
The Mystery of the Failing Jobs: Insights from
Operational Data from Two University-Wide

Computing Systems

Rakesh Kumar1,2, Saurabh Jha3, Ashraf Mahgoub2, Rajesh Kalyanam2, Stephen L Harrell2, Xiaohui Carol Song2,

Zbigniew Kalbarczyk3, William T Kramer3, Ravishankar K Iyer3, Saurabh Bagchi2

1: Microsoft, rakku@microsoft.com; 2: Purdue University, {amahgoub, rkalyana, slh, cxsong, sbagchi}@purdue.edu;
3: University of Illinois at Urbana-Champaign, {sjha8, kalbarcz, wtkramer, rkiyer}@illinois.edu

Abstract—Node downtime and failed jobs in a computing
cluster translate into wasted resources and user dissatisfaction.
Therefore understanding why nodes and jobs fail in HPC clusters
is essential. This paper provides analyses of node and job
failures in two university-wide computing clusters at two Tier
I US research universities. We analyzed approximately 3.0M
job execution data of System A and 2.2M of System B with
data sources coming from accounting logs, resource usage for
all primary local and remote resources (memory, IO, network),
and node failure data. We observe different kinds of correlations
of failures with resource usages and propose a job failure
prediction model to trigger event-driven checkpointing and avoid
wasted work. Additionally, we present user history based resource
usage and runtime prediction models. These models have the
potential to avoid system related issues such as contention, and
improve quality of service such as lower mean queue time, if
their predictions are used to make a more informed scheduling
decision. As a proof of concept, we simulate an easy backfill
scheduler to use predictions of one of these models, i.e., runtime
and show the improvements in terms of lower mean queue
time. Arising out of these observations, we provide generalizable
insights for cluster management to improve reliability, such as,
for some execution environments local contention dominates,
while for others system-wide contention dominates.

Index Terms—HPC, Production failure data, Data analytics,
Compute clusters

I. INTRODUCTION

“THE PHOENIX MUST BURN TO EMERGE.”

Janet Fitch

Large-scale high performance computing (HPC) systems

have become common in academic, industrial, and govern-

ment for compute-intensive applications, including large-scale

parallel applications. These HPC systems solve problems that

would take millennia on personal computers, but managing

such large shared resources can be challenging and requires

administrators to balance requirements from a diverse set

of users. Large, focused organizations can afford to buy

centralized resources, and choose to manage and operate

it at academic organizations through a central IT organi-

zation. These are funded by federal funding agencies (like

the National Science Foundation in the US) and individual

researchers write grant proposals to get access to compute time

TABLE I: Summary of data analyzed (all production jobs) for the
two university-wide clusters. The percentages in parentheses refer
to the raw counts and node seconds. Sharing allows multiple jobs
to run on the same node.

Computing Cluster System A System B
Duration Mar 2015-Jun 2017 Feb-June 2017

jobs 2,908k 2,219k

shared

single 1,125k (38.7%, 15.8%) -

multi 28k (1.0%, 1.9%) -

total 1,153k (39.7%, 17.7%) -

non-shared

single 1,348k (46.3%, 18.4%) 1,640k (73.9%, 5.4%)

multi 407k (14.0%, 63.9%) 580k (26.1%, 94.6 %)

total 1,755k (60.3%, 82.3%) 2,219k (100%)

unique users 617 467

on these systems. Examples of such systems include Comet

at the University of California San Diego, Blue Waters at the

University of Illinois at Urbana-Champaign, and Frontera at

the University of Texas at Austin.

Another trend in many universities’ IT acquisition is the

adoption of the community cluster model. Here, research

groups buy assets (nodes and other hardware) in a central

computing cluster, which is then assembled and managed by

the central IT organization. These clusters have flexible usage

policies, such that partners in a community cluster have ready

access to the capacity they purchase, but they can use more

resources when other groups’ nodes are unused. This allows

for opportunistic use for the end users and higher resource

utilization for the cluster managers. System administrators take

care of security patches, software installation and upgrades,

and hardware repair, as well as space and cooling require-

ments. The community cluster model has become a foundation

of the research cyber-infrastructure at many universities. For

example, Purdue has run such a program since 2006 with 10

generations of clusters to date and in 2018 they provided 431M

CPU hours. This model is also being successfully used at the

Universities of Rochester, Delaware, and Texas at Austin.

This paper studies the reliability of jobs that run on two

clusters that follow the two operational models introduced

above. Our analyses are based on two centrally managed

computing clusters called System A and System B, at Purdue

University and University of Illinois at Urbana-Champaign

158

2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-7281-5809-9/20/$31.00 ©2020 IEEE
DOI 10.1109/DSN48063.2020.00034

TABLE II: Key observations and recommendations for the two university-wide computing clusters, System A and System B. Wherever
possible, we separate the recommendation for cluster provider (P) and user (U).

Observations Recommendations

O1: Although System A has a local IO ca-

pacity of 100MB/s, local IO-related failure

rate starts rising with utilization as low as 3-

6MB/s. Similarly, the remote IO capacity of

System B is 1.1TB/s while remote IO-related

failures are observed with a utilization of only

46MB/s for a given job.[Fig 4, 5]

R1: (P) With in-depth analysis, we notice that the majority of the jobs are sending random

access requests instead of sequential. Expectedly, we do observe the local IO threshold in

case of shared jobs (3 MB/s) to be less when compared with non-shared jobs (6 MB/s)

for System A. Accordingly, both local storage and network file system reaches saturation

with much less utilization than expected. Online monitoring of IO utilization is required to

identify contention thresholds and hence take proactive remedy decisions.

O2: Similar to prior studies, a linearly in-

creasing relationship is observed between job

failure rates and job runtime durations in

System B. However, System A shows the exact

opposite trend. [Fig 6]

R2: (P) Our analysis shows that the majority of failed jobs in System A are due to newly

submitted jobs that fail due to startup issues (like making huge system resources demand).

On the other hand, users of System B submit codes that are more mature and the long-

running jobs are exposed to more faults in space, time or both. For System B, we recommend

using job runtime duration as a feature while predicting job failure probabilities, and hence

identify optimal checkpointing frequencies (as we propose in section VI-A) (U) For System
A, system admins can encourage new users to test their jobs on test environments and

overcome any startup issues before running on the full-scale cluster.

O3: A significant portion of jobs fail with out-

of-memory exceptions, even in cases where

free memory of more than 10GB is available

on a node (System A). Moreover, the memory

utilization is less than 65% of the available

capacity in 50% of the failed jobs [Sec V-A]

R3: (P) (i) Use user history based memory usage prediction model (Sec. V-A) while making

scheduling decisions for the shared jobs. (ii) Monitor and start taking preemptive measures

when the application gets close to the memory capacity [43].

O4: Although System B is 43X larger in

scale compared to System A, system issues are

responsible for over 53% of the failed jobs in

System A, while it is only 4% for System B.

Moreover, sharing a node does not increase

the fraction of jobs failing due to system is-

sues. Additionally, both System A and System
B have significant user-related failures (33%

and 48% of all failures). [Table IV]

R4: (P) (i) This analysis measures quantitatively how beneficial it is to use resiliency

features in HPC (such as System B) and dedicated system administrators for the particular

cluster. (ii) Monitor resource usages of the jobs and take proactive actions when resource

exhaustion is being approached such as in [50], [61]. (iii) Use failure prediction model like

ours (Sec. VI-A) to dynamically change checkpointing frequency with failure probability to

complement current optimal periodic checkpointing techniques [15], [47]. (U) User-related

job failures: (i) Use static analysis tools for checking errors in job submission scripts,

environment setup, and user code [9], [53], [81]. (ii) Use small scale testing e.g., using

containers before submitting to a large cluster.

O5: Contention for remote resources with ex-

ecuting elements outside the node is dominant

in non-shared environment, while the con-

tention with other jobs executing on the same

node is dominant for a shared environment.

[Sec V-B, V-C, V-D]

R5: (P) (i) Use user-based resource usage prediction while making scheduling decisions

(Sec V-C,V-D). (ii) Adopt resource isolation technologies (such as containers) for shared

environment, to reduce failures due to local contention. (U) (i) Use dynamic reconfiguration

of applications based on current resource availability [50], such as reconfiguring the number

of threads or network timeout.

O6: A significant fraction of total compute

resources are used by jobs that hit against the

walltime for both System A (33%) and System
B (43%). [Table IV]

R6: Significant loss of work can happen when the program is terminated upon hitting

walltime. (P) (i) Like System B, provide extra cycles to enable an application to take a

checkpoint when job termination is signaled due to walltime. (ii) For long-running jobs,

perform checkpointing with dynamically varying frequency, say using our failure prediction

model (Sec. VI-A).

respectively. The details of the source data are provided in

Table I. For System A, which comprises 4,640 cores and 1,160

Xeon Phi acceleators, we consider a total of 3.0M jobs over

a period of 28 months (March 2015–June 2017). We have

released the entire data used in the analyses in this paper

into an open source repository as part of an ongoing NSF

project [10]. For System B, which consists of 396,000 CPU

cores and 4,229 GPU accelerators, we analyze about 2.2M

jobs over a period of 5 months (February–June 2017) of which

approximately 26% are multi-node jobs, including some which

are very large in execution scale reaching up to 358,400 cores.

A subset of the data for System B is available at [38]. This

dataset represents the most comprehensive one in terms of

variety of data sources analyzed publicly to date for failure

characteristics, whether of a university compute infrastructure

or otherwise. The paper performs 3 different categories of

analysis—examination of failure root causes through job exit

status codes, likelihood of failure with resource usage for both

local (memory, local IO) and remote (remote IO, network)

resources, and effect of job runtime on failures. We use

these analyses to drive two actionable decisions—changing the

checkpoint frequency and scheduling jobs through backfilling.

New insights and old insights in new environments. The

analyses in this paper shed new light relative to prior studies

of system usage and failures in large-scale computing clusters

in the following ways. We present in Table II, the key

observations and the implications for administering central

compute clusters with general-purpose needs. First, our paper

159

looks at two acquisition and operation models for research

computing clusters at two large universities. The heterogeneity

of jobs and the expertise level of the users together with the

relatively smaller size of the IT system administration staff

for maintaining such clusters have important implications for

job reliability. For example, the continuous node reachability

in this environment is lower than reported in prior studies

of focused, dedicated computing clusters, such as, US De-

partment of Energy-run supercomputing clusters [11], [67] or

highly instrumented and highly managed cloud clusters [64],

[78]. Second, we categorize jobs into 5 different categories

based on their exit codes. A number of prior works have

done similar categorization into 3 categories [8], [21]. We go

one step further and split failed jobs category into 3 further

categories, i.e., user-related, system-related or user/system-

related (or indeterminate) failures (Sec. IV). This is important

because the mitigations are likely to be different for these

categories. Third, we consider fine-grained system usage data

for the different resources, local to a node as well as remote,

and identify their implication for job failures. In some cases,

we see increased job failure rates due to local contention

(such as, for memory on a node) while in some cases we

see the effect of congestion for remote resources (such as, for

networking bandwidth and parallel file system for non-shared

jobs in System A). For some cases, there is no correlation found

(such as, memory-related failures in multi-node jobs). Taken

in totality, our analyses indicate which job categories (single-

node vs multi-node, shared vs non-shared) put contention

on which kinds of resources, and correspondingly at what

quantitative level, to the point of increasing job failure rates.

This can directly feed back into the acquisition and upgrade

decisions made by IT staff. More coarse-grained data and anal-

ysis, such as, aggregate job failure rate [67], coarse-grained

resource utilization metrics [12], [64], or the effect simply of

the execution time of the job on its failure probability [14],

[19], cannot shed such detailed light. Additionally, we use

user historical usage information to predict resource usages

of jobs currently in queue, i.e., even before a job starts

executing. We show how the prediction helps a backfilling-

based scheduler to improve cluster utilization. Finally, we

build a failure prediction model based on resource usages,

which triggers checkpointing when the likelihood of failure is

high.

The paper is structured as follows. Section II provides

details of the two systems while Section III describes the data

sources. In Section IV, we analyze job failure categories and

in Section V, we analyze the impact on job failures of resource

usages, and present resource usage prediction models. Finally,

Section VI shows the applications of failure prediction and

runtime prediction models. We then discuss threats to validity,

related work and conclude the paper.

II. SYSTEM DETAILS

Table III provides system specification of two university-

based HPC systems. System A is hosted at Purdue University

TABLE III: System Details

Unit System A System B

Compute 580 nodes, 64GB/node,

Xeon E52670 + 2x Xeon

Phi/node, ECC-protected

CPU & Xeon Phi memory

22,636XE (CPU only) and

4,228XK (CPU+GPU) nodes,

64GB/node, AMD 6276 In-

terlagos, NVIDIA GK110,

Chipkill-protected CPU mem-

ory modules, ECC-protected

GPU memory modules

Local IO 500 GB (SATA), 100MB/s Not present

Network
IO

1.4PB, 23GB/s, Data

Disks: RAID 6, Index

Disks: RAID 1+0, OSS

: Active-Active HA pair,

MDS: Active-Passive HA

pair

26.4PB, 1.1TB/s, Data Disks:

RAID 6, Index Disks: RAID

1+0, OSS : Active-Active HA

pair, MDS: Active-Passive

HA pair

Network 5GB/s, Fat Tree, Infiniband

Forward Error Correction

(FEC)

9.6GB/s, Cray Gemini 3D

Torus [7], Packet: 16-bit

packet CRC, links: adaptive

load balancing, routers:

quiesce and reroute

and System B is hosted at University of Illinois at Urbana-
Champaign.

Job Submission System: In System A, jobs can be flagged

by their submitters as shared or non-shared; the former means

that the job can be executed together with other jobs on the

same node. In System B, all jobs execute in non-shared mode,

without any co-location with another job on the same node.

System B puts a 48-hour walltime restriction, whereas System
A has a restriction of 336 hours. A job termination status (exit

code) is captured by the TORQUE [71] log in both systems,

while for System B, ALPS [39] also captures the exit code of

each application within a job.

Job Characteristics: This section compares and contrasts the

job characteristics of System A and System B in terms of i)

job node-seconds and ii) job size.

1) Job Node-seconds: It is the product of the number of

nodes and the wallclock time (in seconds) for which the

job executes. On both System A and System B, 50% of

the jobs run for less than ∼ 103 node-seconds (i.e., less

than 16 minutes), however on System B the jobs run up

to ∼ 109 node-seconds i.e., more than 1 year (refer

Fig. 1a).

2) Job Size: Most of the jobs on System A and System
B are single-node jobs, 85% and 74% respectively.

However, these jobs contribute just 34% (System A) and

5% (System B) by node-seconds. Furthermore, scale of

jobs submitted on System B is significantly larger than

System A where more than 20% of the jobs (by node-

seconds) execute on 2K nodes or more (refer Fig. 1b).

III. DESCRIPTION OF DATA

The data used in this paper falls under three broad cat-

egories: job scheduler accounting logs, job-level resource

utilization logs, and node-level health monitoring logs.

Job Accounting: Both System A and System B use

TORQUE [71]. These records contain the event being recorded

(e.g., queuing, job start, job end), corresponding timestamps,

the submitting user or group, and resources requested and

used. For System A, we processed the raw TORQUE logs,

160

(a) Comparing job node-seconds (#nodes × wallclock time)

(b) Comparing percentage by node-seconds

Fig. 1: Characteristics of jobs on System A (in brown, left in each
subfigure) and System B (in blue, right in each subfigure).

however System B uses Integrated System Console (ISC) [28]

to parse and store the job records and its associated metrics

(performance and failure) in its database.

Resource Utilization Stats: System A uses TACC Stats [23]

and System B uses light-weight distributed metric service

(LDMS) [6] for collecting resource utilization values. TACC

stat on System A is configured to collect data for each node at

5-minute granularity, whereas LDMS is configured at 1-minute

granularity on System B.

Node Failure Reports: System A maintains a record of

planned system outages, reboots, or alerts on unreachable

nodes from the Sensu [5] and Nagios [4] monitoring frame-

works. System B uses ISC [28] for recording in-depth infor-

mation about each job and node of the system.

IV. JOB CATEGORIES BASED ON EXIT STATUSES

In this analysis, we use the exit code information to find

the probable job failure cause and categorize them based on

the approach used in LogDiver [51]. On a TORQUE-based

system, a job upon termination returns an exit code in the

TABLE IV: Job categories based on exit codes. Percentages in
brackets are based on the total node-seconds

Environment & Job Type
shared non-shared overall

Category single multi single multi

Sy
st

em
A

Success 93.1% 87.6% 87.6% 61.8 % 86.1% (48.4%)
System 2.7% 6.5% 6.5% 8.8 % 5.3% (4.0%)

User 1.6% 2.2% 3.5% 7.2% 3.3%(12.9%)
User/System 0.6% 0.2% 0.4% 6.1% 1.3% (1.3%)

Walltime 2.0% 3.5% 2.0% 16.1% 4.0% (33.4%)
Total 1,125k 28k 1,348k 407k 2,908k

Sy
st

em
B

Success - - 91.6% 64.0% 84.4% (44.4 %)
System - - 0.10% 1.0% 0.3% (1.4%)

User - - 3.8% 3.0% 3.6% (2.7%)
User/System - - 1.2% 0.8% 3.6% (8.0%)

Walltime - - 3.7% 20.4% 8.0% (43.4%)
Total - - 1,640k 579k 2,219k

range -11 to 271. A successful job has exit status of 0 and any

other exit status can be either walltime or denotes unsuccessful

job termination, with each exit status value representing a

different error.

Exit reasons are classified into the following categories: (i)

Success, for applications completing without any errors, (ii)

Walltime, for applications not completing within the allocated

wall clocktime, (iii) User, for applications that fail due to

issues that originate from the submitter of the job or the

developer of the code. These include mis-configuration of job

script or compilation/execution environment setup, job user

action (such as a control-C signal), command errors, missing

module/file/directory, and wrong permissions, (iv) System,

where an application is terminated due to system hardware or

software errors, and (v) User/System, when it is not possible

to disambiguate whether the error occurred due to system or

user issues, e.g., SIGTERM signal can be issued both by user

(through asssertions) or scheduler (on failing health check).

A job exiting due to walltime does not necessarily mean

loss of production hours. Most of the jobs (especially large-

scale jobs) depend on checkpoint-restart mechanisms to start

from previously checkpointed state. On System B, developers

can trap the kill signal issued by the scheduler on expiry of

requested walltime and write a checkpoint file before exiting.

Since, there is no information available to us about application-

level checkpointing events, we ignore walltime jobs from the

rest of the study as we cannot disambiguate jobs that wrote a

checkpoint before being terminated (good case and little work

is lost) from the jobs that did not.

Table IV shows the category distribution for both the

systems for different execution environments (shared or non-

shared) and job types (single or multi). On System A, a

significant number of jobs failed due to system related errors

(5.3%) whereas most common failure category on System B
is user (3.6%). Only 61.8% (System A) and 64.0% (System B)

of the multi-node jobs in non-shared environment completed

successfully. On System A a higher 87.6% of the shared multi-

node jobs completed successfully but their number is too small

(1.0% overall) to draw any conclusion. Walltime category jobs

contributed to 33% and 43% of total compute hours for System
A and System B respectively. We find empirically through a

sub-sampled set that most of these jobs checkpoint frequently.

However, even here, there is possible loss of computation

due to the time gap between the last checkpoint and program

termination by the scheduler.

To investigate further, we also studied the node downtime

and uptime distribution using the node failure reports main-

tained by admins of these systems. We observed System B has

lower continuous downtime (95th percentile value: 24 hours

for System A vs 20 hours for System B) and higher continuous

uptime (95th percentile value: 31 days for System A vs 92 days

for System B).

Implications for System Design: We find that on the smaller
scale system (System A), job failures caused by system issues
are more frequent (53% for System A vs 4% for System B

of all failures). This is because System B is more reliable

161

by design. It uses expensive Cray HPC solutions and has
better resiliency features compared to System A (such as use
of chipkill-enabled memory modules over ECC). Additionally,
unlike System A, System B has dedicated maintenance staff
who monitor and manage system on a daily basis.

V. EFFECT OF RESOURCE USAGES ON JOB FAILURES

The section studies the influence of resource usage

on job failure due to system errors. We consider the 5

primary kinds of resources, both local and remote, namely,

memory, local and remote IO, network, and job node-seconds.

We calculate failure rate after removing all debug as well

as walltimed jobs. We remove the walltimed jobs because

these are not considered failed jobs and debug jobs are not

representative of production workloads. We define job failure
rate as the fraction of jobs that fail due to system-related

issues. Here we focus on system-related issues to reveal any

deficiencies in the underlying system architecture. Examples

are: insufficient main memory per node, unsuitable file system,

slow remote file system, or insufficient network speed. The

purpose of the analysis is to highlight which modules in the

system architecture is causing job failures and hence requires

administrative modifications. User-related errors happen due to

factors that have no discernible pattern, such as, correctness

bugs or misconfigurations in the user code. Hence, we do not

consider job failures due to user or user/system issues.

Tail-usage: It is the total amount of resource consumed (or
rate of resource consumption for I/O and network) by the job
in the last measurement window before failure. For System A

measurement window is five minutes whereas for System B

the measurement window is one minute.
Errors in high-speed HPC systems quickly propagate

through the system, hence resource utilization values shortly

before application failure provide a better understanding of

the failure reason than resource utilization throughout the

application run. We empirically validate that the job failure

rate is correlated with the tail resource utilization rather than

aggregate resource utilization (if there is any relation between

that resource and failures). Therefore, in this section, all

analyses are conducted using tail resource utilization values.

Since resource usages can vary widely across jobs, for all

the analyses in this section, we first define equal-sized bins

across the range of given resource usages. Jobs are grouped

based on the bin’s resource usage ranges and then the failure

rate of each bin is calculated as the fraction of jobs that failed

in that bin. For all analyses here, we only consider data points

or bins that have 100 or more jobs, in order to maintain the

statistical significance of the results. Additionally, job count is

included on the right y-axis to indicate the relative confidence

level of all the data points. Job count is equal to the number

of jobs considered while computing the failure rate of a given

bin. Higher the number of jobs, more accurate the failure rate

is. For resources such as local I/O, network I/O and network,

the monitoring tool collects the read (receive for network) and

write (transmit for network) data separately. We derive the total

I/O rate of a node by aggregating these read and write rates.

Since the rate range can vary anywhere from 0 to a very high

value (23GB/s and 1.1 TB/s for network file system I/O for

System A and System B respectively), we map these rates to a

log, base 10, scale.

We do two-sided, t-test based hypothesis testing for all

correlation results in this section. The null hypothesis is of the

form ”Job failure rate is not correlated with resource usage

of resource X”. So if the null hypothesis is rejected, then

we can conclude that resource usage of resource X is indeed

implicated with job failures. The results of all the hypothesis

tests are given in Table V. When the null hypothesis is rejected,

in some cases, the failure rate is positively correlated while

in others, it is negatively correlated. We remove plots for

inconclusive results to save space. Each plot has at the top

right a mark designating positive correlation (“+”), negative

correlation (“-”), or no statistically significant correlation

(“0”). We do not present the analysis for multi-node shared

jobs for System A since their number is too small to draw

any statistically significant conclusions. Wherever applicable,

we model the failure rate plot using the best-fit statistical

distribution and report the R2 value. Even where R2 is low, if

the hypothesis testing is significant, then the effect is validated.

Prediction Models: Each section also includes resource usage

prediction models for System A (combined results for both

shared and non-shared), where the measure being predicted is

the average resource usage per node during the lifetime of the

job. We are omitting the results for System B due to space

constraints. Similar to observations in prior works [68], [69],

[75]), jobs submitted by the same user tend to show strong

patterns. Accordingly, future resource usages for a certain

user’s job can be predicted by profiling previously submitted

jobs by that user. The prediction models presented in this

section basically are of 4 different kinds: (i) Last (L) - a naı̈ve

model which estimates the resource usage as the resource

usage of last finished job of a given user, (ii) Average (A)
- model which estimates the resource usage as the average of

resource usages of last n finished jobs of a given user, (iii)

Median (M) - model which estimates the resource usage as the

median of resource usages of last n finished jobs of a given

user, and (iv) Maximum Cosine Similarity (MCS) - model

which estimates the resource usage as the resource usage of

job which is most similar to the current job from the same

user. For cosine similarity computation, we use 5 different

attributes of a job such as jobname (1 if it is same as current

job’s jobname else 0), queue (1 if it is same as current job’s

queue else 0), number of nodes requested (normalized in the

range [0,1]), walltime requested (normalized in the range [0,1])

and difference in submit time (normalized in the range [0,1]).

We define history length as the number of last n finished

jobs of a user to consider while doing prediction. For the

last three kinds of models i.e., Average, Median and MCS,

we find optimal history length on the training dataset (70% of

total) and present the results (refer Table VI) with that optimal

history length used in the model applied to the test dataset

(30% of total). For the results, the best history length is added

after the model name, thus M19 means the Median model with

162

TABLE V: Hypotheses results containing the Pearson correlation coefficients and their
corresponding p-values. Null Hypothesis (α > 0.01): Failure rate is not correlated with
resource usage of resource X. All rejected null hypotheses are in either green or red.
Green represents positive correlation while red represents negative correlation

System A System B
Ref.non-shared shared non-shared

single multi single single multi

H1
0 : Memory 0.83, 1.7e-28 0.17, 0.4 0.84, 7.2e-32 0.57, 3.2e-9 0.13, 0.2 V-A

H2
0 : Local I/O -0.41, 2.0e-4 0.12, 0.4 0.15, 0.2 - - V-B

H3
0 : Network I/O -0.55, 3.3e-19 -0.57, 2.6e-11 0.42, 1.8e-7 -0.07, 0.4 0.45, 2.6e-6 V-C

H4
0 : Network -0.31, 7.0e-7 0.11, 0.1 0.40, 1.0e-9 -0.21, 0.04 -0.56, 2.5e-9 V-D

H5
0 : Node-seconds -0.36, 9.8e-5 -0.25, 0.01 -0.31, 1.1e-3 0.04, 0.6 0.42, 2.1e-5 V-E

TABLE VI: Median absolute percentage er-
ror (MAPE) of resource usage and runtime
predictors for System A on the test set. Best
history length as determined on the training
set is given in parenthesis. Absolute percentage
error, APE = Actual−Predicted

Actual
× 100.

Prediction Last Average Median MCS

Memory 3.0% 3.0% (1) 2.4% (19) 2.2% (20)

Local IO 31.9% 33.1% (2) 23.1% (19) 29.5% (10)

Network IO 31.8% 31.8% (1) 26.6% (17) 22.3% (13)

Network 17.7% 17.7% (1) 13.5% (17) 13.0% (11)

Runtime 16.7% 16.7% (1) 13.3% (9) 14.5% (16)

history length of 19.

A. Memory

1) Relation of job failure with memory usage:: Memory

related errors are common among failed jobs. In case of

memory, we know that exit code 137 corresponds to OOM

(out of memory) error. Therefore, we study the likelihood of

failure due to OOM error for different ranges of memory use.

Here the job failure rate is the fraction of jobs that fail with

OOM error. By memory use, we capture the entire memory

used on the node including use by system-level processes and

all user-level processes (corresponding to multiple user jobs if

being run in a shared environment). Fig. 2 shows the failure

distribution in non-shared environments while Table V shows

the results of the hypothesis testing.

We observe that the failure due to memory error distribution

is positively correlated with the tail memory usage of non-

shared single and shared single jobs (plot similar to Fig. 2a)

for System A as well as single jobs for System B. Recollect

that on System B, all jobs run in non-shared mode. While the

positive correlation is expected, it is quite surprising to see

the likelihood of failure increasing even when the available

memory is more than half of the total node memory capacity

for System A. System B exhibits the expected behavior where

the failure rate is flat till close to node memory capacity and

then jumps to 1. Neither System A nor System B’s non-shared

multi node jobs exhibit any such positive correlation and due

to higher p-value the null hypothesis cannot be rejected.

There are two root causes for this OOM problem. First,

users sometime mistakenly provide upper bound for their

memory limit. Second, when some heavy memory usage

applications reach close to the upper bound, they go into a

“death spiral” whereby they cannot free memory while writing

out the memory to disk. This phenomenon has been reported

(a) System A non-shared single (b) System B non-shared single

Fig. 2: Failure rate vs tail memory usages.

(a) Different models performance
with different history lengths on the
training set

(b) Percentage error distribution for
different models on test set with best
history length as per training set.

Fig. 3: Memory usage prediction for System A

previously with the OOM killer in Linux [20]. The least square

fit in Fig. 2 corresponds to function f = 0 for x <= a else

f = b(x− a) where f is failure rate and x is memory usage

in GB. The best fit curves have R2 value of 0.72 and 0.97 for

Fig. 2a and Fig. 2b.

Implications for System Design: Job failure rate caused by
OOM error increases with increasing tail-memory utilization,
but the increase starts to happen much earlier than the node
memory capacity in System A. Application of data mining
would help to determine when a job should be pre-empted
and moved to a larger node.

2) Prediction of memory usage based on user profile:: We

have seen above that memory usage is positively correlated

with job failure rate. While one approach to avoid such

failure is to continuously monitor memory utilization and take

proactive action whenever memory utilization is high, a better

approach is to predict memory utilization of a job even before

it starts executing. Then a scheduler can decide in advance

where to schedule a job in case of heterogeneous memory

cluster or it can make a more informed decision on which

all jobs to schedule together on a node in case sharing is

enabled. Figure 3 shows the results of different predictors

(explained in the last paragraph of Sec V) for System A.

Here, jobs can be shared or non-shared. We observe that any

predictor performs equally well. Median absolute percentage

error (MAPE) of all predictors are less than 12% (for at least

one history length). Among these, Maximum Cosine Similarity

(MCS) outperforms others for any selected history length.

B. Local IO

1) Relation of job failure with local IO usage:: In this

section, we conducted an analysis to conclude if total local

163

IO on a node impacts job failure likelihood. Fig. 4 shows the

results for System A. System B has no local storage (always

uses NFS for IO). Fig. 4a corresponding to non-shared single

jobs for System A, shows an overall negative correlation, which

initially appears counter-intuitive. The explanation is that any

IO related issues usually restrict IO usage and hence jobs

fail with lower IO rate. On the other hand an IO heavy

job unimpeded by any system-related issues can perform the

required IO operations at much higher rate and completes

successfully. This analysis reveals that a good number jobs

are failing due to systems issues such as disk bottlenecks or

faulty drivers that restrict IO rate. We also observe a peak

in the failure rate around 6 MB/s which is much lower than

the specified IO limit of available local discs (100 MB/s)

for System A. The least square fit in Fig. 4a corresponds to

function f = aebx where f is failure rate and x is resource

usage in log scale. For fitted curve, a = 0.04, b = −0.48
with R2 value of 0.16. Even though we cannot reject the null

hypothesis for shared single jobs of System A, a peak in the

failure rate, similar to the one for non-shared single jobs, is

observed around 3 MB/s in Fig. 4b. We see a dip in the job

failure rate to the right end of the Fig. 4b. This higher IO

above the local IO operating limit is due to caching which

is counted in the IO rate by the performance stats. The high

failure rate around 6 MB/s for non-shared single and 3 MB/s

for shared single is because random access rates are usually

much slower (can be more than 100X slower [1], [2]) than

sequential access rates and such accesses are more common

in shared.

Implications for System Design: This analysis can be used to
identify system issues in the local IO. A pattern like the peak in
the job failure rate can help in estimating the operational IO
rate limit for local storage, which can be much smaller than
the rated capacity. Thus, while provisioning the IO subsystem,
one should consider the prevalence of random IO (rather than
sequential IO) in the applications of value and benchmark the
IO system to determine this lower rate for random IO.

2) Prediction of local IO usage based on user profile::
The above analysis shows failure rate is high (peaks in Fig. 4)

with higher IO usage and the peak in case of shared occurs

earlier than non-shared. The difference in behavior between

shared and non-shared is primarily due to randomness in

access which is more common in case of shared. Hence, if

we can predict IO requirements of a job in advance, this

(a) System A non-shared single (b) System A shared single

Fig. 4: Failure rate vs total tail local IO rates

randomness can be minimized by scheduling only shared jobs

with complementary local IO requirements. So, we explore

user historical information based different local IO usage pre-

diction models. Table VI shows the performance of different

models on the test dataset. We observe the median predictor

with MAPE = 23.1%, outperforms others.

C. Network File System

1) Relation of job failure with remote IO usage:: This

section studies job failure correlation with total remote storage

usage rate. Fig. 5 shows the results for System A and System
B—the metric is the I/O rate per node. The least square curves

for System A correspond to function f = aebx where f is fail-

ure rate and x is resource usage in log scale. Hypothesis testing

gives statistically significant negative correlation with respect

to total tail remote usage rate for non-shared single (Fig. 5a)

and non-shared multi jobs (figure similar as Fig. 5a) for System
A. These results can be explained by the fact that during

congestion for remote storage server or with poor network

connectivity between computational and storage nodes, jobs

fail with low I/O usage rate. However, for shared single jobs

for System A, the overall failure likelihood increases as total

remote I/O rate increases as shown in Fig. 5b. Recollect that

the resource usage in shared mode is the aggregated resource

usage across all jobs running on the node at the given time.

Here failure is triggered by interference among multiple jobs

contending for the remote storage service. At a high level,

the contention for remote resources with executing elements

outside the node is predominant in non-shared environment,

while the contention with other jobs executing on that same

node is dominant for a shared environment. Therefore there is

a negative correlation of failure rate in the non-shared environ-

ment while a positive correlation in the shared environment.

In case of System B, no correlation is observed between

failure rate and total remote I/O usage rate for single-node

(a) System A non-shared single (b) System A shared single

(c) System B non-shared multi (d) Sys B — exit code=107

Fig. 5: Failure rate vs total tail network file system I/O rates

164

jobs. Moreover, the failure rate distribution is flat for the whole

remote I/O range. This is expected for System B since the peak

read/write rate by a single node is 9.6 GB/s (limited by the

network interface card capacity) whereas the peak bandwidth

supported by the file system is much higher at 1.1 TB/sec.

However, for multi-node jobs, we observe that the failure rate

is positively correlated with tail usage rate with a sharp peak

close to 46 MB/sec (Fig. 5c). It is difficult to explain why

contention in the NFS happens precisely at this traffic volume

going out of one node. However, we hypothesize that at this

volume, aggregated over all the nodes, there is contention at

the NFS. Though its rated capacity is 1.1 TB/s, its actual

operating limit is much lower due to random access (as shown

for local I/O). On investigating deeper and analyzing all the

failed jobs around the peak, we find that most of the jobs

in that peak failed with an exit code 107. Exit code 107 is

returned when ‘transport endpoint is not connected’ indicating

jobs are not able to connect to the NFS. Tellingly, 33% of all

system-related job failures across the study period are due to

unreachability of remote file system.

To understand the failures caused by unreachability of

remote file system and its system-wide impact, all jobs with

exit code 107 are clustered using the DBSCAN algorithm [22]

with parameters ε=300s and min job failure count=25. ε is the

maximum radius of the neighborhood from point p, where p
represents a failed job. A total of 26 clusters are found using

this approach and are shown in Fig. 5d along with the total

number of failures that belong to the cluster. The median time

between occurrence of these burst failures (i.e., more than 25

jobs failing within a duration of 300s) is 3.3 days. A remote file

system may become unreachable due to: (i) remote file system

failure (2 clusters), (ii) network failure (4 clusters) and, (iii)

congestion in the network and NFS (remaining 20).

Implications for System Design: Bandwidth to the parallel
file system continues to be a problem for large-scale systems.
Where it is not possible to increase that bandwidth, it is
needed to carefully monitor its net usage and to stagger the
IO requests from different applications at times of contention.

2) Prediction of remote IO usage based on user profile::
The above analysis shows that contention at remote storage

increases job failure likelihood. Additionally, contention with

other jobs executing on that same node increases failure

likelihood for a shared environment. Hence, if the remote IO

requirement of a job can be predicted, it can enable a better

scheduling strategy such as scheduling jobs with high remote

IO at different times. Table VI shows the results of different IO

usage predictors. We observe the Maximum Cosine Similarity

model with MAPE = 22.3%, outperforms others.

D. Network

1) Relation of job failure with network usage:: We omitted

all plots of this section to save space. No significant correlation

is found for non-shared multi-node jobs of System A and

(non-shared) single-node jobs of System B (refer Table V).

However, non-shared single jobs for System A and multi jobs

for System B are negatively correlated with tail I/O usage rate.

(a) System A non-shared single (b) System B non-shared multi

Fig. 6: Failure rate vs node-seconds.

As discussed earlier, negative correlation implies system issues

such as contention or poor network connectivity is causing jobs

to fail with low tail network usage. Similar to remote I/O, we

observe overall positive correlation for shared single-node jobs

for System A.

2) Prediction of network usage based on user profile::
Network usage prediction model can help in minimizing

the contention in network. Hence, here we explore different

network usage prediction models. Table VI shows the per-

formance of 4 different kinds of models on the test dataset.

All models have promising MAPE of < 18%. Among these,

MCS based model has the best performance of 13.0%.

E. Job Node-seconds

1) Relation of job failure with job node-seconds:: This

section analyzes the effect of the total node-seconds of a

job (defined in Sec.II) on the job failure rate. Prior studies

have found positive correlation of failure rate with the total

execution time of an application [14], [19]. For example, [19]

found that for extreme scale Blue Waters applications, both

of CPU and CPU+GPU kind, there was a linearly increasing

relationship (in log-log scale) of the probability of application

failure and the application node hours. Here we analyze to see

if a similar relationship holds for System A and System B.

We find that for System A, the relation has a negative slope

for all three categories of jobs—non-shared single (Fig. 6a),

non-shared multi, and shared single (negative correlation with

distribution similar to Fig. 6a for both non-shared multi and

shared single—plot omitted to save space). This seemingly

counter-intuitive relation can be explained by the observation

that many novice users submit jobs to System A. The allocation

model is that any faculty member who purchases even one

asset in the system can authorize researchers from her group

to execute on the cluster. Therefore, many poorly written jobs

get submitted, which on startup make huge demands on system

resources (such as loading huge datasets into memory) and

fail quickly. Hence, the high failure rate for low job execution

times. On the other hand, jobs that have executed for a while

are unlikely to run into such problems.

The trend for System B is the opposite. Here, long-running

jobs do put pressure on the system resources and hence have

a higher likelihood of failing due to system issues. Here

the codes are more mature and the long-running jobs are

exposed to more faults in space or time or both. Interestingly,

a significant fraction of all failed jobs fail with job execution

165

Gradient boosted
decision trees

(XGBoost)
log10(x)

Memory (GB)

Local IO (MB/s)

Network (MB/s)

Network IO (MB/s)

Node-seconds (s)

log10(x)

log10(x)

log10(x)

Failure
Probability

Fig. 7: ML model for predicting impending failure of a job.

Fig. 8: PR curves

t = 0

ML + Optimal Periodic
Checkpointing

Optimal Periodic
Checkpointing

Failure

Wastage

Monitoring
Window

t = TOCP t = 2TOCP

Failure
Predicted

Fig. 9: Periodic vs ML + Periodic

Fig. 10: [Base case: Periodic] ML model + periodic checkpointing
savings as a percentage of the total time that would have been
wasted in the baseline case due to job failure and no checkpointing.
Mean time between failures (MTBF in seconds) and time to save
information at a checkpoint (Ts in seconds) used to compute
optimal checkpointing frequency are given in the bottom right of
each plot. Jobs with runtimes up to 5 hours are considered.

time less than 1 minute—34% for System A and 45% for

System B. These cause inefficient cluster usage due to the

constant overhead of scheduling, initiating, and terminating

execution.

Implications for System Design: With mature demanding
codes, the job failure rate goes up with larger jobs. However,
with naı̈ve usage models, the failure rate is high for short jobs.

2) Prediction of job runtime based on user profile: While

a runtime prediction model cannot help in preventing a job

failure, it can improve the quality of scheduling significantly

(as we show in Section VI-B). We observe that users overesti-

mate their runtime (more than 9X on median) leading to longer

queue time since the scheduler takes requested walltime as

input. Hence, we explore different runtime prediction models

here. Table VI shows the results of the different models on the

test dataset. All predictors have MAPE less than 17% with

the median predictor outperforming others.

VI. APPLICATION OF THE ANALYSES

A. Predicting Job Failures

The previous section shows that the job failure rate is

correlated with usage for certain resources. The question we

pose ourselves is, can we predict impending failures to take

mitigation actions, such as, taking a checkpoint and migrating

TABLE VII: Symbols used for saving calculation

Symbol: Description

x: Total number of failures — y: Number of failures predicted

P: Precision of the model — R: Recall of the model

Tf : Mean time between node failure (MTBF)

Ts: Time to save information at a checkpoint

Tw:
√
TsTf [82] (Work time between checkpoints)

TOCP: Ts + Tw (Optimal checkpointing period)

Tr: Runtime of the job

NOCP: �Tr/TOCP � (Number of periodic checkpoints taken)

SOCP: Saving by the optimal periodic checkpointing method

SML: Saving by the ML method

ST: Saving by the ML + periodic method

the process. This motivates us to explore different ML models

to predict job failure using the different resource usages for a

job as input features. We divide our dataset into training and

test sets in the ratio 7:3. After trying different ML models such

as linear regression, logistic regression, and decision trees, we

find that gradient-boosted decision tree performs the best based

on recall and precision scores. The output is converted to a

binary decision using a threshold, whether the job will fail or

not. These gradient-boosted decision tree based models have

been implemented using the XGBoost package in Python

(refer Figure 7). Fig. 8 shows the precision-recall curves for

different execution environments and job types generated by

varying the threshold. We observe that model performance

corresponding to the non-shared single job types of System B
is not usable, expectedly since the number of jobs belonging

to failure category due to system issues is insignificant (0.1%,

refer Table IV). Additionally, precision scores of multi node

jobs are better than that of single node jobs. This we suspect

is because the diversity in the single node jobs is significantly

higher than in the multi node jobs.

Our job failure prediction model can reduce resource

wastage on these systems by triggering a checkpoint when

failure is imminent. The application registers a callback which

is invoked by our system upon this event. Since the failure

prediction model is not perfect, our ML model by itself may

not give the optimal savings. So, we recommend to combine

our ML model with the optimal periodic checkpointing method

such as one given by Young [82] or Vaidya [76] to obtain the

optimal savings. In our implementation, combination means

taking a checkpoint whenever either method suggests taking a

checkpoint—there are of course other ways of combining the

two methods, which we do not explore in this work.

Fig. 9 shows the schemes of optimal periodic checkpointing

and ML + optimal periodic checkpointing methods. We define

savings as the time that would have been wasted in the baseline

case due to job failure and no checkpointing (and that is saved

due to the checkpointing) minus the overhead of checkpoint-

ing, expressed as a percentage of the total execution time

of the job. In the case of periodic checkpointing, whenever

a failure occurs, the amount of work done between the last

checkpoint to the failure is lost. Our ML-based checkpointing

will minimize this wastage by forcing a checkpoint whenever

it predicts a failure and the probability is above a threshold.

Recall that monitoring happens periodically (5 minutes for

166

TABLE VIII: [Base case: Periodic] Normalized area under the
curve of Figure 10 (normalized with respect to jobs with no wastage
execution due to failures). We present results with TS = 60s a
reasonable value for real production jobs. For jobs with higher TS

values, we recommend to use data compression techniques such
as the one by Islam [34] (which reduced large-scale application
checkpointing overhead to less than 60s). With SSD, this overhead
can be further reduced to TS = 10s [3].

System Periodic ML ML+Periodic

MTBF=1e4,

TS=60 sec

A

shared single

0.81

0.82 0.91

non-shared single 0.89 0.94

non-shared multi 0.90 0.95

B non-shared multi 0.91 0.94

MTBF=1e5,

TS=60 sec

A

shared single

0.66

0.82 0.88

non-shared single 0.89 0.92

non-shared multi 0.90 0.93

B non-shared multi 0.91 0.93

MTBF=1e6,

TS=60 sec

A

shared single

0.30

0.82 0.84

non-shared single 0.89 0.90

non-shared multi 0.90 0.91

B non-shared multi 0.91 0.92

MTBF=1e6,

TS=10 sec

A

shared single

0.60

0.95 0.95

non-shared single 0.97 0.97

non-shared multi 0.97 0.98

B non-shared multi 0.97 0.98

System A and 1 minute for System B). Therefore the wastage is

reduced to the window from the last monitoring (and attendant

prediction) to the actual failure. Our next analysis shows how

much saving can be achieved using different checkpointing

methods. Refer Table VII for all symbols used in the analysis.

1) Periodic: SOCP = NOCPTw

Tr
∗ 100

2) ML: True positive = Py = Rx or y = Rx/P .

Total time in checkpointing, Tc = Tsy.

SML = RxTr−Tsy
xTr

∗ 100 = R
(
1− Ts

PTr

) ∗ 100
3) ML+periodic: Number of failures not detected by ML

model, NFN = x−Rx.

ST = RxTr−Tsy−NOCPRxTs+NOCPNFNTw

xTr
∗ 100

=
(
R
(
1− Ts

PTr
− NOCPTOCP

Tr

)
+ NOCPTw

Tr

) ∗ 100
Using the derivations of SOCP , SML and ST , we now

calculate the maximum net savings over all possible (precision,

recall) pairs for different MTBF and time to take a checkpoint

i.e., Ts values. The results for shared single jobs of System A
are shown in Fig. 10 (plots are similar for other job types and

System B and are omitted to save space). However, for com-

parison, we do present the results in terms of the normalized

area under these curves in Table VIII. Based on these results,

ML + periodic checkpointing method outperforms the base

optimal checkpointing method by between 12.3% (unreliable

system with MTBF =1e4, Ts=60s) and 2X (reliable system

with MTBF = 1e6 and Ts=60s). Additionally, we observe

the savings achieved by the optimal checkpointing method in

case of failure decreases as a system becomes more reliable

(MTBF increases from 1e4 to 1e6). This is because the optimal

checkpointing period increases and hence the amount of lost

work increases. This limitation is overcome by integrating it

with the ML model.

B. Predicting Job Runtime

In this section, we investigate the use case of our resource

usage prediction models (Sec. V) and show how these can

Fig. 11: Overall Job Wait time for System A and System B
using different runtime predictors. The values over the bars show
improvements over user estimated runtime

significantly improve the efficiency of shared computing clus-

ters. Many scheduling techniques rely on job runtime estimates

to minimize job waiting times. For example, many current

batch job schedulers use Backfilling [26], [75] whereby the

scheduler prefers smaller jobs to jump to the head of the queue

provided they do not delay previously queued jobs. Therefore,

accurate job runtime estimates are essential for Backfilling
to be effective in reducing overall jobs wait time. We apply

job runtime prediction to both systems A & B and use the

pyss [41] simulator, which implements Backfilling scheduling

(among others). Figure 11 shows the average job wait time

for System A and System B for a trace of 15K jobs. We draw

several insights:

1) Users tend to overestimate the runtimes of their jobs.

This causes the scheduler to consider fewer jobs for

Backfilling and hence increases the overall wait time.

2) The MCS model performs the best among our 4 pre-

diction models, achieving an overall wait time that is

within 5% of oracle for System A and 1% for System B.

3) Between our 4 models, model L performs the worst.

However, despite the simplicity of the model, it still

performs 25% better than user estimated runtimes for

System A and 14% better for System B.

VII. THREATS TO VALIDITY

Inferring failure from exit statuses Our failure analysis

relies on exit status either from a job (System A) or from

individual applications within a job (System B). While there is

a guideline provided by TORQUE for exit status [59], there

is no compulsion for a job script or application developer

to follow the guideline. However, it is generally found by

others [13], [60] and us here that application developers of

popular applications (which contribute most data points in our

dataset) follow the guideline. The job script developer usually

takes the exit code of the last executable in the script and

returns that and thus benefits from the standardization of exit

status.

I/O Caching and Utilization. We determine the I/O utilization

using the block and llite counters. Not all ‘read bytes’

and ‘write bytes’ values recorded through these counters result

in fetching of data from local or remote file system as the data

may be cached in memory. However, it is shown to be a good

estimator of I/O load for the file system [6].

167

VIII. RELATED WORK

Failure analysis of large-scale computing systems [18], [19],

[23], [31], [54] has been done in the past on many scopes

of analysis, such as job-level, application-level, node-level,

or system-level. These works focus on hardware reliability

rather than job failures. In contrast, Mitra et al. [54] performed

investigations of jobs submitted to a university cluster to

understand their primary failure modes. However, our work

focuses on finding the effect of resource usage on reliability

of jobs in community clusters. In a closely related work [19],

authors conducted job failure characterization study on more

than 5 million HPC job runs. However, the analysis was

limited to one system and did not consider resource utilization

characteristics for job failure study. Our approach concretely

shows that resource utilization characteristics by a job play an

important role in determining job success rate as it captures

both the impact of error/failure in the system as well as

interference among jobs. In a recent work [8], the authors

studied workload diversity in different clusters. They also

categorize jobs into different categories such as successful,

timeouts, and unsuccessful. However, unlike this work and

several others [12], [21], we delve deeper to determine whether

the job failure is due to user or system-related issues. Or-

thogonal to our analysis, there have been many studies that

have focused on performance optimization [35]–[37], [62]

or to detect inefficient applications [23], [54], [70], [77] on

large-scale clusters. Several node failure [16], [27], [29], [30],

[79], and job failure [12], [24], [33], [46] prediction models

have been proposed in the past as well. A few prior works

such as [58] have performed single-bit error prediction for

GPU as well. Our ML failure prediction model belongs to

the job failure category. We do not claim novelty in our

prediction model, instead show the utility of this simple

ML model by integrating it with an existing checkpointing

method. A number of works have already explored various

optimal checkpointing strategies. For instance, [74] explores

checkpointing strategies based on temporal locality of failures.

Our proposed checkpointing strategy however is based on job

failure prediction.

Related works for job runtime and resource usage prediction

can be categorized into 2 categories. i) Black box prediction:
The kind of prediction where the characteristic of job is un-

known. The features used for prediction can be either the fields

from the job submission script [44], [68], [69], [72], [75],

[80] or the current resource utilization of the job [25], [40],

[66]. A recent study [80] uses the parameters used by users

during job submission as features to NN to predict runtime

and IO rate. While proposed model just uses theses parameter

to estimate runtime, the model needs retraining every 100

submitted jobs making it harder to scale for large HPC systems

(having thousands of nodes) where more than 100s of jobs are

submitted every second. Our proposed predictor also belong

to the former class of this category. ii) White box prediction:
These prediction models utilizes the characteristics of jobs

to predict the runtime or resource usage. In some cases the

characteristics of a job are known learnt by the algorithm [52],

[56], [63] or derived from a particular implementation [45],

[57], [65]. In other cases the characteristics are derived from

job executing data on known inputs [32], [42], [73], or by

performing offline profiling of different jobs and predicting

the performance for new unseen jobs [48], [49].

IX. CONCLUSION AND OPEN CHALLENGES

We have analyzed extensive system usage and failure data

from two centrally administered computing clusters at two Tier

1 US Research universities. Our dataset comprises a total of

3.0M and 2.2M jobs from the two clusters, which represents

the richest data source to be analyzed in the literature. The two

clusters vary significantly in their scale, hardware resiliency

characteristics, and systems management practices shedding a

comparative light on failure characteristics. Through analysis

of different kinds of data—node failures and recovery, job

failures, and job resource usages —we bring out important

insights into how the clusters behave and implications for

how they can be managed more effectively. Our hope is that

this study will trigger other studies by researchers using data

from their local organization’s compute clusters and we look

forward to seeing which insights will be shared and which

will be distinct. We have also publicly released the dataset

on which the analyses are based. Some of our key findings

are: (i) A significant fraction of jobs hit against the walltime

(33% and 43% for the two systems) and therefore event-

driven application-level checkpointing is needed to avoid lost

work. (ii) Resource pressure affects different types of jobs

differently. Sometime job failure rate is positively correlated

with resource usage (such as local memory), while sometime

it is negatively correlated with remote resource pressure (such

as network usage). These have different implications for how

resource contention should be handled. (iii) User historical

resource usages can be used to predict resource usages of jobs

current in queue. These models can be directly integrated with

the existing schedulers to increase its effectiveness. (iv) Job

failures due to resource contention can be observed with levels

of utilization that is much less the available capacity. This is

observed with memory, local IO, and remote IO as well.
Open challenges: We lay out two open challenges to the

technical community motivated by the observations from our

two production systems. First, current optimal checkpointing

estimation methods take only hardware reliability (such as

MTBF) into account. This paper integrated it with job fail-

ure likelihood information. However, there is still scope for

improvement. A better method is to consider in addition the

rate of job progress [55]. Second, current contention-aware

schedulers [17] need to profile a job first to estimate job’s

interference and latency-sensitivity. This is a major limitation

for clusters where majority of jobs are short running. This

paper presents user history-based resource usage predictions,

which can be used to predict a job’s profile that then should

feed into the contention-aware scheduler.
“GIVING UP IS THE ONLY SURE WAY TO FAIL.”

Gena Showalter

168

REFERENCES

[1] Lies, Damn Lies And SSD Benchmark Test Result. https://www.seagate.
com/tech-insights/lies-damn-lies-and-ssd-benchmark-master-ti/.

[2] Random vs Sequential. https://blog.open-e.com/random-vs-sequential-
explained/.

[3] UserBenchmark. https://www.userbenchmark.com/.

[4] Nagios. https://www.nagios.com, 2018.

[5] Sensu. http://www.sonian.com/cloud-monitoring-sensu/, 2018.

[6] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy
Enos, Joshi Fullop, Ann Gentile, Steve Monk, Nichamon Naksineha-
boon, Jeff Ogden, et al. The lightweight distributed metric service: a
scalable infrastructure for continuous monitoring of large scale com-
puting systems and applications. In High Performance Computing,
Networking, Storage and Analysis, SC14: International Conference for,
pages 154–165. IEEE, 2014.

[7] Robert Alverson, Duncan Roweth, and Larry Kaplan. The gemini system
interconnect. In 2010 18th IEEE Symposium on High Performance
Interconnects, pages 83–87. IEEE, 2010.

[8] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A.
Gibson, Elisabeth Baseman, and Nathan DeBardeleben. On the diversity
of cluster workloads and its impact on research results. In USENIX
Annual Technical Conference, 2018.

[9] Mona Attariyan and Jason Flinn. Automating configuration trou-
bleshooting with dynamic information flow analysis. In OSDI, vol-
ume 10, pages 1–14, 2010.

[10] Saurabh Bagchi, Rakesh Kumar, Rajesh Kalyanam, Stephen Harrell,
Carolyn A Ellis, and Carol Song. Fresco: Open source data repository for
computational usage and failures (http://www.purdue.edu/fresco), Oct
2019.

[11] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer,
and Marc Snir. Toward exascale resilience: 2014 update. Supercomput-
ing frontiers and innovations, 1(1):5–28, 2014.

[12] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. Failure analysis of
jobs in compute clouds: A google cluster case study. In Software Reli-
ability Engineering (ISSRE), 2014 IEEE 25th International Symposium
on, pages 167–177. IEEE, 2014.

[13] Mendel Cooper. Advanced Bash-Scripting Guide. http://tldp.org/LDP/
abs/html/exitcodes.html, 2014.

[14] Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono, and Stefano
Russo. A survey of software aging and rejuvenation studies. ACM
Journal on Emerging Technologies in Computing Systems (JETC),
10(1):8, 2014.

[15] J. T. Daly. A higher order estimate of the optimum checkpoint interval
for restart dumps. Future Gener. Comput. Syst., 22(3):303–312, February
2006.

[16] A. Das, F. Mueller, P. Hargrove, E. Roman, and S. Baden. Doomsday:
Predicting which node will fail when on supercomputers. In SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 108–121, Nov 2018.

[17] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In ACM SIGPLAN Notices,
volume 48, pages 77–88. ACM, 2013.

[18] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Fabio
Baccanico, Joseph Fullop, and William Kramer. Lessons learned from
the analysis of system failures at petascale: The case of Blue Waters. In
Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP
International Conference on, pages 610–621. IEEE, 2014.

[19] Catello Di Martino, William Kramer, Zbigniew Kalbarczyk, and Rav-
ishankar Iyer. Measuring and understanding extreme-scale application
resilience: A field study of 5,000,000 hpc application runs. In De-
pendable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP
International Conference on, pages 25–36. IEEE, 2015.

[20] THE GEEK DIARY. What is Out-of-Memory (OOM)
Killer in Linux (Causes, Troubleshooting, Mitigation).
https://www.thegeekdiary.com/what-is-out-of-memory-oom-killer-
in-linux-causes-troubleshooting-mitigation/.

[21] N. El-Sayed, H. Zhu, and B. Schroeder. Learning from failure across
multiple clusters: A trace-driven approach to understanding, predicting,
and mitigating job terminations. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pages 1333–
1344, June 2017.

[22] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, volume 96, pages 226–231, 1996.

[23] Todd Evans, William L Barth, James C Browne, Robert L DeLeon,
Thomas R Furlani, Steven M Gallo, Matthew D Jones, and Abani K
Patra. Comprehensive resource use monitoring for hpc systems with
tacc stats. In Proceedings of the First International Workshop on HPC
User Support Tools, pages 13–21. IEEE Press, 2014.

[24] H. Fadishei, H. Saadatfar, and H. Deldari. Job failure prediction in
grid environment based on workload characteristics. In 2009 14th
International CSI Computer Conference, pages 329–334, Oct 2009.

[25] Fahimeh Farahnakian, Pasi Liljeberg, and Juha Plosila. Lircup: Linear
regression based cpu usage prediction algorithm for live migration of
virtual machines in data centers. In 2013 39th Euromicro Conference
on Software Engineering and Advanced Applications, pages 357–364.
IEEE, 2013.

[26] Dror G Feitelson and Ahuva Mu’alem Weil. Utilization and predictabil-
ity in scheduling the ibm sp2 with backfilling. In Proceedings of the First
Merged International Parallel Processing Symposium and Symposium on
Parallel and Distributed Processing, pages 542–546. IEEE, 1998.

[27] S. Fu and C. Xu. Exploring event correlation for failure prediction in
coalitions of clusters. In SC ’07: Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing, pages 1–12, Nov 2007.

[28] Joshi Fullop et al. A diagnostic utility for analyzing periods of degraded
job performance. In Proc. Cray User Group, 2014.

[29] A. Gainaru, F. Cappello, M. Snir, and W. Kramer. Fault prediction
under the microscope: A closer look into hpc systems. In SC ’12:
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–11, Nov 2012.

[30] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer. Failure
prediction for hpc systems and applications: Current situation and open
issues. Int. J. High Perform. Comput. Appl., 27(3):273–282, August
2013.

[31] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari.
Failures in large scale systems: Long-term measurement, analysis, and
implications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’17,
pages 44:1–44:12, New York, NY, USA, 2017. ACM.

[32] Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and
Mayur Naik. Predicting execution time of computer programs using
sparse polynomial regression. In Proceedings of the 23rd International
Conference on Neural Information Processing Systems - Volume 1,
NIPS’10, pages 883–891, USA, 2010. Curran Associates Inc.

[33] T. Islam and D. Manivannan. Predicting application failure in cloud: A
machine learning approach. In 2017 IEEE International Conference on
Cognitive Computing (ICCC), pages 24–31, June 2017.

[34] Tanzima Zerin Islam, Kathryn Mohror, Saurabh Bagchi, Adam Moody,
Bronis R De Supinski, and Rudolf Eigenmann. Mcrengine: a scalable
checkpointing system using data-aware aggregation and compression.
Scientific Programming, 21(3-4):149–163, 2013.

[35] S. Jha, V. Formicola, C. D. Martino, M. Dalton, W. T. Kramer,
Z. Kalbarczyk, and R. K. Iyer. Resiliency of hpc interconnects: A
case study of interconnect failures and recovery in blue waters. IEEE
Transactions on Dependable and Secure Computing, 15(6):915–930,
2018.

[36] S. Jha, A. Patke, J. Brandt, A. Gentile, M. Showerman, E. Roman, ,
Z. Kalbarczyk, W. T. Kramer, and R. Iyer. A study of network congestion
in two supercomputing high-speed interconnects. In 2019 IEEE 26th
Annual Symposium on High-Performance Interconnects (HOTI), Aug
2019.

[37] Saurabh Jha, Archit Patke, Jim Brandt, Ann Gentile, Benjamin Lim,
Mike Showerman, Greg Bauer, Larry Kaplan, Zbigniew Kalbarczyk,
William Kramer, and Ravi Iyer. Measuring congestion in high-
performance datacenter interconnects. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), pages 37–57,
Santa Clara, CA, February 2020. USENIX Association.

[38] Saurabh Jha, Archit Patke, Mike Showerman, Jeremy Enos, Greg Bauer,
Zbigniew Kalbarczyk, Ravishankar Iyer, and William Kramer. Monet -
blue waters network dataset (https://doi.org/10.13012/B2IDB-2921318
V1), 2019.

[39] M. Karo, R. Lagerstrom, M. Kohnke, and C. Albing. The application
level placement scheduler. In Cray User Group - CUG, 2008.

[40] Yiannos Kryftis, Constandinos X Mavromoustakis, George Mastorakis,
Evangelos Pallis, Jordi Mongay Batalla, Joel JPC Rodrigues, Ciprian

169

Dobre, and Georgios Kormentzas. Resource usage prediction algorithms
for optimal selection of multimedia content delivery methods. In 2015
IEEE international conference on communications (ICC), pages 5903–
5909. IEEE, 2015.

[41] The Hebrew University Experimental Systems Lab.

[42] H. Li, Y. Wu, Y. Chen, C. Wang, and Y. Huang. Application exe-
cution time prediction for effective cpu provisioning in virtualization
environment. IEEE Transactions on Parallel and Distributed Systems,
28(11):3074–3088, Nov 2017.

[43] Jack Li, Calton Pu, Yuan Chen, Vanish Talwar, and Dejan Milojicic.
Improving preemptive scheduling with application-transparent check-
pointing in shared clusters. pages 222–234, 11 2015.

[44] Xiuqiao Li, Nan Qi, Yuanyuan He, and Bill McMillan. Practical resource
usage prediction method for large memory jobs in hpc clusters. In Asian
Conference on Supercomputing Frontiers, pages 1–18. Springer, 2019.

[45] Y. Ling, F. Liu, Y. Qiu, and J. Zhao. Prediction of total execution time
for mapreduce applications. In 2016 Sixth International Conference on
Information Science and Technology (ICIST), pages 341–345, May 2016.

[46] C. Liu, J. Han, Y. Shang, C. Liu, B. Cheng, and J. Chen. Predicting of
job failure in compute cloud based on online extreme learning machine:
A comparative study. IEEE Access, 5:9359–9368, 2017.

[47] Yudan Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and
S. L. Scott. An optimal checkpoint/restart model for a large scale high
performance computing system. In 2008 IEEE International Symposium
on Parallel and Distributed Processing, pages 1–9, April 2008.

[48] Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Subrata Mitra, Wolf-
gang Gerlach, Travis Harrison, Folker Meyer, Ananth Grama, Saurabh
Bagchi, and Somali Chaterji. Rafiki: a middleware for parameter
tuning of nosql datastores for dynamic metagenomics workloads. In
Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference,
pages 28–40, 2017.

[49] Ashraf Mahgoub, Paul Wood, Alexander Medoff, Subrata Mitra, Folker
Meyer, Somali Chaterji, and Saurabh Bagchi. {SOPHIA}: Online
reconfiguration of clustered nosql databases for time-varying workloads.
In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC}
19), pages 223–240, 2019.

[50] Amiya K Maji, Subrata Mitra, Bowen Zhou, Saurabh Bagchi, and
Akshat Verma. Mitigating interference in cloud services by middleware
reconfiguration. In Proceedings of the 15th International Middleware
Conference, pages 277–288. ACM, 2014.

[51] Catello Di Martino, Saurabh Jha, William Kramer, Zbigniew Kalbar-
czyk, and Ravishankar K Iyer. Logdiver: a tool for measuring resilience
of extreme-scale systems and applications. In Proceedings of the 5th
Workshop on Fault Tolerance for HPC at eXtreme Scale, pages 11–18.
ACM, 2015.

[52] Andréa Matsunaga and José AB Fortes. On the use of machine
learning to predict the time and resources consumed by applications.
In Proceedings of the 2010 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing, pages 495–504. IEEE Computer
Society, 2010.

[53] Dirk Merkel. Docker: lightweight linux containers for consistent
development and deployment. Linux Journal, 2014(239):2, 2014.

[54] Subrata Mitra, Suhas Javagal, Amiya K Maji, Todd Gamblin, Adam
Moody, Stephen Harrell, and Saurabh Bagchi. A study of failures
in community clusters: The case of conte. In Software Reliability
Engineering Workshops (ISSREW), 2016 IEEE International Symposium
on, pages 189–196. IEEE, 2016.

[55] Subrata Mitra, Ignacio Laguna, Dong H Ahn, Saurabh Bagchi, Martin
Schulz, and Todd Gamblin. Accurate application progress analysis for
large-scale parallel debugging. In Proceedings of the ACM Symposium
on Programming Language Design and Implementation (PLDI), vol-
ume 49, pages 193–203. ACM, 2014.

[56] Tudor Miu and Paolo Missier. Predicting the execution time of workflow
activities based on their input features. In Proceedings of the 2012
SC Companion: High Performance Computing, Networking Storage and
Analysis, SCC ’12, pages 64–72, Washington, DC, USA, 2012. IEEE
Computer Society.

[57] Sara Mustafa, Iman Elghandour, and Mohamed A. Ismail. A machine
learning approach for predicting execution time of spark jobs. Alexan-
dria Engineering Journal, 57(4):3767 – 3778, 2018.

[58] B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, and
D. Tiwari. Machine learning models for gpu error prediction in a
large scale hpc system. In 2018 48th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), pages 95–106,
June 2018.

[59] University of Michigan. Interpreting Torque Return Codes. https://arc-
ts.umich.edu/software/torque/return-codes/, 2018.

[60] Stack Overflow. Are there any standard exit status codes in
Linux? https://stackoverflow.com/questions/1101957/are-there-any-
standard-exit-status-codes-in-linux, 2012.

[61] KyoungSoo Park and Vivek S Pai. Comon: a mostly-scalable moni-
toring system for planetlab. ACM SIGOPS Operating Systems Review,
40(1):65–74, 2006.

[62] Fabrizio Petrini, Darren J Kerbyson, and Scott Pakin. The case of the
missing supercomputer performance: Achieving optimal performance on
the 8,192 processors of asci q. In SC’03: Proceedings of the 2003
ACM/IEEE conference on Supercomputing, pages 55–55. IEEE, 2003.

[63] I. Pietri, G. Juve, E. Deelman, and R. Sakellariou. A performance model
to estimate execution time of scientific workflows on the cloud. In 2014
9th Workshop on Workflows in Support of Large-Scale Science, pages
11–19, Nov 2014.

[64] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and
Michael A Kozuch. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In Proceedings of the Third ACM Symposium on
Cloud Computing, page 7. ACM, 2012.

[65] Nikzad Babaii Rizvandi, Javid Taheri, Reza Moraveji, and Albert Y
Zomaya. On modelling and prediction of total cpu usage for applications
in mapreduce environments. In International conference on Algorithms
and architectures for parallel processing, pages 414–427. Springer,
2012.

[66] Florian Schmidt, Mathias Niepert, and Felipe Huici. Representation
learning for resource usage prediction. arXiv preprint arXiv:1802.00673,
2018.

[67] Bianca Schroeder and Garth Gibson. A large-scale study of failures in
high-performance computing systems. IEEE Transactions on Depend-
able and Secure Computing, 7(4):337–350, 2010.

[68] Warren Smith, Ian Foster, and Valerie Taylor. Predicting application run
times with historical information. Journal of Parallel and Distributed
Computing, 64(9):1007 – 1016, 2004.

[69] Ozan Sonmez, Nezih Yigitbasi, Alexandru Iosup, and Dick Epema.
Trace-based evaluation of job runtime and queue wait time predictions
in grids. In Proceedings of the 18th ACM International Symposium on
High Performance Distributed Computing, HPDC ’09, pages 111–120,
New York, NY, USA, 2009. ACM.

[70] Niyazi Sorkunlu, Varun Chandola, and Abani K. Patra. Tracking system
behaviour from resource usage data. CoRR, abs/1705.10756, 2017.

[71] Garrick Staples. Torque resource manager. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06, New York, NY,
USA, 2006. ACM.

[72] Taraneh Taghavi, Maria Lupetini, and Yaron Kretchmer. Compute job
memory recommender system using machine learning. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 609–616. ACM, 2016.

[73] S. Tahvili, M. Saadatmand, M. Bohlin, W. Afzal, and S. H. Ameerjan.
Towards execution time prediction for manual test cases from test spec-
ification. In 2017 43rd Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pages 421–425, Aug 2017.

[74] D. Tiwari, S. Gupta, and S. S. Vazhkudai. Lazy checkpointing: Exploit-
ing temporal locality in failures to mitigate checkpointing overheads on
extreme-scale systems. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pages 25–36, June
2014.

[75] Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson. Backfilling using
system-generated predictions rather than user runtime estimates. IEEE
Trans. Parallel Distrib. Syst., 18(6):789–803, June 2007.

[76] Nitin H. Vaidya. Impact of checkpoint latency on overhead ratio of a
checkpointing scheme. IEEE Transactions on Computers, 46(8):942–
947, 1997.

[77] Davide Del Vento, Thomas Engel, Siddhartha S. Ghosh, David L. Hart,
Rory Kelly, Si Liu, and Richard Valent. System-level monitoring of
floating-point performance to improve effective system utilization. In
State of the Practice Reports, SC ’11, pages 5:1–5:6, New York, NY,
USA, 2011. ACM.

[78] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. Large-scale cluster management
at google with borg. In Proceedings of the Tenth European Conference
on Computer Systems, page 18. ACM, 2015.

170

[79] M. Wu, X. Sun, and H. Jin. Performance under failures of high-end
computing. In SC ’07: Proceedings of the 2007 ACM/IEEE Conference
on Supercomputing, pages 1–11, Nov 2007.

[80] Michael R. Wyatt, II, Stephen Herbein, Todd Gamblin, Adam Moody,
Dong H. Ahn, and Michela Taufer. Prionn: Predicting runtime and
io using neural networks. In Proceedings of the 47th International
Conference on Parallel Processing, ICPP 2018, pages 46:1–46:12, New
York, NY, USA, 2018. ACM.

[81] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long
Jin, and Shankar Pasupathy. Early detection of configuration errors to
reduce failure damage. In OSDI, pages 619–634, 2016.

[82] John W Young. A first order approximation to the optimum checkpoint
interval. Communications of the ACM, 17(9):530–531, 1974.

171

