4] to
determine direction to move;

else
// zone = Red
Move backward;
if signaturePath = NULL then

Update signaturePath;
else

5 if replannedPath = signaturePath
then

Align pose randomly;
Update signaturePath;

end
end

end
end

6 ACTUATE:
Perform movement;

end
end

Algorithm 1: Traversal algorithm of AGV

Control System Description: The task of the control
system is to guide the AGV to a target location following
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Max vel. Avg vel. Proximity Proximity Max range Field rR rY Other
AGVs (m/s) (m/s) sensor type sensor no. (m) of View (m) (m) sensors

Khepera III 0.3 0.21 Infrared 9 (ds0-ds8) 0.5 360° 0.026 0.086 Ground, Ultrasonic, GPS, Compass
Pioneer 3-DX 1.2 0.45 MS Kinect 1 3.5 70.6°× 60° 0.5 1 Sonar, GPS, Compass
Pioneer 3-AT 0.7 0.46 Sick LMS 291 Lidar 1 80 180° 1 1.5 Sonar, GPS, Compass

TABLE I
DESCRIPTION OF AGVS USED IN OUR EXPERIMENTS

a planned path, avoiding collision with obstacles on its
path. An outline of the control objective is described in
Algorithm 1. When the vehicle detects an obstacle in its path
from its sensor readings, an obstacle avoidance maneuver
is triggered, for example a Braitenberg [4] (at line 4 of
Algorithm 1). The actuation algorithm sets motor speed
to individual motors appropriately to drive the vehicle in
the intended direction. Sometimes the vehicle gets trapped
within a barricaded region which is formed due to awkward
positioning of a group of obstacles such that an AGV cannot
move forward, left or right without colliding. The only option
is to backtrack sufficiently and then travel in a different direc-
tion to avoid the group of obstacles (line 5 of Algorithm 1).
When the sensors are non-faulty, the collision avoidance
functionality is able to correctly detect and navigate the AGV
away from the obstacles. When sensing is imperfect, there
is a probability of delay in triggering the collision avoidance
algorithm, which may result in a collision.

Experiment with Physical Robot: We have also collected
data and compared observations for Double-3 [1], a tele-
presence robot in our laboratory. For our experiments the
robot was placed on a pre-determined place in our lab and
the destination was manually specified to the robot, while
some obstacles were placed randomly on its path. Double-3
has its own in-built obstacle avoidance procedure, which is
aided by its in-build 3D sensing array. This robot was used
only for verifying estimates from our model for the perfect
sensing case only.

The following section presents our experimental results for
both perfect and imperfect sensing scenarios.

C. Results and Discussion

In this section we compare and contrast our model with
experimentally collected data. Each experiment was per-
formed 10 times and the measurements were averaged for
presentation. The simulation results are contrasted with those
estimated from our model, both under error-less and erro-
neous sensor reading conditions in Sec. IV-C.1 and Sec. IV-
C.2 respectively.

1) Experiment-I: Perfect Sensing: In this first set of exper-
iments we attempt to validate our proposed model in a perfect
sensing condition. We compare the estimated traversal time
from the model with that obtained from experiments for
various traversal distances with different number and size
of obstacles. The first three clusters in Fig. 4(a) corresponds
to three AGVs travelling in an arena with 20 obstacles of
size 0.6 m-cube randomly placed, while the last cluster
corresponds to P3-DX travelling in a domestic environment
consisting of various heterogeneous obstacles as shown in

Fig. 3(b) . The inset plot shows deviation of the estimation
as error percentage. A general observation from these results
is that the model always underestimates the travel time. It
has its root in the approximation performed in derivation of
Eq. 2 by ignoring an additive term with small value. The
ignored value is comparable for smaller traversal distance
and induces high error, but as the distance increases the effect
of this reduces and is evident from Fig. 4(a) i.e. the model
is more accurate over longer paths.

Fig. 4(b) contrasts this model for various number and size
of obstacles for Khepera-III. The plot shows clusters with
the same obstacle sizes, and within a cluster the number of
obstacles increases. Both the experimental results, as well as
model estimations, show that the traversal time of the AGV
increases as the obstacles becomes larger. This is expected
since the AGVs need to travel more distance to avoid
them. When the obstacles sizes are small (0.2 m-cube) there
are sufficient free space for the robot to navigate around.
Increasing the number of obstacles does not drastically affect
the path length except when more number of obstacle may
appear on the path. In either case the increase in travel
distance is small since the size of the obstacles are also
small. Such a variation can be seen in experimental results
within all the clusters in the figure, but the model absorbs this
variation as mean under its stochastic treatment. However, as
the size of the obstacles increases, free space in the arena
decreases. This results in the path length to be lengthier to
avoid obstacles. The model can capture this effect as evident
from the cluster corresponding to the mean obstacle size 0.8
m-cube in Fig. 4(b).

The simulation result from the other configurations exhibit
similar pattern and are not shown here. In fact our experiment
with the physical robot, Double-3, also show the same pattern
and is depicted in Fig. 4(c).

2) Experiment-II: Single Sensor Independent Error: In
this section we present experimental results for imperfect
sensing, i.e. the sensed values contain error but the error is
independent of error in sensor readings from other sensors.
We simulate the error in sensor readings by injecting white
Gaussian noise (mean, µ = 0). Fig. 5 compares time and
collision estimations for Pioneer 3D-X for different traversal
distances. Although our model underestimates the metrics,
it follows the trend of experimental results. A similar trend
is visible for our experiments with Pioneer 3-AT and are
not shown here. This implies that the model also sincerely
estimates the metrics when sensors are imperfect.

We have also studied the performance of our model as
the variation of the sensing error increases (0.1 ≤ σ ≤ 0.5).
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Fig. 4. Comparison of time estimations when sensing is perfect. S and M represent simulation and model results respectively. Si and Mi represent the
simulation and model results respectively for i number of obstacles.

Fig. 5(a) compares travel time estimations with experimental
results for increasing error variations and this also closely
matches. However, the collision count estimations, as shown
in Fig. 5(b) does not match very closely. However, when
these values are rounded to its closest integral values (since
the number of collisions is an integral value), the match
is exact. For collision avoidance, the importance of cor-
rect reading increases (analogously, the disastrous effect of
anomalous reading increases) inversely with the distance
from the obstacle. So, the timing of an anomaly in reading for
obstacle distance is important, and this timing factor which
is not well captured in the model.
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Fig. 5. Single faulty sensor in P3-DX, with error distributed as N(µ =
0, σ = 1), in an arena with 20 homogeneous obstacles of size 0.6 m-cube.
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Fig. 6. Single faulty sensor in P3-DX, with normal error distribution with
µ = 0 but different variances, in an arena with 15 homogeneous obstacles
of size 0.4 m-cube.

3) Experiment III: Sensor Sensitivity: It is easy to see that
when the sensor readings are composed as a linear function,
φ(·) (the transfer function defined in Sec. III-E) is a linear
function. The transfer function used in control system in
Khepera-III is modeled as a weighted average function of
sensor readings, i.e.

∑n−1
i=0 (wiri) such that

∑n−1
i=0 wi = 1.

Then, φ is also the same linear weighted function defined

as φ( ~µεi) =
∑n−1
i=0 (wiµεi). When the sensor composition is

defined as weighted average as defined above, the last factor
in Eq. 7 is ∂φ( ~µεi)/∂µεi = wi. With this sensitivity of the
ith sensor stands as follows,

∂E[T]

∂σεi
= wi

E[T]2vµO(µR + rY )

d

∂Pr(DY |OY )
∂σε

Since the other factors are constant, this implies that the
sensor associated with the highest normalized weight is most
sensitive.

In this experiment we study the effect on the expected
traversal time when one of the proximity sensors of Khepera-
III is faulty. In this experiment, the faulty sensor is in-
jected with Gaussian distributed error (µεi = 0, σεi = 1).
Fig. 7(c) shows the additional travel time required due to
error. According to our experimental results, additional task
completion times are higher when the front sensors (ds3 and
ds4) are faulty. The weights associated with the sensors in
the control system is as follows and this shows that ds3 and
ds4 carry higher weights, in order.
−→w = [0.016, 0.1, 0.133,0.233, 0.216, 0.149, 0.1, 0.016, 0.033]

Sensitivity analysis from our experimental results shown in
Fig. 7(c) conform with the model-based sensitivity analysis.
This implies that to improve the overall performance of the
system, the reliability of these front proximity sensors should
be improved.

4) Experiment-IV: Multi-Sensor Correlated Error: Khep-
era III is equipped with an array of proximity sensors and val-
ues from these sensors are fused for proximity measurement
in the control system. In these experiments, we study the
performance of the system under correlated sensing errors.
The correlation of sensing error distributions is represented
as a co-variance matrix C = [[ρij ]] and treated under
the general framework of co-variance computation. The co-
variance matrix C, for n sensors, is an n× n matrix drawn
from [−1, 1], where 1, 0, and −1 represents perfect cor-
relation, independence, and anti-correlation respectively. In
this context, for practical purposes, the sensors are not anti-
correlated, and hence ρij ∈ [0, 1]. For normally distributed
co-related errors, mean: µε =

∑
i wiµεi and variance: σε =∑

i w
2
i σεi + 2

∑
i<j

∑
j wiwjρij such that ρij is the co-

variance of error between the ith and the jth sensors.
In our experiment, nine proximity sensors (ref. Fig. 3(a))

situated at the base of the Khepera-III are injected with
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Fig. 7. Primary sensing error, from Gaussian distribution with (µ = 0, σ = 1), is injected in one of the sensors of Khepera III, while errors for other
sensors are computed based on the correlation matrix C. The AGV was operating in an arena of size 25 m-sq with 15 homogeneous obstacles of size 0.4
m-cube randomly placed. These results depict variations against primary sensing error injection.

correlated errors, computed from a correlation matrix,
C = [[ρij ]], whose one representative row is ρ5 =
[0.2, 0.4, 0.6, 0.8,1.0, 0.8, 0.6, 0.4, 0.2] and the other rows
are simple rotational permutations. Here ρij represents the
correlation coefficient of error among the ith and jth sensors.
The rationale behind the design of such a correlation matrix
is based on the assumption that a fault in one sensor affects
failure in neighboring sensors and the effect dies down
with larger separation between the pair. So the geometry
of the sensor positions (ref. Fig. 3(a)) corresponds to such
correlations. The sensor error vector is generated as Ec =
LE, where the lower triangular matrix L is obtained by
Cholesky decomposition such that C = LLT , and the
E = [e0, e1, . . . e8], where ei represents the independent
error value generated for the ith sensor. The computed errors
are then injected to individual distance sensors. If we want
to inject an ε amount of error to the sensor ds0, then ds1
sensor to be induced with 0.8ε error, ds2 by 0.6ε, and so on.

Fig. 7 shows comparison of estimations for correlated
sensing errors. Here the faulty sensor denotes the primary
sensor which is injected with a Gaussian distributed error
with µε = 0 and σε = 1. The remaining proximity sensors
are injected with correlated error as described above. Com-
parisons of traversal time and collision count estimations are
shown in Fig. 7(a) and Fig. 7(b) respectively. These have the
similar trends as imperfect sensing as discussed in Sec. IV-
C.2. The sensitivity to error w.r.t. the performance (in this
traversal time) of the Khepera-III, follows our intuition that
ds3 is the most influential sensor. Error in this sensor results
in longer path to travel than any other sensor in the AGV.

V. CONCLUSION AND FUTURE WORK

In this work we proposed a generic traversal model for
an AGV under imperfect sensing. This model enables us to
analytically study some important performance metrics e.g.
task completion time, collision count, etc. and its sensitivity
to various kinds of errors in the sensors. Experiments show
that our model, although simple, has acceptable accuracy
of estimating these performance metrics. As a future study
we intend to extend this model to remove some of the
assumptions and also extend this for 3-D space, which will
be applicable to autonomous drone systems.
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