
Challenges in Firmware Re-Hosting, Emulation, and
Analysis

CHRISTOPHER WRIGHT, Purdue University
WILLIAM A. MOEGLEIN, Sandia National Laboratories
SAURABH BAGCHI, Purdue University
MILIND KULKARNI, Purdue University
ABRAHAM A. CLEMENTS, Sandia National Laboratories

System emulation and �rmware re-hosting have become popular techniques to answer various security
and performance related questions, such as, does a �rmware contain security vulnerabilities or meet timing
requirements when run on a speci�c hardware platform. While this motivation for emulation and binary
analysis has previously been explored and reported, starting to either work or research in the �eld is di�cult.
To this end, we provide a comprehensive guide for the practitioner or system emulation researcher. We layout
common challenges faced during �rmware re-hosting, explaining successive steps and surveying common
tools used to overcome these challenges. We provide classi�cation techniques on �ve di�erent axes, including
emulator methods, system type, �delity, emulator purpose, and control. These classi�cations and comparison
criteria enable the practitioner to determine the appropriate tool for emulation. We use our classi�cations to
categorize popular works in the �eld and present 28 common challenges faced when creating, emulating and
analyzing a system, from obtaining �rmwares to post emulation analysis.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; Firmware;
Embedded hardware; Embedded software; Real-time systems; • Hardware → Simulation and emulation.

Additional Key Words and Phrases: Firmware re-hosting, system emulation, embedded systems, emulation
�delity, emulator classi�cation, binary analysis, reverse engineering, emulation challenges

ACM Reference Format:
Christopher Wright, William A. Moeglein, Saurabh Bagchi, Milind Kulkarni, and Abraham A. Clements. 2020.
Challenges in Firmware Re-Hosting, Emulation, and Analysis. ACM Comput. Surv. 1, 1 (September 2020),
35 pages. https://doi.org/0000001.0000001

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results
and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views
of the U.S. Department of Energy or the United States Government. SAND2020-10079 J

Authors’ addresses: Christopher Wright, christopherwright@purdue.edu, Purdue University; William A. Moeglein,
wmoegle@sandia.gov, Sandia National Laboratories; Saurabh Bagchi, sbagchi@purdue.edu, Purdue University; Milind
Kulkarni, milind@purdue.edu, Purdue University; Abraham A. Clements, aacleme@sandia.gov, Sandia National Laboratories.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
0360-0300/2020/9-ART
https://doi.org/0000001.0000001

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

2 C. Wright, et al.

1 INTRODUCTION
The number of connected devices, from appliances to smart home and personal gadgets, has
increased dramatically with the explosion of Internet of Things (IoT). Along with these every
day gadgets, large scale infrastructures such as the electric grid, cellular networks, and other
large control systems have become smarter, digital, and interconnected. [62, 98, 107, 120, 178].
Understanding how these systems work and discovering vulnerabilities in their �rmware is an
important and growing topic in academic and industrial research, with large companies paying
millions of dollars for bugs found in their devices [1, 30, 32, 77, 118, 140]. The increased e�ort to
protect connected devices has come from an increased awareness of their vulnerability and the
attacks targeting them [3, 43, 82, 85, 101, 123, 166, 174, 183]. Many of these systems have access to
sensitive �nancial data, personal information, or control critical processes. Malicious actors are
exploiting vulnerabilities in these systems to cause harm to businesses, individuals, and critical
systems such as electrical grids and cellular infrastructure.

Emulation of embedded systems is an emerging technique to accelerate discovery and mitigation
of vulnerabilities in embedded system �rmware. Embedded system emulation has traditionally
been used during development to allow embedded software to be written and tested without the
need for hardware. In cases where hardware is concurrently being developed, is costly to have
in quantity, or is susceptible to damage, emulation is an appealing option. Just as emulation can
be used to verify system behavior during development, it can be used for vulnerability research
and analysis. Emulation provides the ability to deeply observe and instrument �rmware in ways
that are not possible on physical hardware. It can help analyze what operations are actually being
performed at a lower level than static analysis of either the high level source code or even the
binary level, and is a useful tool that is the basis for a host of vulnerability discovering techniques
[35, 44, 91, 137, 146, 151, 160, 169] among other uses outlined in Section 2.

For a practitioner to use emulation or re-host1 a �rmware, there is a learning curve and a plethora
of tools available. Our primary purpose is to provide an end-to-end guide to the practitioner for
�rmware re-hosting. We limit our focus on emulation and re-hosting to the embedded space, as
virtually any system will have embedded devices, from wearable IoT devices to power plants, which
if vulnerable will a�ect the entire system’s security and functionality. We present an overview of
current techniques/tools for the practitioner along with classi�cation categories and techniques for
evaluating which tool is best for the emulation task at hand. We provide tables for the practitioner
to reference in subsequent challenge sections that specify whether a tool attempts to address
the presented challenges, giving a starting point for the practitioner to evaluate the right tool to
overcome challenges.

We proceed with a brief history and background of emulation in Section 2. We then introduce
surveyed works in Section 3 before introducing di�erent comparison techniques in Section 4. We
continue by comparing surveyed works for emulation in Section 5. We discuss the necessary pre
conditions and challenges for re-hosting �rmware in Section 6. We then proceed to break the
challenges into three categories, Pre-Emulation, Emulation and Post Emulation and provide tool
comparisons in Section 7, Section 8, and Section 9 respectively. We �nish by discussing di�erent
considerations when choosing re-hosting tools in Section 10 and a summary in Section 11.

1Re-hosting speci�es that a binary that would run on a speci�c hardware is instead run on a host system using system
emulation, and is therefore "re-hosted"

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 3

2 EMULATION BACKGROUND
2.1 Evolution of Emulation
Since before the era of personal computers, emulation has been a technique used to broaden
hardware use and increase simulation speed. For example, most printing software used to be
designed for HP, so many non-HP printers would write an emulator to re-host the software
designed for HP [73]. Re-using HP software allowed for faster time to market for new printers and
reduced the development time and e�ort for creating new products.

Emulation theory was �rst developed in the early 1960s, with the 7070 Emulator for the IBM
System/360 series of mainframe computers being the �rst implemented emulator [83]. This emulator
allowed IBM’s customers to continue running their existing applications after upgrading their
hardware. As was the case for the 7070 emulator, early uses of emulation was to avoid obsolescence
and increase hardware compatibility with the limited available software. Over time, manufacturers
started creating hardware emulators to allow software development before the hardware production;
decreasing product development time. Emulators are now becoming a popular tool for security
analysis and logic debugging [91, 129, 160, 169].

Around the same time frame, simulation was also used, but it allowed for executing and expanding
systems beyond what existed. Simulation is sometimes referred to in scienti�c modeling and
investigating, but in this context, simulation is another technique to model the internals of a system.
In the computer science context, simulation is modeling a system with implementation of the
internals, whereas emulation is modeling by replacing some of the internals of the system. By
replacing some of the internals, emulation can sometimes reduce complexity or increase �rmware
re-hosting speed. Emulation will often allow for original machine code to run directly on the
emulator. Beyond the computer science context, simulation and emulation are sometimes used
interchangeably, with simulation sometimes refering to a system being replaced by software. For
our case, the distinction is not important, but the tools we survey mostly refer to their techniques
as emulation.

One of the early emulation successes was Bochs [96], which was released in the early 90’s. It
emulated the underlying hardware needed for PC operating systems development, which enabled
completely isolating the OS from the hardware. This isolation enabled restarting the emulator
instead of recon�guring hardware during OS development. Bochs was originally commercial
licensed but was open sourced in 2000. In addition to Bochs, many other emulators were created
including DOSBox [52], FX!32[27], and PCem[126]. These solutions were mainly geared for x86 or
PC emulation.

As multiple emulators emerged, the execution and memory �delity (i.e., how closely the emulated
system matches the real system, sometimes referred to as accuracy) varied from high (cycle and
register accurate) to low (module and black box accurate). We discuss �delity and give more classi�-
cation points in Section 4.3, but �delity and emulator speed are perhaps the greatest distinguishing
factors between di�erent emulators.

2.2 Emulation Bases
In the early 2000’s, Simics [105] was created and evolved to emulate multiple architectures including
Alpha, x86-64, IA-64, ARM, MIPS (32- and 64-bit), MSP430, PowerPC (32- and 64-bit), SPARC-V8 and
V9, and x86 ISAs. It was originally developed by the Swedish Institute of Computer Science (SICS)
before moving to Virtutech and eventually working its way to Wind River Systems, who currently
sells it. Simics is designed to have �delity at the instruction level, allowing for interrupt testing
to occur between any pair of instructions. It also provides con�guration management, scripting,
automated debugging (forward and reverse), and other built in static and dynamic analysis tools to

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

4 C. Wright, et al.

help with constructing an emulated system. One popular use for Simics was during the DARPA
Cyber Grand Challenge to automatically vet submissions to check whether the submitted binaries
adhered to the competition infrastructure [168].

In contrast to Simics and emulators that work at the instruction level �delity, QEMU [11] gives
up some accuracy to improve emulation speed. Instead of working as a sub-instruction simulator
(performing multiple actions per instruction), QEMU execution and emulation occurs at the basic
block level (sequential, non-control �ow instructions), by translating entire blocks of instructions
to the host system’s instruction set and executing the translated instructions. This allows QEMU to
work much faster, as it does not have to check for interrupts at each instruction, and caching of
blocks greatly reduces translation overhead. Because of its open-source license and community,
QEMU has become one of the staples in academia and for industry professionals. It emulates the
IA-32, x86, MIPS, SPARC, ARM, SH4, PowerPC, ETRAX CRIS, MicroBlaze, and RISC-V architectures,
and provides peripherals for many systems, making it and Simics two of the most widely used
emulators.

One of the newest emulators available is Ghidra Emulator. Ghidra [119] is an open source
software reverse engineering tool developed by the National Security Agency (NSA). The initial
release in March 2019 contains emulation tools that allow for traditional software reverse engineer-
ing and emulation to be combined into the same environment. Because of the richness of features
in these tools, there has been a large user base since release. Ghidra uses their own processor
modeling language called Sleigh and an intermediate register transfer language called P-code,
with each machine instruction translating to up to 30 P-code instructions. This implies that the
Ghidra Emulator works at the sub-instruction level (multiple emulator instructions performed per
machine instruction), giving a relatively high execution �delity as a base. Ghidra currently supports
various existing architectures including X86 16/32/64, ARM/AARCH64, PowerPC 32/64, VLE, MIPS,
MSP430, Z80, AVR, etc. To add a new architecture is simple in their framework, with the user only
specifying how the new architectures instructions are dissassembled into the intermediate P-code
language. Ghidra includes loaders, disassemblers, decompiler and analysis tools with the base of
supplied analyses written in Java. Beyond the built-in emulator, there have been Ghidra P-code
emulators emerging that allow for partial re-hosting of �rmwares [153].

2.3 Related Vulnerability Discovery Techniques
As emulation has been used more frequently for vulnerability discovery, it is worth mentioning some
closely related vulnerability discovery techniques that often leverage emulation. The techniques
introduced are integrated into some frameworks that work with the base emulators, requiring
at least some familiarity during discussion. We do not go into extensive depth for the areas, but
rather overview the techniques brie�y, and recommend further reading for an in depth review.
We mention some of the tools that are more popular, but it is not necessary to understand their
di�erences or techniques in the scope of our review, rather the techniques are mentioned brie�y in
subsequent sections when integrated into a tool.

Symbolic Execution is where symbols representing arbitrary values are supplied as inputs to
a program (similar to letters in algebra representing numbers). The goal of symbolic execution is
to analyze a program to determine what inputs can cause di�erent parts of a program to execute.
Rather than analyze and follow a single path with concrete values, a symbolic execution engine
will use symbols to describe all program execution paths that can execute by using constraints on
symbols.

Concolic Execution is when the tool will switch between using symbolic symbols and concrete
symbols (like an algebra symbol having a set value, eg x=5) during emulation or execution. When
reverse engineering �rmware, an analyst will occasionally want to determine under what conditions

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 5

a program will execute a certain portion of code. Symbolic and Concolic execution are tools that
help solve this problem among other vulnerability discovery uses. Symbolic execution is now a
common software testing practice, even though it was introduced in the ’70s [20]. Commonly used
symbolic and concolic execution tools include [10, 13, 15, 16, 19, 23, 24, 28, 38, 47, 61, 79, 103, 111,
141, 144, 147, 151].

Fuzzing is an automated vulnerability/bug discovery technique where random inputs are pro-
vided, and the system observed for undesired behavior (e.g., crashes). There are many challenges to
fuzzing and various tools that try to address these challenges. In the context of emulation, fuzzers
often leverage the visibility into, and control over, a binary’s execution to optimize their random
inputs to improve their exploration of the binary. Some popular fuzzing tools that can be integrated
with emulation are [2, 14, 39, 51, 63–71, 80, 108, 127, 134, 135, 145, 156–158, 184].

3 SURVEYED WORKS
Prior to introducing emulation comparison axes, we introduce surveyed works that enable emulation
and �rmware re-hosting. We do not discuss or reintroduce Simics, QEMU, or Ghidra Emulator, as
they are described in Section 2.2, but they are the base emulators used in the tools introduced in
this section. Base emulators can either run in user mode emulation (i.e., running just user level
applications) or full system emulation; with full-system emulation currently being the primary
mode used for �rmware re-hosting. Full-system emulation will emulate the processor as well as
hardware peripherals; however, the set of emulated peripherals available in the base emulators
are small compared to the diversity of hardware found in embedded systems. Much of the work in
�rmware emulation aims at solving this lack of emulated peripherals.

Avatar2 [112] is a dynamic multi-target orchestration and instrumentation framework that focuses
on �rmware analysis. This tool was created by the same group as Avatar, but is a multi-target
orchestration tool that has completely been re-designed from the original Avatar implementation
[185].

The main contribution of this tool is that it allows various other tools (angr, QEMU, gdb) to
interact and transfer data. Using these tools it can enable hardware in the loop emulation, where
portions of execution or memory accesses are carried out by physical hardware.

angr [151] is a symbolic execution engine, that has been integrated with Avatar2 to enable
combining symbolic execution and other analysis into the concrete base QEMU emulator. angr is a
binary analysis framework that provides building blocks for many analyses, both static and dynamic.
angr provides an architecture library, an executable and library loader, a symbolic execution engine,
built in analyses, and a python wrapper around a binary code lifter. It is actively developed and used
in various other academic works including [9, 104, 124, 128, 148, 150, 158, 175, 176]. We include
this as one of the surveyed works because of its ability to use base emulators while providing new
approaches and solutions to overcome emulation challenges from beginning to end.

HALucinator [35] addresses the challenge of providing peripherals not implemented in the base
emulator by observing that the interactions with peripherals are often performed by a Hardware
Abstraction Layer (HAL). It uses Avatar2 and QEMU as bases to intercept HAL calls and replace
them. They do this by manually providing replacements for HAL functions that execute during
re-hosting. It uses a library matching tool to identify the HAL functions in the �rmware. The tool
relies on the assumption that the majority of �rmware programmers use Hardware Abstraction
Libraries when writing �rmware, which in our experience is a relatively safe assumption.

PANDA [50] is an open-source platform that builds on top of the QEMU whole system emulator
that is used for architecture-neutral dynamic analysis. The main advantage of PANDA is that it
adds the ability to record and replay executions, allowing for deep, whole-system analyses. System
record has partially been addressed in a hardware-software co-design approach [161] as well as

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

6 C. Wright, et al.

under more restrictive assumptions, using a purely software approach [159, 162]. Such whole
system record and replay is challenging especially considering the timing requirements. PANDA,
using the QEMU base and abstracting some of the analyses, allows for using a single analysis
implementation across multiple computer architectures while maintaining the speed of QEMU,
allowing some timing challenges to be addressed.

Muench2018, titled "What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded
Devices" [113] demonstrate that tools used for desktop vulnerability discovery and testing do not
necessarily transfer to the embedded space. In their paper they present di�erent techniques used
for vulnerability assessment implemented by instrumenting an the emulator used for re-hosting the
�rmware. They implement segment tracking, format speci�er tracking, heap object tracking, call
stack tracking, call frame tracking, and stack object tracking by combining PANDA and Avatar2.

Using QEMU as a base, both Firmadyne [25] and Costin Firmware Analysis (referred herafter as
CostinFA [43, 44] "A Large-Scale Analysis of the Security of Embedded Firmwares" and "Automated
Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces"), will extract the
�lesystem from a given �rmware and re-host the �lesystem on their own kernel. They perform
system emulation using only software, not involving any physical embedded devices. Their tools
work only for software images that can natively use chroot with QEMU. They then perform static
and dynamic analysis on their re-hosted �rmware to report vulnerabilities. Recent e�orts that
use the same type of approach as Costin and Firmadyne is ARMX [146]. ARMX requires more
user interaction and con�guration and only works for ARM architecture devices while requiring
the rootfs from the �rmware and the extracted NVRAM from the �rmware. Given these extra
requirements, the results of the emulated devices using their technique is usually of high quality.

PROSPECT [84] and SURROGATES [90] enable emulation by forwarding hardware and pe-
ripheral accesses to the actual device; a technique known as hardware in the loop. PROSPECT
forwards peripheral and hardware interactions through a normal bus connection to the device,
but allows for analysis and implementation without needing to know the details about the periph-
erals and external hardware connected to the system. SURROGATES, in contrast, uses a custom
low-latency FPGA bridge between the host PCI Express bus and the system under test, allowing
forwarding and state transfer to and from the system’s peripherals with transfers much faster than
the original Avatar [185] system.

P2IM [57] uses a drop-in fuzzer (AFL[2]) to provide inputs to their base QEMU emulator. They
abstract peripheral and hardware IO and then use the fuzzer for providing the feedback to the
base emulator. Their approach is di�erent from existing emulation approaches as it does not
use hardware or detailed knowledge of the peripherals, as the fuzzer provides interactions. The
fuzzer enables executing �rmware with simple peripherals to be emulated, but its ability to enable
emulation of �rmware processing data from complex and stateful hardware is unknown.

In contrast to using a random fuzzer, Pretender [72] attempts to re-host �rmware by using
machine learning to provide models of hardware interactions. Their system will record hardware
interactions and all accesses to memory mapped input and output (interacting with peripherals is
done through a speci�ed memory-mapped address - MMIO) regions along with any interrupt that
occurs during execution before performing a peripheral clustering and dividing the recordings into
sub-recordings for each peripheral. They then train a memory model, trying to select and train
on known models for each peripheral. The analyst then decides how to introduce inputs into the
system.

In summary of the tools that are surveyed (highlighted in bold throughout Section 2 and Section 3)
the general purpose emulators surveyed that have a wide variety of specialties and uses include
Avatar2, CostinFA, Firmadyne, Ghidra, HALucinator, Muench2018, Panda, QEMU, and Simics.
Emulators that use hardware in the loop include Avatar2, SURROGATES, and PROSPECT. Emulators

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 7

that can use symbolic execution and/or fuzzing include angr, Ghidra, HALucinator, and P2IM. The
only emulator that uses machine learning for models is Pretender, which at the moment to be
successful requires fairly simple �rmware. If the reader is anxious for a �ow-chart of which tool to
use, refer to Figure 4 that is explained in Section 10. While this is not an exhaustive list of tools
or methods, as there are many more available including [17, 18, 33, 40, 48, 48, 60, 75, 76, 82, 86, 87,
92, 94, 99, 136, 139, 155, 156, 164, 167, 173] among others, we believe the scope of tools and their
applicability is encompassed in the tools mentioned above.

4 EMULATION COMPARISON AXES
Prior to discussing the core challenges of emulation, we �rst introduce axes over which the
comparison of di�erent emulators can be compared. Various emulators and emulation techniques
are used for di�erent purposes, and thus make di�erent design decisions. Establishing common
axes to evaluate emulators is necessary to enable the practitioner to do a useful comparison before
choosing the ideal emulation tool for their use.

4.1 Emulation Techniques
A signi�cant challenge to re-hosting �rmware is the large expanse of hardware peripherals that
need to be emulated; thus, one evaluation axis is the fundamental technique the emulator uses to
provide these peripherals. The technique employed will directly relate to another axis of comparison
– the complexity of the hardware that is feasible to emulate. Some systems are simple with no
peripherals, whereas others may be connected to Remote Terminal Units (RTU), Programmable
Logic Controllers (PLC), Field-Programable Gate Array (FPGAs), multiple sensors, databases, Human
Machine Interface controllers (HMI), etc. The amount of hardware the practitioner wants to emulate
will range from a single chip or sensor, all the way up to the entire large scale system. The amount of
hardware and complexity of the hardware emulation is largely limited by the peripheral emulation
technique used.

The main peripheral interaction techniques used include hardware in the loop (HITL), learning,
fuzzing, and abstraction replacement. HITL will use the emulator to perform instruction execution,
but if accesses are made to hardware peripherals they are forwarded to the actual hardware. Learning
refers to using machine learning to provide hardware interactions, whereas fuzzing will use random
generation to provide simulated hardware interactions. Abstraction replacement provides peripheral
hardware functionality by identifying software abstractions within the �rmware and replaces
execution of these abstractions with its own implementations. Examples of surveyed works that
allow HITL are SURROGATES[90] and Avatar2 [112]. P2IM[57] uses fuzzing, and Pretender[72]
uses Learning, whereas Firmadyne [25], CostinFA[43, 44], and HALucinator[35] use abstraction
replacement.

4.2 Types of Systems
In addition to how hardware peripherals are provided, it is important to consider the type of system
the emulator is designed to support. The range and capabilities of embedded systems ranges from
large multi-processor systems running customized versions of desktop OSes (e.g., Linux) to low
cost, low power micro-controllers running a few KB of code without an OS. The challenges and
techniques in emulating these systems vary and may or may not translate from system to system.
We reuse the classi�cation presented by Muench et al. [113], though use our own names instead of
numbers for the types of systems, splitting the embedded system types into three di�erent classes,
based on the type of �rmware they execute.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

8 C. Wright, et al.

General Purpose Embedded Systems (GPES): also known as Type 1 embedded system, use
a general purpose operating system that is primarily used on servers and desktop systems. Exam-
ples include real-time Linux, embedded Windows, and Raspberry Pi. The operating systems are
retro�tted for the embedded space, but retain many desktop level features, but with stripped down
components, and are coupled with lightweight user space environments such as busybox or uClibc.
Tools such as Firmadyne and CostinFA require the embedded system they work on to be Linux
based systems and will only work on this type of system. Emulating these types of systems greatly
bene�ts from the work done to enable emulation of desktop software and operating systems (e.g.,
QEMU directly supports emulating the Linux Kernel).

Special Purpose Embedded System (SPES): (Type 2 devices from [113]) use operating systems
speci�cally developed for embedded systems. They are often commercial products and closed source.
Examples include, µClinux, ZephyrOS, and VxWorks. These systems are usually single-purpose
electronics or control systems. Some of the features that distinguish these systems are that the
OS and applications may be compiled separately and the system is not derived from a desktop
operating system. Thus, many emulation techniques from the desktop space do not work, and
emulation must start from scratch. Re-hosting these systems requires re-hosting both the kernel and
user space. Also adding to the challenge of emulating these systems is the fact that the separation
between the Kernel and user space is often blurred.

Bare-metal Embedded Systems (BMES): Type 3 devices are embedded systems without a true
OS abstraction that we refer to as bare-metal embedded systems (BMES). They often do not have
an OS, or may include a light-weight OS-Library. An example is an Arduino system. In both cases,
the application will directly access hardware and the OS (if present) and applications are statically
linked into a single binary. Recent work [35, 57, 72] focuses on re-hosting these systems.

We �nd this axis of comparison useful as it helps to determine what emulation techniques
an analyst should consider for a given �rmware. However, in practice, classifying a system is
not necessarily cut and dry. Rather the classi�cation is a continuum on the embedded space. For
example, an embedded system that started out using UNIX OS 30 years ago may have originally
been classi�ed as a GPES, but as the system morphed over time, the same system currently may
now be better classi�ed as a SPES.

4.3 Fidelity
Introduced in Section 2, �delity is perhaps the most important comparison axis, but also the
most di�cult to quantify. The di�culty comes from limited ability to inspect the internal state of
hardware, and is further complicated by the ability to compare states. In an e�ort to enable better
understanding of �delity, we classify �delity along the conceptual axis of execution �delity and data
or memory �delity. This enables comparison of the conceptual limits of �delity on a 2D plane. Work
by Costin [44] has a general classi�cation of emulators that have kernels and applications. The
classi�cation we present here is more general, applies to both re-hosting and emulators, has more
classi�cation points, and is applicable to all types of systems – GPES, SPES and BMES. The �delity
classi�cations are from the perspective of the �rmware (software), and whether the emulation
"looks" and "acts" like real hardware. This implies that we do not need to di�erentiate between
memory (whether DRAM, SRAM, Flash, etc.) that looks the same to the �rmware, we just refer to
this as internal memory. If there is another driver required to use speci�c memory (such as an SD
card), then we consider this external memory.

Execution �delity describes how closely execution in the emulator can match that of the physical
system. We bin techniques into the categories BlackBox, Module, Function, Basic Block, Instruction,
Cycle, and Perfect, with execution �delity increasing from BlackBox to Perfect. A system emulated
with BlackBox �delity exhibits the same (or su�ciently similar) external behavior as the real system,

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 9

but internally may or may not execute any of the same instructions a real system would execute.
Module �delity provides �delity at the module level. For example, Firmadyne replaces the original
�rmware’s kernel with its own to enable re-hosting the original �rmware. Thus some modules
of the �rmware are executed unmodi�ed, and others completely replaced. Function level �delity
accurately models the system at the function level (e.g., HALucinator replaces entire functions to
enable emulation). Similarly, basic block and instruction level �delity accurately emulate at the
basic block and instruction level layers. Beyond instruction level is cycle level which faithfully
emulates to cpu instruction cycle (e.g., the gem5 [12] simulator). Perfect emulation means that
emulation is exactly the same as it would be on the actual hardware, which to our knowledge no
current emulator achieves.

We categorize data/memory �delity increasing from the coarsest granularity to �nest granularity
as BlackBox, Internal Memory, Register, and Perfect. BlackBox �delity means that the data externally
visible to the system or external memory (e.g., HDD or SDD) is the same (e.g., for a given input we
get the same output). Internal Memory means that the internal memory (e.g., RAM) is consistent
with hardware for a given point in execution. Register level �delity means that both internal
memory and registers are correct at the given execution �delity and perfect means that all memory
components work the exact same as the given system at the level of execution �delity needed.
In Blackbox, Internal Memory, and Register Memory levels, these classi�cations are usually for
speci�c areas of interest in the �rmware. This means that there is a blur between the classi�cation
points, as some sections of the �rmware may be at the Blackbox level where the user does not care
much about the internals, but in a few sections of high interest the �rmware emulation may be at
the Internal or Register Level �delity. The Perfect Emulation level is on the scale but currently is
virtually unobtainable. Depending on the practitioner, Perfect Emulation level can mean Register
level throughout the entire �rmware, or it could mean everything is exact, down to the cache for
every execution cycle. In Figure 1 we show how the most prevalent �rmware emulation techniques
�t into this classi�cation framework.

4.4 Purpose of emulator
Of the surveyed research works in �rmware re-hosting, the main focus points have been Creating
Emulators, Dynamic Analysis, Static Analysis, and Fuzzing. Each of these focus points enables the
emulator to answer speci�c questions. The purpose of emulators include vulnerability detection,
enabling running legacy code, hardware replacement, development assistance, and system behav-
ioral analysis. The purpose of the emulator directly in�uences the techniques employed, types of
systems the emulator will work on and for, and determine the �delity of the system.

4.5 Level of Control
Another axis for comparison related to the purpose of the emulator, is the ability to control the
exploration in �rmware and what the tool can/should be used for. Control may perhaps be thought
of as another axis in �delity, quantifying whether you can control emulation and what is actually
executed during emulation. It also refers to the level of interaction available to the practitioner.
For example, HALucinator enables interactive emulation making it suitable for building virtual
testbeds, whereas P2IM enables fuzzing and would not be a feasible tool for testbeds.

For visualization ease we do not combine �delity and exploration, but it is important to note that
some tools and emulators do not allow for controlled exploration. For example, if your emulator
is just fuzzing everything from memory to inputs, it may have very high execution �delity, and
low memory �delity, but it has almost no exploration customization to specify what to execute, it
solely relies on a random generator. Randomization and fuzzing enable high coverage fuzzing and
vulnerability discovery, but it does not give a clear picture of actual real possibilities of execution.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

10 C. Wright, et al.

Execution
Fidelity

Data/Memory
Fidelity

QEMU

Simics
HALucinator

Avatar2

Firmadyne
CostinFA

Ghidra

angr

Panda

Pretender

P2IM

PROSPECT

SURROGATES

Muench2018

Perfect

Register

Internal Mem

Black Box

Blac
k B

ox

Mod
ule

Fun
cti

on

Bas
ic

Bloc
k

Ins
tru

cti
on

Cyc
le

Perf
ec

t

Less Automation

More Automation

Fig. 1. Categories of Fidelity

5 CLASSIFICATION OF SURVEYED WORKS
Now that we have discussed di�erent axes of �delity, we further categorize and compare surveyed
works in �rmware re-hosting and emulation. Figure 1 shows a 2D space of �delity categorization.
On the horizontal axis is execution �delity and on the vertical axis is data �delity. As can be seen
in the �gure, there is not a single point for each category, rather a blurry bubble, emphasizing
that �delity categorizations are conceptual and a continuum from black box to perfect �delity. As
can be seen in Figure 1, the points on the plot range from dark to light shading. The darker the
circle indicates that the tools is more automated, requiring less user interaction and requirements
for setting up the tool. The lighter the circle in the plot indicates that the default tool requires
more user interaction to get the tool setup. We purposefully do not give concrete numbers to the
automation or the �delity levels, rather we visually categorize automation and place �delity in
regions to re-emphasize that these categorizations are not concrete and may slightly move/change
depending on tool use and the practitioner’s opinions.

5.1 Hardware In The Loop
As various works modify a core emulator, the �delity can be improved or reduced. When the �delity
is improved there is often a trade o� made in performance or complexity. SURROGATES uses
QEMU as a base emulator, but adds specialized hardware to enable faster communication with real
hardware. Specialized hardware allows for higher execution �delity as the peripheral access is then
perfect. HITL also increases the data �delity, as there is no generalization for the peripheral model
as is the case for PROSPECT. However, specialized hardware and HITL in general increases the
complexity and cost of performing emulation while reducing scalability, as dedicated hardware is
needed for each emulated system.

5.2 Instruction Level Execution Fidelity
We categorize Simics and Ghidra Emulator as instruction level execution �delity while also having
register level data �delity because of their sub-instruction execution. While the coloring of the
automation is the lightest of the works surveyed, there are ready made implementations of both of
these emulators that can be copied or used out of the box to make the automation much closer to

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 11

no interaction required. Yet, we color the automation at this level because of the tools defaults and
to show the open ended-ness of using one of these emulators.

5.3 Basic Block Level Execution Fidelity
As mentioned previously, QEMU has basic block execution �delity, and RAM �delity as a default
on the data �delity axis. These are the default categorizations, and they can be a�ected by other
tools. Muench2018, angr, Panda, and HALucinator use QEMU as a base emulator without HITL, so
in general their �delity will be less than or equal to that of QEMU.

For any memory interaction, P2IM will do random fuzzing, meaning there is not even blackbox
�delity for the data axis. Pretender uses machine learning to attempt to provide peripheral software
replacement modules, reducing the data �delity but still has some internal memory correct and
at least blackbox �delity on the data axis. As these works reduce �delity (on either axis) they
also decrease the amount of e�ort needed for their emulation. Muench2018 and PANDA perform
tracking/recording as mentioned in Section 3. While replaying and replication is enabled, the
�delity is still maxed out at the Basic Block and Internal Memory/Register �delity because of the
QEMU base emulator �delity.

angr also uses QEMU for the emulation part of the tool, while also using symbolic execution.
Symbolic execution is di�cult to put on the emulation �delity grid because it has multiple states
as it executes, but by using QEMU for concolic and concrete execution, angr receives the same
�delity as the QEMU base. In contrast, Avatar2 enables the interaction between virtually any
of the tools, allowing the �delity to be at any of the tools �delity categorization depending on
what is programmed by the analyst, but we show its �delity point defaulting around QEMU, angr,
PANDA, and HALucinator because they are default tools that are easy to get running in the Avatar2

framework.

5.4 Module Level Execution Fidelity
Firmadyne and CostinFA lose both execution and data �delity from their base QEMU emulator as
they only extract the �lesystem and run the code through their own kernel. However, by doing
this they drastically increase the automation of their tools, making mass analysis of �rmware more
scalable.

6 QUESTIONS AND CHALLENGES
The remainder of the paper focuses on you, the analyst wanting to re-host a �rmware, and discusses
the challenges that are encountered, along with techniques and tools that can be used to address
them. The challenges and tools surveyed provides a reference for the average practitioner or a
starting point for new researchers in the area of �rmware re-hosting and system emulation.

6.1 �estions of Purpose and Value
Each emulation tool has requirements that must be met before being able to re-host �rmware.
Some tools will bypass common emulation challenges with the technique they use. Ideally the tool
will overcome challenges automatically, otherwise the practitioner must do so manually. Common
preconditions are discussed in Section 7, however this discussion covers the challenges faced and
not necessarily why they are encountered.

Before deciding to emulate a system or re-host a �rmware, an analyst has a question they
want answered. The idea of why to emulate a system is key to building emulators and is often
not emphasized in emulation papers. When an analyst wants to �nd vulnerabilities, there are
vulnerabilities that may be discovered at each �delity level. It is therefore important to know what
types of vulnerabilities you are looking for, e.g. is it a �rmware logic error that can be detected

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

12 C. Wright, et al.

by just correctly emulating the memory, or is it an instruction or hardware bug that needs higher
execution �delity?

Before emulating a system it is also important to do an analysis on the estimated cost and
value-for-money evaluation of getting the emulation to work correctly and the tools to be used
to perform emulation. To emulate some systems it may take a small team of engineers 6 months
to a year to build and test for the desired system. This may be a bargain or may be too expensive.
Analyzing the tools available and how to use them can speed up or even change the traditional
approach of building an emulator (manually reverse-engineering the hardware, re-hosting �rmware
until failure and incrementally adding functionality).

6.2 Key Research �estions
We wish we could say that you should research one speci�c area, but for every solution/tool
that currently exists, there are shortcomings. To understand what is key to your research, it is
necessary to understand what you would like to solve with emulation. The key area we see that
needs addressed is speeding up the time to emulate a system – this includes tools from all the
subsequent sections to overcome the challenges. A script written for one tool may work to address
a speci�c challenge, but that script needs to be ported if using another tool, e.g., a script for Ghidra
to help �nd the entry point will not necessarily work with angr or Simics.

This key research area of speeding up emulation really encompasses research across all types
of embedded systems (GPES, SPES and BMES) and includes new ways of overcoming problems
presented in Section 7, Section 8, and Section 9. Any tool or technique that more e�ciently addresses
the challenges is a useful area of research.

6.3 Challenges
Now that we have introduced surveyed works and classi�cation criteria, we present some of the
core challenges faced during �rmware re-hosting and system emulation. During the emulation
pipeline, various challenges are encountered and we split these challenges into:

� Pre-Emulation
� Emulation
� Post Emulation

Pre-Emulation are challenges that are pre-requisites to emulation execution and overcoming
these challenges enables executing the �rst instruction in the emulator. These challenges include
obtaining �rmware, unpacking the �rmware and gaining and understanding how to con�gure
the emulator to re-host the �rmware. Once the �rst instruction is executed in the emulator, we
consider the Emulation stage to have been started, however, as execution progresses, greater
understanding of the �rmware is obtained, which leads to re�nement of the emulator con�guration
and implementation. Thus, we break Emulation into Emulator Setup — challenges that enable
further re�nement of the emulator and more complete execution — and Emulation Execution —
challenges fundamental to emulation itself. Finally after emulation there is the Post Emulation
stage where the execution is analyzed and validated. The challenges presented here have been
mentioned in part and used as the foundation for multiple industrial and academic works, but we
present them in entirety here for completeness.

In the tables throughout the rest of the paper, we survey di�erent techniques that attempt to
overcome the various challenges faced during emulation and binary analysis. If there is a check-
mark, then the tool attempts to address the issue; but, it does not necessarily solve the problem
and some tools work better than others, though we do not specify our opinions on the matter. If
there is a dash, that means the tool bypasses the challenge by the technique they employ. If there

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 13

Obtain
Firmware

Memory
Layout
and ISA

Identify
Processor

Disassemble
and

Decompile

Analyze
Disassembly

Verification

Pre-Emulation

Fig. 2. Categorization and flow of some of the steps required for system emulation during Pre-Emulation.

is no mark or dash, then the tool does not address the challenge. In some cases the tools have
prerequisites to work correctly. The emulator may require the analyst/user to �gure out some of
the challenges manually and pass the solution to the emulator to get past the challenge.

We provide some of the �ow and common challenges faced during emulation in Figure 2, and
Figure 3 though the �gures do not encompass all the challenges that may be faced, with some
challenges left o� the �gures all together for brevity. These �gures are general �ows and each
bubble represents one or more challenges encountered through the process. The di�erent challenges
are further addressed in detail in Section 7, Section 8, and Section 9.

7 PRE-EMULATION
In Figure 2 we show the �ow that a practitioner will usually explore during the Pre-Emulation
stage of re-hosting a �rmware. With each step indicating challenges that need addressed before
continuing to address the next. The challenges presented here are similar to those presented by
Costin [43]. Here we focus on the challenges of emulating and analyzing a single �rmware, whereas
Costin focuses on challenges for acquiring and analyzing thousands of �rmwares available to
download from the Internet automatically.

Before re-hosting a �rmware, an analyst or practitioner will usually have a system they want to
emulate or a �rmware they want re-hosted. In some cases the system architecture is unknown or
the analyst may not even have the �rmware (e.g., when working on a bug bounty or proprietary
hardware). Even after obtaining the system or �rmware in mind, key information must be identi�ed
prior to re-hosting a �rmware. Steps and challenges prior to setting up the emulator is what
we refer to as the Pre-Emulation stage. This stage may also include veri�cation of information
and understanding gained prior to actual emulation (i.e., Disassembly, Initial Analysis, and CFG
Recovery), though veri�cation is not strictly necessary. We note that veri�cation of correctness
(which can include formal veri�cation and/or behavioral veri�cation) is useful when challenges in
subsequent phases are encountered, as it narrows down where certain problems stem from.

The information required to begin emulation varies by emulation technique but includes obtaining
�rmware, determining memory layout, �guring out the instruction set architecture (ISA), identifying
the processor, analyzing the binary, lifting/disassembly of �rmware, and an initial �rmware analysis.
As a quick reference to the practitioner, di�erent techniques that attempt to address the challenges
present in Pre-Emulation are summarized in Table 1.

One of the main tools used to address these challenges is binwalk [139]. Binwalk is mostly used
for extraction of the content from �rmware images, but has other features that are useful. It can try

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

14 C. Wright, et al.

to determine ISA (not necessarily the processor), extract �les from a blob, do a string search, �nd
signatures such as common encryption formats, disassemble using capstone [22], calculate entropy,
and perform binary di�ng. Some of the other tools are mentioned in the subsequent subsections.
A simple example of reverse engineering from a blob that mentions some of the challenges below
was presented at BlackHat 2013 [41]. They present an end-to-end unpacking of �rmware with
some of their formats that may be helpful to reference for a newcomer in the �eld. Another helpful
reference for IoT �rmware based on OpenWrt is maintained by OWASP. They provide a platform
to educate software developers and security professionals on vulnerabilities in IoT devices [121].

7.1 Obtaining Firmware
The �rst challenge to re-hosting �rmware is obtaining the �rmware. In the simplest case it can be
downloaded from the vendor’s website. If not directly available from the vendor, 3rd party sites,
such as Github, have �rmware available that has been used for academic research. Other ways to
get �rmwares include obtaining example �rmwares from development boards that can be compiled
with various operating systems and toolchains.

Downloading the �rmware is not always possible, and even when possible, the �rmware can have
embedded proprietary �le formats that are not easily extracted. For example, �les can be compressed
or contain �rmware for multiple architecture �les with �nal compilation of the �rmware being
done on the hardware during boot-loading. In some cases, �rmware is combined with the operating
system, such as the case of BMES or SPES types of systems, whereas for others downloaded �rmware
is only the user level application and the operating system kernel also must be obtained separately to
perform full-system emulation as is sometimes the case for GPES. To overcome embedded unpacking
issues, sometimes a network capture tool (e.g., [31, 53, 55, 88, 106, 116, 117, 125, 130, 163, 165, 179])
connected to the actual hardware may be used to capture network tra�c during a �rmware update.
The �rmware is then extracted from the captured packet payloads.

In addition to downloading, �rmware can sometimes be extracted from hardware. Vasile et al.
[170] in their survey of hardware-based �rmware extraction techniques showed a high percentage
of systems expose UART interfaces that are su�cient to obtain �rmware dumps. In addition to
UART ports, debug ports (e.g., JTAG), and USB ports can be used to dump �rmware [56, 186]. On
some devices, a physical acquisition my be achieved by using the �ash memory read command
after reverse engineering the �rmware update protocol in the bootloader [182]. If these ports are
locked and secured, another option is to remove the memory from the circuit board and connect to
another system to dump the �rmware. Removing memories from the printed circuit boards comes
at considerable risk of damaging or destroying the hardware. Using debug ports requires the debug
port be present, and unlocked, both of which are increasingly considered poor security design.

Of the tools we surveyed, Firmadyne and CostinFA obtained �rmware from vendor websites,
whereas P2IM, angr, and Pretender used �rmware available from a 3rd party vendor (Github).
HALucinator and Pretender also used development examples from real embedded boards in their
evaluation. For the case of Simics, QEMU, and Ghidra they are base emulator tools and not academic
papers, hence they do not specify how to obtain �rmware, expecting the user to have a �rmware
before using the tool. The other surveyed works did not specify how their �rmware samples were
obtained, just what the �rmware was, or what the system was that they did emulation for.

The authors of Firmadyne developed and released a scraper that crawls embedded system vendors
websites and downloads any �rmware that they can identify. They then unpacked the �rmwares in
a generic way and if the �rmware unpacked correctly, Firmadyne would continue with emulation,
otherwise it would crash. Of the 23,035 �rmwares Firmadyne scraped, they extracted 9,486 of them.
Of those extracted, 1,971 were successful in naive emulation. The large percentage of failure (90%)
shows obtaining and extracting �rmware is a real challenge and is di�cult to overcome in many

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 15

circumstances. CostinFA posted URL publicly that would try to unpack and analyze a �rmware
[42]. CostinFA collected an initial set of 759,273 �les scraped from publicly accessible �rmware
update sites, and �ltered that down to 172,751 potential �rmware images. A sampled set of 32,356
images were then analyzed and 38 vulnerabilities were discovered [43], though it is unclear the level
of emulation or re-hosting involved. Other resources that may be helpful in obtaining �rmware
include Python scraper tools and other open source repositories [59, 131, 142, 172]

7.2 Instruction Set Architecture
After obtaining the �rmware, it is necessary to determine what the instruction set architecture
(ISA) the �rmware uses so that the emulator can disassemble the �rmware into the correct machine
instructions, endianness (e.g., little- or big-endian), and word-size. In addition to determining
the ISA family (e.g ARM, PowerPC, X86, MIPS, ARM64, AVR, etc.), sometimes the ISA version is
needed to correctly disassemble instructions e.g., is it ARM with Thumb support and �oating point
instructions or not?

The ISA can most commonly be determined from a datasheet of the processor being emulated.
If the hardware is unknown and a datasheet cannot be identi�ed, static analysis techniques can
be used. These techniques �rst try to determine if the �le format is of a known �le format (e.g.,
ELF, PE2, Mach-O) using the �le utility, then looking at other signatures in the �rmware (e.g.,,
encryption, compression, etc.), or analyzing strings in the binary to guess the ISA. One well known
tool that may help determine the ISA is binwalk [139]. Binwalk will use the capstone disassembler
and try disassembling the binary for various types of ISA. If there are more than a speci�ed number
of instructions in a row (default 500) of a given architecture, then that is a strong candidate for the
ISA. Of the tools surveyed, Firmadyne and CostinFA use binwalk and existing extraction tools to
determine the ISA and then extract the �lesystem, or extract the �lesystem �rst and then determine
the ISA – with the order of these two steps being highly speci�c to the �rmware and analysis
process at hand. Ghidra has headless scripts that can be run to try and determine the ISA (including
one using binwalk), whereas angr provides the boyscout [5] tool that will try to determine the
architecture and the endianess of the �rmware. The other surveyed tools expect the ISA to be given
to work correctly.

There is also recent research on using machine learning to classify ISA and endianness. These
techniques usually rely on doing a binary similarity detection. They will use known architectures for
training binaries, decomposing the binaries into smaller comparable fragments and transforming
them to vectors to work with machine learning and stochastic gradient descent optimization
methods. One such work by Clemens et al. [34] experiments on 16,785 di�erent �rmwares from
20 di�erent architectures, and was accurate in classifying 17 of the architectures over 99% of the
time, and the remaining 3 architectures (mips, mipsel, cuda) 50% of the time. De Nicolao et al. [49]
leverages supervised sequential learning techniques to locate code section boundaries of binary
�les to help ease di�culty in analysis using a similar sized database for learning. Kairajärvi et
al. [81] uses the ideas from both Clemens [34] and Nicolao [49] with improvements while using
and publicly releasing a much larger and more balanced database for learning and testing. Other
machine learning techniques that could be modi�ed to determine the ISA are mentioned in[181]
along with other machine learning techniques for binary analysis. These techniques require large
datasets for training to be accurate and will only work as well as their training data.

If the above automated methods fail, the practitioner can attempt to manually identify the ISA
by looking at signatures and strings in the �rmware (certain compressions, signatures, copyrights,
etc.) and/or brute force decompilation and performing an "eye" test on what looks promising.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

16 C. Wright, et al.

7.3 Determine Base Address
In order for the �rmware to execute in an emulator, it must be loaded at the correct address(es).
Determining the base address is di�cult if the �rmware being re-hosted is a binary-blob (e.g. just a
binary with no symbols or metadata). The base address where the �rmware should be loaded can
sometimes be found by hardware datasheets (for �rmware executing from internal memory). If
source and compilation tools are available, base address information can be found in linker scripts.

Finding the base address is fundamental to many binary analysis techniques, and thus tech-
niques to (try to) automatically determine it have been researched. Zhu et al. use strings and LDR
instructions, comparing them and matching the o�sets to determine the image base of the �rmware
[187, 188]. This is similar to the technique of listing the dwords occurring in a �le with the list of
strings in a �le and lining up the distances between occurrences if possible. If there is a match, then
subtracting the o�sets will give you the image base address.

Firmalice [150] leverages jump tables in the binary by analyzing the jump table positions and the
memory access pattern of indirect jump instructions. In a jump table there are a set of absolute code
addresses which can give a better idea of where the �rmware needs to be located at for the absolute
addresses to work correctly. To �nd the jump tables, they scan through the binary for consecutive
values that di�er in their least signi�cant two bytes. Finding the jump table is successful in many
cases as jump tables are typically stored consecutively in memory. After �nding the jump table,
they then analyze all the indirect jumps found in the disassembly phase and the memory locations
that they read their jump targets from. The binary is then relocated so that the maximum number
of these accesses are associated with a jump table.

angr also attempts to determine the base address with their analysis script called girlscout [6].
This script will try to decide the base address by looking at functions and doing a statistical analysis
to vote on the most likely base address. If automatic techniques do not work, the base address may
be discovered by brute force guessing and checking, as most base addresses are multiples of powers
of two.

In the case of Firmadyne and and CostinFA, the �lesystem from the �rmware is extracted after
determining the ISA, and then the �lesystem is used in a custom kernel given to QEMU. By using
their own kernel, these tools bypass the need to determine the base address, but it also reduces
the execution �delity, as it does not execute the original kernel. For the other surveyed tools it is
assumed the base address is provided by the practitioner.

7.4 Finding Entry Point
After determining the base address of the �rmware, the practitioner needs to determine the entry
point (i.e., address from where to start execution). Entry point information can be encoded in
the binary (e.g., Executable Linker Format, ELF de�nes the entry point in metadata), or di�erent
analysis can be run to help give the practitioner entry point options.

For binary-blob �rmware, angr, Ghidra, and IDA[136] have scripts that scan through the binary
attempting to �nd function prologue instructions and function returns. From function information
a directed function call graph can be generated and analyzed. Any root node of a weakly-connected
component in the call graph can be treated as a potential entry point. Function call graph creation
and analysis requires that you already know the ISA (so the function prologue, function epilogue,
and call instructions can be analyzed). The call graph technique often returns multiple entry points,
from which the correct entry point for emulation must be identi�ed. Additionally, �rmware will
often have multiple valid entry points (e.g., bootloader and interrupt service routines).

Instead of looking at the �rmware to identify the entry point, some techniques rely on knowledge
of the hardware they support to determine the entry point. For example, HALucinator targets ARM

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 17

Cortex-M devices. The Cortex-M architecture de�nes that the initial program counter’s value be
stored at address 0x4 on reset. Thus, HALucinator �nds the entry point by looking at address 0x4. If
the hardware is known, the datasheet will likely provide information about how the system begins
execution.

For techniques that use a replacement kernel, as is the case for CostinFA and Firmadyne, �nding
the entry point challenge is essentially bypassed, as the entry point of the kernel is known because
they built the kernel themselves. If the practitioner is dealing with a known operating system
or compiler toolchain, the entry point function name may be speci�ed (such as _start or _init).
There are then techniques that can do function matching giving you the actual entry point. One
such example is VxHunter[122] that will work for many �rmwares with the VxWorks OS and
compilation toolchain.

7.5 Determine Memory Layout
Determining the memory layout enables con�guring where in the processors layout di�erent types
of memory are located. It sets the address for RAM, Flash, and MMIO. If the system is available
with speci�cations, usually the memory layout can be determined from datasheets. For ARM
systems, there may be a CMSIS-SVD �le that also de�nes the memory layout. These �les are in
a speci�ed format that can be loaded into a reverse engineering (RE) tool such as Ghidra or IDA
and an automatic analysis can be run to update the memory layout [97]. Other types of �les that
sometimes specify memory layout include EDC �les and hwconf �les.

If no documentation exists and RE tools fail, physical examination of the components on the device
that is being emulated may help to determine memory layout. Often markings and manufacture
printing on the parts can be used to identify datasheets for the parts. If the memory layout is
still unknown, the emulator can be over provisioned with memory (e.g., giving signi�cantly more
memory than the physical system) and trial and error must be used to determine where code
is located and where external peripherals are, then these interactions are usually mapped into
memory mapped IO. Of the surveyed tools, memory layout must be speci�ed by the practitioner,
though in some cases tools make it easier e.g., Ghidra when CMSIS-SVD �le is present.

7.6 Identify Processor and/or Board Support Package (BSP)
Depending on the �delity the practitioner is targeting, often times identifying the exact processor
is not necessary. As the case is with QEMU, the emulator only works o� the ISA level features. For
�delity at the cycle level of emulation, tools such as gem5 [12] require knowing the exact processor
as the same ISA instruction can be implemented di�erently at the cycle level for various processors.
In QEMU, if a versatile machine is not used, there can also be errors, even if the ISA speci�ed is
correct.

In the case that the practitioner needs to solve the challenge of identifying the processor, solving
memory layout may help. However, if the processor is known, often the documentation for the
processor will specify the memory layout. If you have access to the hardware, most likely the
processor will be labeled, solving the challenge.

If you do not have access to the hardware, the practitioner could do an aggressive instruction
�nding, followed by an analysis on how the instructions interact with memory. This analysis can
then be compared against analysis on known processors to narrow down the processor candidates.
This is still a manual process for the practitioner to then select and test di�erent processors. If the
vendor is known, projects that leverage known information from other reversed �rmware may
be used [138]. If the previous analysis are unsuccessful, the practitioner could run a brute force
script to test all available processors in the base emulator. If still not successful, access to labeled

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

18 C. Wright, et al.

hardware is required. For surveyed works based o� QEMU, identifying the processor is not strictly
necessary in all cases, though if the QEMU target is not versatile it may be required.

7.7 Disassembly, Initial Analysis, and CFG Recovery
As mentioned at the beginning of Pre-Emulation, disassembly, initial analysis, and recovering the
Control Flow Graph (CFG) are not strictly Pre-Emulation challenges. However, it is important to
verify that the work the practitioner has performed and challenges addressed to this point in time
are correct. Veri�cation of previous work is perhaps skipped in some pipelines, but we have found
that veri�cation before continuing on to the next stages will save time and reduce headaches in
the Emulation phase, e.g., when multiple possible entry points (which may occur when there is a
bootloader in addition to the main �rmware under analysis), doing a validation and veri�cation
that you have the right entry point is worth the extra time to save the practitioner from wasting
time re-hosting the bootloader that may not answer the emulation question at hand.

In the case that the practitioner has an idea of what the �rmware is doing, such as is usually the
case when the hardware is known, analyzing the CFG can help determine if the previous challenges
such as base address, ISA, entry point are correct. When the CFG is recovered, it also conveys how
well the disassembler and decompiler performed. This will give an idea of how successful emulation
execution will be and/or the �delity of emulation moving forward. Of the works surveyed, there
are relatively few core disassemblers. angr uses capstone for parts of its disassembler, whereas
QEMU and Ghidra use C/C++ to implement their disassembly. The other surveyed tools use a
base emulator that will reuse one of these disassembly implementations. If the disassembler works
perfectly, then the instructions have been disassembled correctly and the CFG can be recovered
trivially if the control �ow does not leave the main processor.

If the control �ow leaves the main processor and goes to a co-processor (e.g., GPU or DSP) chip
for initialization, it is near impossible to recover the CFG for what occurs in the co-processor. The
practitioner at this point can try to determine what state and memory changes occur by comparing
the state of memory before and after control is passed to the co-processor. If control �ow leaves
the emulated processor, �delity of emulation is limited for that portion of the re-hosting, but in
most cases is not a limiting factor in emulation.

If the hardware is not known and the practitioner does not have any idea of the control logic
the �rmware is trying to perform, disassembly and analysis can still be of use for validation.
Disassembly will ensure the correct ISA is known and possibly help validate the processor. A
control �ow graph can still be created and analyzed to determine if there are valid �ows throughout
the graph, giving at least a weak reassurance that the base address and entry point are correct.

Disassembly and analysis are iterative, meaning the practitioner will perform the disassembly,
then analyze the results in iterations. Between iterations, they will then modify the inputs and
parameters to the disassembly slightly depending on the analysis results. This process will continue
until the analysis results match what is expected from the practitioner. During this iteration process,
there will be tweaks to the ISA, processor, base address, entry point, memory layout, etc. To solidify
the ISA, processor and memory layout, the practitioner may analyze multiple �rmwares for the
same system concurrently, aggregating the analysis results to solidify results.

8 EMULATION
In Figure 3 we show the �ow that a practitioner will usually explore during Emulation setup and
execution stages of re-hosting a �rmware. The stages will usually be interspersed during iterations
of emulator development. These challenges generally are not linear, but rather occur in di�erent
orders depending on the �rmware being re-hosted.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 19

Table 1. Pre-Emulation Challenges

Paper/Technique Obtaining
Firmware

Determine
ISA

Finding
Base Address

Finding
Entry Point

Determine
Memory Layout

Identify
Processor

Disassembly/
Recover CFG

angr [151]
Avatar2 [112]

CostinFA [43, 44] — — — —
Firmadyne [25] — — — — —

Ghidra [119]
HALucinator [35] —
Muench2018 [113]

P2IM [57]
PANDA [50]

Pretender [72]
PROSPECT [84]

QEMU [11]
Simics [105]

SURROGATES [90]
ARMX [146] — — — — — —
BANG [75]
BAT [74]

Binwalk [139]
CLIK on PLCs [82]

Datasheets
Dtaint [26]
Dytan [33]

FIE [48] —
Firmalice [150]
�rminsight [59]

�rmware-mod-kit [60]
�rmwaredb [172]

FirmUSB [76] —
HumIDIFy [167]

ICSREF [86]
IDA-PRO [136]
Inception [40]

KLEE [19]
OFFDTAN [177]
PIE: Parser [36]
Radare2 [164]

Scraper (python)
subzero

Spedi [87]
strings (linux command)

means the tool a�empts to address the given challenge. ‘—’ means the tool bypasses this challenge, usually
by the emulation technique used. A blank means the tool does not address the challenge. The first 14 entries
in the table are bolded and are the main tools profiled in detail throughout.

After the practitioner has determined the processor, memory layout, entry point and base address
of the �rmware, verifying support in the base emulator is performed. Ideally the base emulator has
support for the processor, if not, the practitioner will have to create a new speci�cation for the
base emulator. QEMU and Ghidra have instructions on how to add support for a new processor
[114, 171]. After a base emulator is available, the next challenges can be addressed.

Overcoming the challenges in pre-emulation enables loading the �rmware into the emulator
and beginning execution. For the execution to be faithful to the real system, additional challenges
must be overcome. We break these challenges into sub-categories– setup and execution. Setup

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

20 C. Wright, et al.

Peripherals
and Models

Specify
Mem

Interactions

Handle
Interrupts

Configure
Hardware

Identify
Functions

Identify
Tasks

Manage
Memory
Accesses

Handle
Hardware

Interactions
Debug

Emulation

Emulation Setup

Emulation Execution

Fig. 3. Categorization and flow of some of the steps required for system emulation during Emulation Setup
and Execution

challenges are usually done statically when the emulator is either paused or stopped whereas
execution challenges are when the emulator is actually running. As a reference to the practitioner,
we provide Table 2, but do not provide a reference table for the execution, as all the surveyed works
attempt to overcome the given challenges.

8.1 Emulation Setup
After you have overcome the challenges in Pre-Emulation, now you need to determine how to
handle con�guration, external interactions and memory. Emulation setup encompasses these
problems and is closely tied with the actual emulation execution. Setup is often iterative between
execution stages, and with each iteration more knowledge is gained about the �rmware and its
dependencies on the emulator and peripherals. The emulator is improved and execution of the
�rmware is also iteratively performed. This continues until the question the analyst was trying to
address has been answered.

As mentioned in Section 4.1, the scope of emulation may vary from a single chip or micro-
controller to a subsystem or a large distributed system. The scope of emulation that is targeted will
a�ect the challenges faced during emulation. The problems we discuss here are not all encompassing,
though we believe it is a su�cient basis to demonstrate major challenges currently faced during
the Emulation Setup phase.

8.1.1 Peripherals, External Hardware, and Modeling. Handling peripheral accesses is where a large
amount of research is currently focused. Because of the variety of peripherals and vendors, it is
likely the peripheral that is being accessed by the �rmware is not implemented in the base emulator.
Handling External Hardware and Peripheral interactions encompasses how to handle or represent
interactions between the emulator and the peripherals. As mentioned in Section 7.5, statically
determining the memory map will specify where the peripherals are located, not if they are used
or when they are used. Dynamic analysis and execution can provide some of this information,
discovering what peripherals are used when valid inputs for the given subset of peripherals analyzed.
Depending on the �delity of the peripheral model, i.e. the extent to which the peripherals are
modeled, will constrain the dynamic execution to speci�c paths. Providing more realistic peripheral

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 21

models will increase the amount of code executed and result in valid accesses to more peripherals
that may not otherwise be accessed. During dynamic execution, if the emulator has an exception
or crashes due to trying to access peripherals that are not mapped, this usually occurs when there
is an aliasing problem. Solving the alias problem is sometimes feasible statically, but may have
to be solved dynamically during execution by keeping track of various addresses and using this
information to update peripheral models for the emulator.

Handling peripheral interactions can be done by emulating the external device, by using the
actual hardware (HITL), or by patching the �rmware to bypass the interaction. The �rmware
modi�cation may ignore some of these accesses (such as setting CPU clock rates), always give an
increasing value, or read from a �le of expected inputs. The necessary operation will partially be
determined by the �rmware being re-hosted. Using HITL will give the highest �delity for execution
and memory, but will prohibit the parallelization of emulation as it is constrained to availability of
the connected hardware. HITL emulation also has signi�cant challenges in synchronizing states
between the emulator and hardware. For example, a timer may generate an interrupt on the
hardware, causing it to be stuck continuously processing the timer’s ISR, while the emulator has no
timer and thus is not processing any interrupts, or another example is when the watchdog timer
interrupt kicks in while the analyst is slowly emulating or using a debugger (such as GDB).

Providing abstractions requires manual e�ort and a thorough understanding of what the periph-
eral is performing, but it does provide high �delity. Tools that use this approach include QEMU,
HALucinator, PANDA, and Muench2018. Using a fuzzer, on the other hand, does not require device
speci�c knowledge but may not give su�cient �delity for many questions you want answered
and is usually only useful to help �nd bugs and vulnerabilities. P2IM uses the fuzzer approach
and is successful with �nding some vulnerabilities. Using machine learning, as Pretender does, is
appealing as �delity is perhaps slightly a�ected but could still give valuable insights beyond simple
software bugs. The results of current machine learning approaches only show proof of concept on
simple peripherals (e.g., serial/UART port being the most complicated) at this point, and it is still
unclear if the approach will work for arbitrary hardware peripherals.

Of the other surveyed tools, Firmadyne and CostinFA assume the peripherals are part of their core
kernel, otherwise the emulator will crash. They do not provide techniques around such challenges.
SURROGATES and PROSPECT will forward peripheral accesses to the actual hardware, bypassing
the modeling, but it introduces the state synchronization and delay of emulation challenges.

8.1.2 Memory Interactions and Setup. Most emulators allow the practitioner to specify where data,
code, and peripherals are located. Doing so allows the emulator to set restrictions on emulation,
such as crashing or notifying the practitioner if data is trying to be executed. Emulation setup will
usually allow specifying di�erent memory regions and types of interactions such as where RAM,
Flash and Memory Mapped peripherals are located. This emulation setup can also be described as
con�guring the emulator, which is necessary to start the emulator. Setup will include providing
the information discovered during Pre-Emulation, including specifying the base address and entry
point along with the memory layout and amount of memory available.

If a tool does not have built in support for memory, reusing the base emulator support or
providing the interaction through software are feasible options for the practitioner. In specialized
cases such as SURROGATES and PROSPECT, interactions can be forwarded to the actual hardware.
For HALucinator, Ghidra, PANDA, PROSPECT and Muench2018 it is expected the practitioner
will either use the built-in memory handlers or provide modules to allow memory interactions
to perform correctly. For Firmadyne and CostinFA the memory and handling of memory is built
directly into the kernel, so if there is an error with the memory or interactions that is not a �rmware
bug, their kernels will need to be modi�ed.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

22 C. Wright, et al.

8.1.3 Configuring Hardware. Setting up hardware is a challenge for emulation using HITL. This
requires initializing it state such that its can be used, and then bringing it into the loop. To do this
the practitioner will need to specify in the emulator how and when to forward interactions to the
hardware. This may also require delays or using specialized hardware execute fast enough to be
usable, as is the case for SURROGATES or Aveksha [161]. Aveksha is a system for nonintrusive
tracing of execution at a high spatial and temporal granularity suitable for an embedded wireless
node. Avatar2 is a powerful tool when con�guring hardware, and the provided framework is closest
thing to allowing plug and play integration for HITL.

8.1.4 Missing Code. In some cases, as you recover the CFG you may notice you have missing code.
Missing code usually occurs when either the wrong entry point has been speci�ed, there is patched
out functionality that may write code (such as a bootloader), the �rmware is not complete (e.g.,
either a partial �rmware-update or unpacking was only partially successful), or if there is code on
ROM chips in the device. Missing code is more common if the �rmware is ripped o� the actual
hardware device. In some cases it is possible to patch out the missing code and still obtain the level
of emulation �delity the practitioner cares about, otherwise, missing code may make emulation
infeasible.

If the emulator tries to execute missing code, usually the system will throw an exception or crash
altogether. The only technique we are aware of to overcome this challenge is replacing the code
with models or skipping the code altogether. HALucinator replaces the code by using function
intercept techniques that then allow for replacing such functionality with manually written models.
For other surveyed tools, missing code will require some sort of manual intervention to overcome,
perhaps manually providing the same functionality as HALucinator.

8.1.5 Function Identification and Labeling. Function Identi�cation is necessary for some emulation
techniques but not all. If emulation �delity is at the module or function level, the practitioner
may want to determine certain functions, such as Hardware Abstraction Library (HAL) calls, and
provide abstractions for these functions. Function identi�cation is not an easy problem and is the
basis of a plethora of papers and is still a very active area of research [4, 8, 21, 29, 78, 93, 100, 109,
110, 132, 133, 149, 180].

Of the surveyed works, angr, Ghidra, and HALucinator have library matching built in to their
frameworks. The other works either do not need to overcome such problems or they do not address
function identi�cation. angr, Ghidra and HALucinator will use existing techniques to try to identify
some functions, such as using IDA FLIRT signatures, loading libraries and trying to match, and
compiling existing HALs and comparing the re-hosted �rmware to a database. Other techniques
include identifying functions from their side e�ects such as is the case with Sibyl [152].

8.2 Emulation Execution
Execution deals with the classical problems of emulation as mentioned in [11], expanding to
include problems that are arising with the increasing uses of emulation. The di�erent �delities
of execution will also use di�erent techniques for emulation. Tools that are cycle accurate, such
as gem5 [12], will decode the instruction depending on the processor and use the same depth
and stages of the CPU pipeline as the original processor when emulating the instructions. Simics
[105] has instruction level �delity and will thus decode the instructions and update state after each
instruction. QEMU uses basic block �delity and does a translation from the basic block instructions
of the target architecture to machine host instructions using QEMU’s Tiny Code Generator(TCG).
Ghidra Emulator will translate instructions to P-code, with each machine instruction translated
generating up to 30 P-code instructions. Others will use various other intermediate representations
including LLVM IR [95], VEX [115], REIL[54], BAP’s BIL [18], Binary Ninja LLIL[173] and more. Of

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 23

Table 2. Emulation Setup Challenges

Paper/Technique External Hardware
and Peripherals

Mem Interactions/
Setup

Con�gure
Hardware

Missing
Code

Function Identi�cation
and Labeling

angr [151]
Avatar2 [112]

CostinFA [43, 44]
Firmadyne [25] — —

Ghidra [119]
HALucinator [35]
Muench2018 [113]

P2IM [57]
PANDA [50]

Pretender [72]
PROSPECT [84]

QEMU [11]
Simics [105]

SURROGATES [90]
ARMX [146]
Datasheets

Firmalice [150]
ICSREF [86]

IDA-PRO [136]
Inception [40]

KLEE [19]
OFFDTAN [177]
PIE: Parser [36]
Radare2 [164]

Spedi [87]
means the tool a�empts to address the given challenge. ‘—’ means the tool bypasses this challenge, usually

by the emulation technique used. A blank means the tool does not address the challenge. The first 14 entries
in the table are bolded and are the main tools profiled in detail throughout.

the surveyed tools, angr will translate to VEX. Each of these techniques have their own challenges
and trade-o�s, which is why there is still research in this area.

For each of the surveyed tools there is a base emulator. angr, Avatar2, CostinFA, Firmadyne,
HALucinator, P2IM, PANDA, Pretender, PROSPECT, SURROGATES and Muench2018 all use QEMU
as their base emulator. angr also uses CLE loader to allow Avatar2 targets to run concretely in their
framework through what they term angr_symbion that combines symbolic execution and concrete
execution. Cross tool integration essentially opens the door for any emulator to work with any
other analysis tool, symbolic engine, or fuzzer. For traditional execution challenges (the di�erent
subsections below), the base emulator will usually address and overcome the challenge. Because
the base emulator solves the challenges throughout execution challenges, we do not specify what
each tool does for overcoming the given challenge, rather we address more generally what QEMU,
Simics and Ghidra Emulator do.

8.2.1 Register Allocation. Each architecture will have di�erent registers and di�erent conventions.
For example, the program counter (PC) on di�erent architectures will be di�erent registers such
as R15 for ARM, PC for x86/x86-64/PowerPC, R0 for TI-MSP430. Most emulators will map each
register to a concrete �xed host memory address or register. Mapping the registers to �xed host

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

24 C. Wright, et al.

memory is versatile and probably the most portable solution and is done for QEMU, Simics and
Ghidra Emulator.

8.2.2 Direct Block Chaining. Block Chaining is directly related to QEMU, as Simics does a sub-
instruction level emulation and execution, leaving the chaining to occur naturally with fall through
if the instruction does not modify control �ow. Ghidra will allow natural fall through, but allows
for �ow modi�cation in their UI.

If the emulator does a translation, such as QEMU and the translation of entire basic blocks, then
the emulator has a simulated program counter which is used to �nd the next blocks of code to be
executed. These blocks are usually cached in memory to speed up execution, so there is a lookup
in a hash table to retrieve the correct block. For some emulators, they will add instructions at the
end of blocks to directly chain to the next block of instructions to execute.

8.2.3 Self-modifying code and translated code invalidation. On some CPUs self modifying code
is not a problem, as there is a speci�c code cache invalidation instruction executed when code is
modi�ed. On other CPUs though, there may not be an invalidation instruction, so this becomes
more di�cult. In [11], they handle self modifying code by keeping track of translated code and
the corresponding host page as read only. If a write is performed to the code, then they invalidate
the translated code allowing for the code to be rewritten. They do some more clever things when
using a software MMU, as they don’t always have to invalidate the code when only data is changed.
Ghidra Emulator has permissions for writing and code is read only. Therefore if code is written the
emulator will throw an error and exit. It is not clear how or if Simics supports self-modifying code.

8.2.4 Non-Volatile Memory. Non-Volatile Memory (NVM) are becoming more popular because of
the improved latency and power e�ciency compared to �ash and other hard drives. Traditionally
NVM has not been a challenge faced as it is now becoming more prevalent. Because NVM is
relatively new, on boards that have NVM, most current system emulators are probably lacking
in support. Some vendors give instructions on how to enable an emulated environment where
you can build persistent memory (PMEM) applications without having the actual hardware. To
overcome the NVM or PMEM challenges in system emulation, you need to determine how the
memory interacts and provide a handler for it, much like QEMU does for normal memory. The
instructions given by di�erent PMEM hardware vendors on how to emulate their hardware will
be crucial during implementation. QEMU, Simics and Ghidra Emulator handle NVM by allocating
memory in the host system and having hardware interactions modeled by the analyst [46]. For
QEMU, some tools provide some interactions such as NVRAM [58].

8.2.5 Direct Memory Accesses (DMA). In some cases co-processors may use direct memory access
(DMA) for initialization, or peripherals may write directly to memory. DMA can be addressed by
emulating co-processors, using HITL emulation, or if the �rmware uses known function calls for
DMA, the functionality can be replaced by intercepting and replacing the functionality. QEMU has
been expanded by Avatar2 in software, and SURROGATES using hardware, to allow for forwarding
peripheral acesses to the actual hardware. Simics is usually a more custom solution and also allows
for HITL with given modi�cations. HALucinator will handle DMA by intercepting HAL calls that
perform DMA and will implement the needed memory modi�cations with manually implemented
functionality.

8.2.6 Handling Interrupts. There are various ways to handle interrupts. Handling interrupts is
another active research area as there are multiple ways to accomplish the interrupt handling.
The emulator may or may not check at each instruction or translated block for interrupts, with
tradeo�s for di�erent implementations. In some cases the emulator may require that the user trigger

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 25

interrupts, call the interrupt handler, or patch an automatic call at certain parts in the �rmware.
There are pros an cons to each of these techniques. For the case of QEMU, they do not check at
each translated block whether there is a hardware interrupt pending, rather it relies on the user
to asynchronously call a speci�c function and specify that an interrupt is pending. At that point
the function resets the chaining of the current executing translated block, ensuring that execution
goes to the main loop of the CPU emulation. In this main loop it looks to see if there is a hardware
interrupt pending. By requiring user asynchronous interrupt calls and checking after basic blocks
for interrupts, it allows the emulator to be much faster with less overhead while still supporting
interrupts. Simics will allow for interrupts between each instruction by contrast, allowing for a
higher execution �delity at the cost of speed. Ghidra Emulator can also have interrupts at the
sub-instruction level between di�erent P-code operations.

In both cases, if you are testing something such as an interrupt storm (sending multiple interrupts
with various orders and frequencies), you will most likely have to asynchronously specify interrupts
to the base emulator. When those interrupts are handled will a�ect the �delity of the system.

8.2.7 Multi-Threading. In some systems, multi-threading is enabled. Applications that use multiple
threads may use locks/semaphores for inter-thread communication, but this requires that your
system emulator allow multiple threads to "run" at the same time as well. If the system allows
multiple applications to be run, they will employ a scheduler and use either pre-emptive or co-
operative scheduling. With co-operative scheduling the emulator essentially just needs to allow
the multiple threads to execute, and those threads will manage themselves during interaction. For
pre-emptive, this will require trigging an interrupt to cause the scheduler to run and perform
context switching between the threads. During emulation, usually the practitioner will start with
single threaded applications, running one at a time and gradually increase the complexity and
number of threads as the system gains more functionality and �delity.

As mentioned throughout, with the ability to have �delity at the instruction level, Simics is
known for being more useful when debugging multi-threaded �rmwares or systems. QEMU is able
to emulate such systems, but in some cases it will give a false sense of correctness because threads
can only interact at the end of basic blocks for QEMU, whereas Simics and Ghidra Emulator allow
thread interaction between any pair of instructions, even in the middle of a basic block. QEMU can
attempt to overcome this limitation by setting break-points at every instruction, which essentially
makes each instruction a basic block, but this dramatically slows down the system to the point that
the emulation is not useful.

8.2.8 Debugging. During system emulation, undoubtedly you will run into some errors, whether
they are errors in the actual �rmware and/or system, or your emulator has errors and bugs. In
either case, you need to be able to integrate some debugging. GNU GDB is a popular option to
integrate into tools, having plugins for some of the major softwares including Avatar2, angr, Ghidra,
QEMU, etc. Another option we have found useful is �rst emulating a serial port or other form of
printing messages, enabling “printf” style debugging. In addition to printing, directly inserting
function calls into the �rmware can be useful for debugging purposes.

QEMU works as well as the debuggers that connect to it, with logging and setting some break
points which should be familiar for those who have used GDB. Ghidra Emulator also allows for a
GDB bridge to be connected for debugging. Simics employs integrated debugger support with both
forward and reverse direction debugging available.

8.2.9 Timing Constraints. If the purpose of your emulation is to answer questions regarding timing,
you may be limited by the emulation approach and tools you use. In some cases you may be able to
use a hardware integration solution such as SURROGATES, with specialized hardware to forward

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

26 C. Wright, et al.

memory or peripheral accesses to an actual device. If you need to parallelize your emulation, HITL
may not be feasible. In such circumstances, the practitioner may have to implement their own
timing. Implemented timing can be cycles, instructions, basic blocks or something similar. Timing
is in many cases closely related to enabling interrupts, as some interrupts are timing or watchdog
interrupts and in those cases require some sort of triggering or timing implementation in your
emulator.

If the base emulator is Simics, the emulator has a better idea of the number of cycles required for
emulation, even if the emulator is slower to perform the operations. QEMU, in contrast, will be
faster, but non-deterministic in execution time, which may be unsuitable if timing guarantees are
needed.

9 POST EMULATION
Post Emulation challenges are usually directly related to the purpose of emulation. Some of the
challenges include determining/patching vulnerable code, comparing actual vs wanted behavior,
�nding vulnerabilities, visualizing emulation results, and automating the previous steps overcoming
challenges.

9.1 Finding Vulnerabilities
Finding vulnerabilities is arguably the most popular reason for system emulation. There are many
techniques to �nd vulnerabilities, with fuzzing being one of the most popular techniques.

There are many other techniques used to �nd vulnerabilities, including data �ow analysis,
taint analysis, control �ow analysis, record and replay execution analysis, dynamic and symbolic
execution. Some tools use supervised machine learning for vulnerability assessment, e.g., Costin
et al. [45] use ML to classify �rmware to help both address �rmware vulnerability discovery and
vulnerable device discovery. With the vast amount of work in vulnerability discovery, in depth
discussion and scope is not feasible in this paper, so we su�ce to say these methods exists, and
refer the readers to existing evaluation articles, including [7, 89, 143].

9.2 Verification
Once you have a system emulator, whether your �rst version emulator or a polished version, the
problem of verifying that the emulator does what it is supposed to do arises. While veri�cation of
SoC chip functionality before taping and production of a whole circuit system is well studied[102],
veri�cation of emulated systems and re-hosted �rmwares seems to be lacking. None of the current
tools verify whether they are correctly emulating the re-hosted �rmware, beyond black box behavior
comparisons. In addition, there are no real benchmarks or veri�cation techniques that are standard
to test emulators. With the expansion of �rmware emulation as an area of research, veri�cation of
the emulators and of re-hosted �rmware execution is a critical need.

9.3 Analysis
As with normal hardware/software systems, emulated systems also are tested and analyzed after
“completion”. The �rmware used during emulation may be analyzed and tested for bugs. The
emulator itself may be analyzed to help with hardening �rmwares that run on actual hardware.
Analysis and post emulation includes vast amounts of e�ort in binary hardening, vulnerability
detection and other cyber security e�orts. All of the surveyed tools do some sort of post emulation
analysis.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 27

Firmadyne

angr

CostinFA

Muench2018

QEMUAvatar2

P2IM

Panda

HALucinator

Simics

Ghidra

PROSPECT

SURROGATES

Firmadyne

CostinFA

Avatar2

PROSPECT

SURROGATES

Muench2018

Panda

Pretender

Pretender

angr

P2IM

HALucinator

Ghidra

Simics

Ghidra

angr

Firmadyne

CostinFA

Muench2018

QEMU

Avatar2

Panda

HALucinator

Simics

Ghidra

General Purpose

Avatar2

HALucinator

Machine Learning

Fuzzing/Symbolic Execution

HITL

Symbolic/Concolic Execution

Linux Based and Automated

Record and Replay

Instruction/Register Fidelity

Reusable Modules/Intercepts

Fig. 4. Flow Chart to Choose Emulator

10 CONSIDERATIONS
When determining what base emulator or the di�erent techniques/tools to use, there are pros
and cons to each solution. Some of the main considerations we contemplate before choosing
speci�c tools include hardware support, �delity, performance, debug support/availability, and
usability/control. These considerations are subject to the practitioner’s opinion, though we have
tried to objectively classify the tools �delity and automation as shown in Figure 1.

In Figure 4 we provide an overview for giving a decision �owchart on choosing a tool, though
we leave out a de�nitive path when trying to narrow tool use based on debug support, usability and
control, as we have found opinions vary greatly for the various tools. On the left of the �gure in a
big box are all the surveyed tools. Following the arrows from there gives the key di�erence between
the emulators. If the analyst is interested in machine learning, Pretender will be a good place to
start looking. Likewise, if interested in �nding bugs/vulnerabilities using symbolic execution and
fuzzing, then angr, Ghidra, HALucinator, and P2IM are a promising starting points. If you are
interested in using actual hardware along with emulation, Avatar2, SURROGATES, and PROSPECT
are appropriate. Otherwise, general purpose emulators that have di�erent strengths and uses include
Panda, Muench2018, Avatar2, HALucinator, QEMU, Firmadyne, CostinFA, Ghidra, and Simics. Once
you have narrowed down the potential tools to a group of tools the following considerations should
be evaluated.

Hardware support has perhaps been the most signi�cant reason emulation has not been used in
the past. The e�ort to emulate a system or re-host a �rmware has traditionally been di�cult to
get working with systems (and some argue still is). This is slowly being remedied, with the core
emulators having support for a wide variety of hardware. In addition, there is an increased e�ort to
make adding new hardware and processors simpler and easier. One of the �rst considerations will
still be if the tool you want to use has existing support for the hardware you want to emulate.

Emulator �delity, as mentioned in Section 4.3, will narrow down which tools can be used to
answer the question the practitioner is using emulation for. In some cases, symbolic execution

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

28 C. Wright, et al.

is a feasible option to answer the emulation question at hand. In such cases, angr is the best
option surveyed, being user friendly with a dedicated Slack[154] group with help and development
channels. If symbolic execution will not work, the practitioner can reference Figure 1 for help in
narrowing down which surveyed tools can be used for the needed �delity.

After considering �delity, performance and debugging support also need considered. Depending
on the emulation question, one of these attributes will be more important than the other. One of the
main reasons emulation has not been used extensively in the past is because of the overhead and
slow performance of emulators, but as software and hardware become more powerful, performance
issues are being overcome.

When the performance of the emulator is a hindrance, partial emulation or specialized hardware
are possible solutions. Ghidra Emulator allows for partial emulation, letting the practitioner start
emulation at speci�c functions given they specify necessary inputs. SURROGATES provides spe-
cialized hardware to interact with memory faster. HALucinator sets breakpoints on user speci�ed
addresses provided in a YAML �le. By analyzing only the necessary memory to answer a speci�c
emulation question emulation performance can improved.

Debugging support is also a key attribute to consider. If the practitioner is re-hosting a �rmware
with limited knowledge of what the �rmware is doing, more debugging support will be essential.
As noted, one of the bene�ts of emulation is being able to examine memory at each point during
the �rmware re-hosting. Examining memory requires the use of debugging tools or logging. For
base emulators, QEMU and Ghidra (through [37]) have GDB integration. Using GDB, break points
can be used to step through emulation. Simics also has built-in debugging and allows for break
points, along with stepping forward and backward through emulation. It is important to note that
debugging support will a�ect performance, as the more break points and tracking needed will slow
down the emulator. Both performance and debugging support are active areas in research, with
base emulators trying to implement faster tools while monitoring and debugging.

Usability is a combination of exploration and control as referenced in Section 4.5 and tool
automation. If a tool is automated, performs fast enough, and can answer the emulation question at
hand, that tool is obviously the best option. However, at the moment, this is not a common scenario,
and thus how much control the practitioner has with exploring and executing re-hosted �rmware
is also an attribute that must be considered. Tools with GDB integration allow for expanded control.
Tools that use fuzzing or randomization have less control and may or may not be useful for the
practitioner in some cases. In essentially all the tools surveyed, debugging is built in to the base
emulators and/or is available through plugins or default built in.

11 SUMMARY AND CONCLUSION
As a practitioner is contemplating the correct tool to use for �rmware re-hosting and system
emulation, we suggest using the provided emulation comparison techniques and considerations we
have presented here. We have discussed comparing emulation tools by the techniques they employ,
the types of systems they work for, the purpose of the tool, how much exploration the tool can
achieve, and the most useful classi�cation technique, �delity.

Along with comparison techniques, we have shown classi�cation of surveyed works including
angr, Avatar2, CostinFA, Firmadyne, Ghidra, HALucinator, P2IM, PANDA, Pretender, PROSPECT,
QEMU, Simics, SURROGATES, and Meunch2018. These techniques and their di�erences were
discussed as we presented the core challenges faced during emulation and �rmware re-hosting,
giving an overview for the new practitioner or researcher looking on where to begin and further
research in the �rmware re-hosting and emulation �eld. Automation in current tools reduces the
�delity of the system dramatically, but in many cases is still su�cient for some emulation questions
to be answered. The endeavor to automate current tools is di�cult because of the wide coverage of

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

Challenges in Firmware Re-Hosting, Emulation, and Analysis 29

embedded systems, but we note the valiant e�ort the surveyed tools have made and recognize the
importance of making tools easier and automated for practitioners to use.

System emulation and �rmware re-hosting has mutated and evolved dramatically since its
inception. The challenges faced when trying to emulate a system/re-host a �rmware have grown
as emulation has improved. This paper has highlighted the need for further research and tools
to address Pre-Emulation, Emulation, and Post Emulation challenges. As tools and solutions are
invented and released, we have provided classi�cations and criteria on how to evaluate such tools.

REFERENCES
[1] 2017. $20M in Bounties Paid and $100M In Sight. https://www.hackerone.com/blog/20M-in-bounties-paid-and-

100M-in-sight
[2] AFL-Fuzz. [n.d.]. a�-fuzz. https://github.com/google/AFL
[3] Irfan Ahmed, Sebastian Obermeier, Martin Naedele, and Golden G. Richard III. 2012. SCADA Systems: Challenges for

Forensic Investigators. Computer 45, 12 (Dec 2012), 44–51. https://doi.org/10.1109/MC.2012.325
[4] Saed Alrabaee, Paria Shirani, Lingyu Wang, and Mourad Debbabi. 2018. FOSSIL: A Resilient and E�cient System for

Identifying FOSS Functions in malware binaries. ACM Transactions on Privacy and Security 21, 2 (2018), 8.
[5] angr. [n.d.]. boyscout. https://github.com/angr/angr/blob/master/angr/analyses/boyscout.py
[6] angr. [n.d.]. girlscout. https://github.com/angr/angr/blob/master/angr/analyses/girlscout.py
[7] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A Survey of Symbolic

Execution Techniques. Comput. Surveys 51, 3, Article 50 (May 2018), 39 pages. https://doi.org/10.1145/3182657
[8] Ti�any Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley. 2014. BYTEWEIGHT: Learning to

Recognize Functions in Binary Code. In 23rd USENIX Security Symposium. 845–860.
[9] Ti�any Bao, Ruoyu Wang, Yan Shoshitaishvili, and David Brumley. 2017. Your Exploit is Mine: Automatic Shellcode

Transplant for Remote Exploits. In IEEE Symposium on Security and Privacy.
[10] BE-PUM. [n.d.]. BE-PUM. https://github.com/NMHai/BE-PUM
[11] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of the Annual Conference on

USENIX Annual Technical Conference. USENIX Association, Berkeley, CA, USA, 41–41. http://dl.acm.org/citation.
cfm?id=1247360.1247401

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,
Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Computer Architecture News 39, 2 (Aug 2011),
1–7. https://doi.org/10.1145/2024716.2024718

[13] BitBlaze. [n.d.]. FuzzBALL. https://github.com/bitblaze-fuzzball/fuzzball
[14] boofuzz. [n.d.]. boofuzz. https://github.com/jtpereyda/boofuzz
[15] Pietro Braione, Giovanni Denaro, and Mauro Pezzè. 2013. Enhancing Symbolic Execution with Built-in Term Rewriting

and Constrained Lazy Initialization. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering.
ACM, New York, NY, USA, 411–421. https://doi.org/10.1145/2491411.2491433

[16] Pietro Braione, Giovanni Denaro, and Mauro Pezzè. 2015. Symbolic Execution of Programs with Heap Inputs. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM, New York, NY, USA, 602–613.
https://doi.org/10.1145/2786805.2786842

[17] Jonathan Broome and David Marx. 2000. Method and Iimplementation for Intercepting and Processing System Calls
in Programmed Digital Computer to Emulate Retrograde operating System. US Patent 6,086,623.

[18] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. 2011. BAP: A Binary Analysis Platform. In
International Conference on Computer Aided Veri�cation. Springer, 463–469.

[19] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and Automatic Generation of High-
coverage Tests for Complex Systems Programs. In Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation. USENIX Association, Berkeley, CA, USA, 209–224. http://dl.acm.org/citation.cfm?id=
1855741.1855756

[20] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Păsăreanu, Koushik Sen, Nikolai Tillmann, and Willem
Visser. 2011. Symbolic Execution for Software Testing in Practice: Preliminary Assessment. In Proceedings of the
33rd International Conference on Software Engineering. Association for Computing Machinery, New York, NY, USA,
1066–1071. https://doi.org/10.1145/1985793.1985995

[21] Joan Calvet, José M Fernandez, and Jean-Yves Marion. 2012. Aligot: Cryptographic Function Identi�cation in
Obfuscated Binary Programs. In ACM Conference on Computer and Communications Security. ACM, 169–182.

[22] Capstone. [n.d.]. Capstone Disassembler. http://www.capstone-engine.org/

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

https://www.hackerone.com/blog/20M-in-bounties-paid-and-100M-in-sight
https://www.hackerone.com/blog/20M-in-bounties-paid-and-100M-in-sight
https://github.com/google/AFL
https://doi.org/10.1109/MC.2012.325
https://github.com/angr/angr/blob/master/angr/analyses/boyscout.py
https://github.com/angr/angr/blob/master/angr/analyses/girlscout.py
https://doi.org/10.1145/3182657
https://github.com/NMHai/BE-PUM
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://doi.org/10.1145/2024716.2024718
https://github.com/bitblaze-fuzzball/fuzzball
https://github.com/jtpereyda/boofuzz
https://doi.org/10.1145/2491411.2491433
https://doi.org/10.1145/2786805.2786842
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1145/1985793.1985995
http://www.capstone-engine.org/

30 C. Wright, et al.

[23] Dan Caselden, Alex Bazhanyuk, Mathias Payer, Laszlo Szekeres, Stephen McCamant, and Dawn Song. 2013.
Transformation-aware Exploit Generation using a HI-CFG. Technical Report UCB/EECS-2013-85. EECS Department,
University of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-85.html

[24] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012. Unleashing Mayhem on Binary
Code. In IEEE Symposium on Security and Privacy. IEEE Computer Society, Washington, DC, USA, 380–394. https:
//doi.org/10.1109/SP.2012.31

[25] Daming D. Chen, Maverick Woo, David Brumley, and Manuel Egele. 2016. Towards Automated Dynamic Analysis
for Linux-based Embedded Firmware. In 23rd Annual Network and Distributed System Security Symposium, 2016, San
Diego, California, USA, February 21-24, 2016. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/
09/towards-automated-dynamic-analysis-linux-based-embedded-�rmware.pdf

[26] Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng, Limin Sun, and Zhenkai Liang. 2018. DTaint: Detecting
the Taint-Style Vulnerability in Embedded Device Firmware. In 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. 430–441. https://doi.org/10.1109/DSN.2018.00052

[27] Anton Cherno�, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Rubin, Tony Tye, S. Bharadwaj Yadavalli,
and John Yates. 1998. FX!32 A Pro�le-Directed Binary Translator. IEEE Micro 18, 2 (March 1998), 56–64. https:
//doi.org/10.1109/40.671403

[28] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A Platform for In-vivo Multi-path Analysis
of Software Systems. SIGARCH Computer Architecture News 39, 1 (Mar 2011), 265–278. https://doi.org/10.1145/
1961295.1950396

[29] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. 2017. Neural Nets Can Learn Function Type
Signatures From Binaries. In 26th USENIX Security Symposium. 99–116.

[30] Catalin Cimpanu. 2019. Android Exploits Are Now Worth More Than iOS Exploits For The First Time. https:
//www.zdnet.com/article/android-exploits-are-now-worth-more-than-ios-exploits-for-the-�rst-time/

[31] Cisco. [n.d.]. Joy. https://github.com/cisco/joy
[32] Cisomag. 2020. Tesla O�ers US$1 Million and a Car to Hack its Model 3 Car. https://www.cisomag.com/tesla-o�ers-

us1-million-and-a-car-as-bug-bounty-reward/
[33] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: A Generic Dynamic Taint Analysis Framework. In

Proceedings of the 2007 International Symposium on Software Testing and Analysis. ACM, New York, NY, USA, 196–206.
https://doi.org/10.1145/1273463.1273490

[34] John Clemens. 2015. Automatic Classi�cation of Object Code Using Machine Learning. Digital Investigation 14, S1
(Aug 2015), S156–S162. https://doi.org/10.1016/j.diin.2015.05.007

[35] Abraham Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David Fritz, Christopher Kruegel, Giovanni
Vigna, Saurabh Bagchi, and Mathias Payer. 2020. HALucinator: Firmware Re-hosting through Abstraction Layer
Emulation. (2020).

[36] Lucian Cojocar, Jonas Zaddach, Roel Verdult, Herbert Bos, Aurélien Francillon, and Davide Balzarotti. 2015. PIE: Parser
Identi�cation in Embedded Systems. In Proceedings of the 31st Annual Computer Security Applications Conference.
Association for Computing Machinery, New York, NY, USA, 251–260. https://doi.org/10.1145/2818000.2818035

[37] Comsecuris. [n.d.]. GDB Ghidra. https://github.com/Comsecuris/gdbghidra
[38] ConsenSys. [n.d.]. Mythril. https://github.com/ConsenSys/mythril
[39] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang Hao, Christopher Kruegel, and Giovanni

Vigna. 2017. Difuze: Interface Aware Fuzzing for Kernel Drivers. In ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2123–2138.

[40] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. 2018. Inception: System-Wide Security Testing of
Real-World Embedded Systems Software. In 27th USENIX Security Symposium. USENIX Association, Baltimore, MD,
309–326. https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani

[41] Andrei Costin and Jonas Zaddach. 2013. Embedded Devices Security and Firmware Reverse Engineering.
[42] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. [n.d.]. �rmware.re. http://�rmware.re/

usenixsec14/
[43] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. 2014. A Large-Scale Analysis of the

Security of Embedded Firmwares. In 23rd USENIX Security Symposium. USENIX Association, San Diego, CA, 95–110.
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin

[44] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. 2016. Automated Dynamic Firmware Analysis at Scale:
A Case Study on Embedded Web Interfaces. In Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security. ACM, New York, NY, USA, 437–448. https://doi.org/10.1145/2897845.2897900

[45] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. 2017. Towards Automated Classi�cation of Firmware
Images and Identi�cation of Embedded Devices. In ICT Systems Security and Privacy Protection, Sabrina De Capitani di
Vimercati and Fabio Martinelli (Eds.). Springer International Publishing, Cham, 233–247.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-85.html
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SP.2012.31
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
https://doi.org/10.1109/DSN.2018.00052
https://doi.org/10.1109/40.671403
https://doi.org/10.1109/40.671403
https://doi.org/10.1145/1961295.1950396
https://doi.org/10.1145/1961295.1950396
https://www.zdnet.com/article/android-exploits-are-now-worth-more-than-ios-exploits-for-the-first-time/
https://www.zdnet.com/article/android-exploits-are-now-worth-more-than-ios-exploits-for-the-first-time/
https://github.com/cisco/joy
https://www.cisomag.com/tesla-offers-us1-million-and-a-car-as-bug-bounty-reward/
https://www.cisomag.com/tesla-offers-us1-million-and-a-car-as-bug-bounty-reward/
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1016/j.diin.2015.05.007
https://doi.org/10.1145/2818000.2818035
https://github.com/Comsecuris/gdbghidra
https://github.com/ConsenSys/mythril
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
http://firmware.re/usenixsec14/
http://firmware.re/usenixsec14/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://doi.org/10.1145/2897845.2897900

Challenges in Firmware Re-Hosting, Emulation, and Analysis 31

[46] Craig. 2012. Emulating NVRAM in Qemu. http://www.devttys0.com/2012/03/emulating-nvram-in-qemu/
[47] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist, Marie-Laure Potet, and Jean-Yves

Marion. 2016. BINSEC/SE: A Dynamic Symbolic Execution Toolkit for Binary-Level Analysis. In IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering. IEEE Computer Society, Los Alamitos, CA, USA, 653–656.
https://doi.org/10.1109/SANER.2016.43

[48] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha. 2013. FIE on Firmware: Finding Vulnerabil-
ities in Embedded Systems Using Symbolic Execution. In 22nd USENIX Security Symposium. USENIX Association,
Washington, D.C., 463–478. https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson

[49] Pietro De Nicolao, Marcello Pogliani, Mario Polino, Michele Carminati, Davide Quarta, and Stefano Zanero. 2018.
ELISA: ELiciting ISA of Raw Binaries for Fine-Grained Code and Data Separation. In Detection of Intrusions and
Malware, and Vulnerability Assessment, Cristiano Giu�rida, Sébastien Bardin, and Gregory Blanc (Eds.). Springer
International Publishing, Cham, 351–371.

[50] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whelan. 2015. Repeatable Reverse Engineering
with PANDA. In Proceedings of the 5th Program Protection and Reverse Engineering Workshop. ACM, New York, NY,
USA, Article 4, 11 pages. https://doi.org/10.1145/2843859.2843867

[51] Christopher Domas. 2017. Breaking the x86 ISA.
[52] DOSBox. [n.d.]. DOSBox. https://www.dosbox.com/
[53] DroidSni�. [n.d.]. DroidSni�. https://github.com/evozi/DroidSni�
[54] Thomas Dullien and Sebastian Porst. 2009. REIL: A platform-independent intermediate representation of disassembled

code for static code analysis.
[55] EtherApe. [n.d.]. EtherApe. https://etherape.sourceforge.io/
[56] FaceDancer. [n.d.]. FaceDancer. https://github.com/usb-tools/Facedancer
[57] Bo Feng, Alejandro Mera, and Long Lu. 2019. P2IM: Scalable and Hardware-independent Firmware Testing via

Automatic Peripheral Interface Modeling (extended version). ArXiv abs/1909.06472 (2019).
[58] Firmadyne. 2018. �rmadyne/libnvram. https://github.com/�rmadyne/libnvram
[59] �rminsight. [n.d.]. �rminsight. https://github.com/ilovepp/�rminsight
[60] �rmware-mod-kit. [n.d.]. �rmware-mod-kit. https://github.com/rampageX/�rmware-mod-kit
[61] José Fragoso Santos, Petar Maksimović, Gabriela Sampaio, and Philippa Gardner. 2019. JaVerT 2.0: Compositional

Symbolic Execution for JavaScript. Proceedings of the ACM on Principles of Programming Languages 3, Article 66 (Jan
2019), 31 pages. https://doi.org/10.1145/3290379

[62] Prashant Gandhi, Somesh Khanna, and Sree Ramaswamy. 2017. Which Industries Are the Most Digital (and Why)?
https://hbr.org/2016/04/a-chart-that-shows-which-industries-are-the-most-digital-and-why

[63] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Automated whitebox fuzz testing. In Network and
Distributed Systems Security Symposium.

[64] Google. [n.d.]. clusterfuzz. https://github.com/google/clusterfuzz
[65] Google. [n.d.]. domato. https://github.com/googleprojectzero/domato
[66] Google. [n.d.]. fuzzilli. https://github.com/googleprojectzero/fuzzilli
[67] Google. [n.d.]. gofuzz. https://github.com/google/gofuzz
[68] Google. [n.d.]. honggfuzz. https://github.com/google/honggfuzz
[69] Google. [n.d.]. syzkaller. https://github.com/google/syzkaller
[70] Google. [n.d.]. wina�. https://github.com/googleprojectzero/wina�
[71] Gustavo Grieco, Martín Ceresa, and Pablo Buiras. 2016. QuickFuzz: An Automatic Random Fuzzer for Common

File Formats. In Proceedings of the 9th International Symposium on Haskell. ACM, New York, NY, USA, 13–20. https:
//doi.org/10.1145/2976002.2976017

[72] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind Machiry, Yanick Fratantonio, Davide Balzarotti,
Aurelien Francillon, Yung Ryn Choe, Christophe Kruegel, et al. 2020. Toward the Analysis of Embedded Firmware
through Automated Re-hosting. In 22nd International Symposium on Research in Attacks, Intrusions and Defenses.

[73] Jim Hall. [n.d.]. HP LaserJet The Early History. http://hparchive.com/seminar_notes/HP_LaserJet_The_Early_
History_by_Jim_Hall_110512.pdf

[74] Armijn Hemel and Shane Coughlan. [n.d.]. Binary Analysis Toolkit. http://www.binaryanalysis.org/old/home
[75] Hemel, Armijn. [n.d.]. BANG - Binary Analysis Next Generation. https://github.com/armijnhemel/binaryanalysis-ng
[76] Grant Hernandez, Farhaan Fowze, Dave Tian, Tuba Yavuz, and Kevin Butler. 2017. FirmUSB: Vetting USB Device

Firmware using Domain Informed Symbolic Execution. (Aug 2017). https://doi.org/10.1145/3133956.3134050
[77] Brendan Hesse. 2019. Earn Up to $1 Million from Apple’s Expanded Bug Bounty Program. https://lifehacker.com/earn-

up-to-1-million-from-apples-expanded-bug-bounty-p-1837106598
[78] Emily R Jacobson, Nathan Rosenblum, and Barton P Miller. 2011. Labeling Library Functions in Stripped Binaries. In

10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools. ACM, 1–8.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

http://www.devttys0.com/2012/03/emulating-nvram-in-qemu/
https://doi.org/10.1109/SANER.2016.43
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://doi.org/10.1145/2843859.2843867
https://www.dosbox.com/
https://github.com/evozi/DroidSniff
https://etherape.sourceforge.io/
https://github.com/usb-tools/Facedancer
https://github.com/firmadyne/libnvram
https://github.com/ilovepp/firminsight
https://github.com/rampageX/firmware-mod-kit
https://doi.org/10.1145/3290379
https://hbr.org/2016/04/a-chart-that-shows-which-industries-are-the-most-digital-and-why
https://github.com/google/clusterfuzz
https://github.com/googleprojectzero/domato
https://github.com/googleprojectzero/fuzzilli
https://github.com/google/gofuzz
https://github.com/google/honggfuzz
https://github.com/google/syzkaller
https://github.com/googleprojectzero/winafl
https://doi.org/10.1145/2976002.2976017
https://doi.org/10.1145/2976002.2976017
http://hparchive.com/seminar_notes/HP_LaserJet_The_Early_History_by_Jim_Hall_110512.pdf
http://hparchive.com/seminar_notes/HP_LaserJet_The_Early_History_by_Jim_Hall_110512.pdf
http://www.binaryanalysis.org/old/home
https://github.com/armijnhemel/binaryanalysis-ng
https://doi.org/10.1145/3133956.3134050
https://lifehacker.com/earn-up-to-1-million-from-apples-expanded-bug-bounty-p-1837106598
https://lifehacker.com/earn-up-to-1-million-from-apples-expanded-bug-bounty-p-1837106598

32 C. Wright, et al.

[79] Janala2. [n.d.]. Janala2. https://github.com/ksen007/janala2
[80] Dave Jones. 2011. Trinity: A system call fuzzer. In Proceedings of the 13th Ottawa Linux Symposium.
[81] Sami Kairajärvi, Andrei Costin, and Timo Hämäläinen. 2020. ISAdetect: Usable Automated Detection of CPU

Architecture and Endianness for Executable Binary Files and Object Code. In Tenth ACM Conference on Data and
Application Security and Privacy. Association for Computing Machinery, New York, NY, USA, 376–380. https:
//doi.org/10.1145/3374664.3375742

[82] Sushma Kalle, Nehal Ameen, Hyunguk Yoo, and Irfan Ahmed. 2019. CLIK on PLCs! Attacking Control Logic with
Decompilation and Virtual PLC. https://doi.org/10.14722/bar.2019.23xxx

[83] Aaron Kaluszka. [n.d.]. Computer Emulation History. https://kaluszka.com/vt/emulation/history.html
[84] Markus Kammerstetter, Christian Platzer, and Wolfgang Kastner. 2014. Prospect: Peripheral Proxying Supported

Embedded Code Testing. In Proceedings of the 9th ACM Symposium on Information, Computer and Communications
Security. ACM, New York, NY, USA, 329–340. https://doi.org/10.1145/2590296.2590301

[85] Stamatis Karnouskos. 2011. Stuxnet Worm Impact on Industrial Cyber-Physical System Security. In 37th Annual
Conference of the IEEE Industrial Electronics Society. 4490–4494. https://doi.org/10.1109/IECON.2011.6120048

[86] Anastasis Keliris and Michail Maniatakos. 2019. ICSREF: A Framework for Automated Reverse Engineering of
Industrial Control Systems Binaries. In Network and Distributed Systems Security Symposium.

[87] M. Ammar Ben Khadra, Dominik Sto�el, and Wolfgang Kunz. 2016. Speculative Disassembly of Binary Code. In
Proceedings of the International Conference on Compilers, Architectures and Synthesis for Embedded Systems. ACM, New
York, NY, USA, Article 16, 10 pages. https://doi.org/10.1145/2968455.2968505

[88] Kismet. [n.d.]. Kismet. https://www.kismetwireless.net/
[89] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating Fuzz Testing. In Proceedings

of the 2018 ACM SIGSAC Conference on Computer and Communications Security. ACM, New York, NY, USA, 2123–2138.
https://doi.org/10.1145/3243734.3243804

[90] Karl Koscher, Tadayoshi Kohno, and David Molnar. 2015. SURROGATES: Enabling Near-Real-Time Dynamic Analyses
of Embedded Systems. In 9th USENIX Workshop on O�ensive Technologies. USENIX Association, Washington, D.C.
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher

[91] Christopher Kruegel. [n.d.]. Full system emulation: Achieving successful automated dynamic analysis of evasive
malware.

[92] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni Vigna. 2005. Automating mimicry
attacks using static binary analysis. In 14th USENIX Security Symposium, Vol. 14. 11–11.

[93] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni Vigna. 2004. Static Disassembly of Obfuscated
Binaries. In 13th USENIX Security Symposium, Vol. 13. 18–18.

[94] Christopher Kruegel, William Robertson, and Giovanni Vigna. 2004. Detecting Kernel-Level Rootkits Through Binary
Analysis. In 20th Annual Computer Security Applications Conference. IEEE, 91–100.

[95] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong program analysis transformation. In
International Symposium on Code Generation and Optimization. 75–86.

[96] Kevin P. Lawton. 1996. Bochs: A Portable PC Emulator for Unix/X. Linux J. 1996, 29es, Article 7 (Sep 1996).
http://dl.acm.org/citation.cfm?id=326350.326357

[97] Leveldown Security. [n.d.]. SVD-Loader-Ghidra. https://github.com/leveldown-security/SVD-Loader-Ghidra
[98] R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, and H. Zhang. 2017. Intelligent 5G: When Cellular Networks

Meet Arti�cial Intelligence. IEEE Wireless Communications 24, 5 (2017), 175–183.
[99] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. 2011. VIPER: Verifying the Integrity of PERipherals’ Firmware. In

18th ACM Conference on Computer and Communications Security. Association for Computing Machinery, New York,
NY, USA, 3–16. https://doi.org/10.1145/2046707.2046711

[100] Yibin Liao, Ruoyan Cai, Guodong Zhu, Yue Yin, and Kang Li. 2018. Mobile�ndr: Function Similarity Identi�cation For
Reversing Mobile Binaries. In European Symposium on Research in Computer Security. Springer, 66–83.

[101] Ulf Lindqvist and Peter G. Neumann. 2017. The Future of the Internet of Things. Commun. ACM 60, 2 (Jan 2017),
26–30. https://doi.org/10.1145/3029589

[102] Peng Liu, Chunchang Xiang, Xiaohang Wang, Binjie Xia, Yangfan Liu, Weidong Wang, and Qingdong Yao. 2009. A
NoC Emulation/Veri�cation Framework. In Sixth International Conference on Information Technology: New Generations.
IEEE, 859–864.

[103] Blake Loring, Duncan Mitchell, and Johannes Kinder. 2017. ExpoSE: Practical Symbolic Execution of Standalone
JavaScript. In Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software.
ACM, New York, NY, USA, 196–199. https://doi.org/10.1145/3092282.3092295

[104] Aravind Machiry, Eric Gustafson, Chad Spensky, Christopher Salls, Nick Stephens, Ruoyu Wang, Antonio Bianchi,
Yung Ryn Choe, Christopher Kruegel, and Giovanni Vigna. 2017. BOOMERANG: Exploiting the Semantic Gap in
Trusted Execution Environments. In Proceedings of the 2017 Network and Distributed System Security Symposium.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

https://github.com/ksen007/janala2
https://doi.org/10.1145/3374664.3375742
https://doi.org/10.1145/3374664.3375742
https://doi.org/10.14722/bar.2019.23xxx
https://kaluszka.com/vt/emulation/history.html
https://doi.org/10.1145/2590296.2590301
https://doi.org/10.1109/IECON.2011.6120048
https://doi.org/10.1145/2968455.2968505
https://www.kismetwireless.net/
https://doi.org/10.1145/3243734.3243804
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher
http://dl.acm.org/citation.cfm?id=326350.326357
https://github.com/leveldown-security/SVD-Loader-Ghidra
https://doi.org/10.1145/2046707.2046711
https://doi.org/10.1145/3029589
https://doi.org/10.1145/3092282.3092295

Challenges in Firmware Re-Hosting, Emulation, and Analysis 33

[105] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hallberg, Johan Hogberg, Fredrik
Larsson, Andreas Moestedt, and Bengt Werner. 2002. Simics: A Full System Simulation Platform. Computer 35, 2
(2002), 50–58.

[106] Malcolm. [n.d.]. Malcolm. https://github.com/idaholab/Malcolm
[107] James Manyika, Sree Ramaswamy, Somesh Khanna, Hugo Sarrazin, Gary Pinkus, Guru Sethupathy, and Andrew

Ya�e. 2015. Digital America: A tale of the haves and have-mores. https://www.mckinsey.com/industries/technology-
media-and-telecommunications/our-insights/digital-america-a-tale-of-the-haves-and-have-mores

[108] Xavi Mendez. [n.d.]. wfuzz. https://github.com/xmendez/wfuzz
[109] Gaurav Mittal, David Zaretsky, Gokhan Memik, and Prith Banerjee. 2005. Automatic Extraction of Function Bodies

From Software Binaries. In Proceedings of the ASP-DAC 2005. Asia and South Paci�c Design Automation Conference,
2005., Vol. 2. IEEE, 928–931.

[110] Harish Mohanan, Perraju Bendapudi, Abishek Kumarasubramanian, Rajesh Jalan, and Ramarathnam Venkatesan.
2012. Function Matching in Binaries. US Patent 8,166,466.

[111] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco, Josselin Feist, Trent Brunson, and
Artem Dinaburg. 2019. Manticore: A User-Friendly Symbolic Execution Framework for Binaries and Smart Contracts.
arXiv:cs.SE/1907.03890

[112] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti. 2018. Avatar2: A Multi-Target Orchestration
Platform. In Workshop on Binary Analysis Research, colocated with Network and Distributed Systems Security Symposium,
San Diego, USA. San Diego, UNITED STATES. http://www.eurecom.fr/publication/5437

[113] Marius Muench, Jan Stijohann, Frank Kargl, Aurelien Francillon, and Davide Balzarotti. 2018. What You Corrupt Is Not
What You Crash: Challenges in Fuzzing Embedded Devices. In Network and Distributed System Security Symposium.

[114] NationalSecurityAgency. [n.d.]. NationalSecurityAgency/ghidra. https://github.com/NationalSecurityAgency/ghidra/
wiki/Frequently-asked-questions

[115] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavyweight Dynamic Binary Instrumen-
tation. ACM SIGPLAN Conference on Programming Language Design and Implementation 42, 6 (Jun 2007), 89–100.
https://doi.org/10.1145/1273442.1250746

[116] Netresec. [n.d.]. NetworkMiner. https://www.netresec.com/?page=NetworkMiner
[117] NetWorkPacketCapture. [n.d.]. NetWorkPacketCapture. https://github.com/huolizhuminh/NetWorkPacketCapture
[118] Lily Hay Newman. 2018. Facebook Bug Bounty Program Makes Biggest Reward Payout Yet. https://www.wired.

com/story/facebook-bug-bounty-biggest-payout/
[119] NSA. [n.d.]. Ghidra. https://ghidra-sre.org/
[120] U.S. Department of Energy. [n.d.]. The Smart Grid. https://www.smartgrid.gov/the_smart_grid/smart_grid.html
[121] OWASP. [n.d.]. IoTGoat. https://github.com/OWASP/IoTGoat
[122] PAGalaxyLab. [n.d.]. vxhunter. https://github.com/PAGalaxyLab/vxhunter
[123] Dorottya Papp, Zhendong Ma, and Levente Buttyan. 2015. Embedded systems security: Threats, vulnerabilities, and

attack taxonomy. In 2015 13th Annual Conference on Privacy, Security and Trust. 145–152. https://doi.org/10.1109/PST.
2015.7232966

[124] Riyad Parvez, Paul A. S. Ward, and Vijay Ganesh. 2016. Combining Static Analysis and Targeted Symbolic Execution
for Scalable Bug-�nding in Application Binaries. In 26th Annual International Conference on Computer Science and
Software Engineering. IBM Corp., Riverton, NJ, USA, 116–127. http://dl.acm.org/citation.cfm?id=3049877.3049889

[125] PcapPlusPlus. [n.d.]. PcapPlusPlus. https://github.com/seladb/PcapPlusPlus
[126] PCem. [n.d.]. PCem. https://github.com/Anamon/pcem
[127] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: Fuzzing by Program Transformation. In IEEE

Symposium on Security and Privacy. IEEE, 697–710.
[128] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten Holz. 2015. Cross-Architecture Bug

Search in Binary Executables. In IEEE Symposium on Security and Privacy. IEEE, 709–724.
[129] Richard Phillips and Bonnie Montalvo. 2010. Using emulation to debug control logic code. Proceedings of the 2010

Winter Simulation Conference (2010). https://doi.org/10.1109/wsc.2010.5678904
[130] PixelCyber. [n.d.]. Thor. https://github.com/PixelCyber/Thor
[131] Praetorian. [n.d.]. The Damn Vulnerable Router Firmware Project. https://github.com/praetorian-code/DVRF
[132] Rui Qiao and R Sekar. 2016. E�ective Function Recovery for COTS Binaries Using Interface Veri�cation. Technical

Report. Technical report, Secure Systems Lab, Stony Brook University.
[133] Rui Qiao and R Sekar. 2017. Function Interface Analysis: A Principled Approach For Function Recognition in COTS

Binaries. In 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE, 201–212.
[134] radamsa. [n.d.]. radamsa. https://gitlab.com/akihe/radamsa
[135] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giu�rida, and Herbert Bos. 2017. VUzzer:

Application-aware Evolutionary Fuzzing.. In Network and Distributed Systems Security Symposium, Vol. 17. 1–14.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

https://github.com/idaholab/Malcolm
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/digital-america-a-tale-of-the-haves-and-have-mores
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/digital-america-a-tale-of-the-haves-and-have-mores
https://github.com/xmendez/wfuzz
http://arxiv.org/abs/cs.SE/1907.03890
http://www.eurecom.fr/publication/5437
https://github.com/NationalSecurityAgency/ghidra/wiki/Frequently-asked-questions
https://github.com/NationalSecurityAgency/ghidra/wiki/Frequently-asked-questions
https://doi.org/10.1145/1273442.1250746
https://www.netresec.com/?page=NetworkMiner
https://github.com/huolizhuminh/NetWorkPacketCapture
https://www.wired.com/story/facebook-bug-bounty-biggest-payout/
https://www.wired.com/story/facebook-bug-bounty-biggest-payout/
https://ghidra-sre.org/
https://www.smartgrid.gov/the_smart_grid/smart_grid.html
https://github.com/OWASP/IoTGoat
https://github.com/PAGalaxyLab/vxhunter
https://doi.org/10.1109/PST.2015.7232966
https://doi.org/10.1109/PST.2015.7232966
http://dl.acm.org/citation.cfm?id=3049877.3049889
https://github.com/seladb/PcapPlusPlus
https://github.com/Anamon/pcem
https://doi.org/10.1109/wsc.2010.5678904
https://github.com/PixelCyber/Thor
https://github.com/praetorian-code/DVRF
https://gitlab.com/akihe/radamsa

34 C. Wright, et al.

[136] Hex Rays. [n.d.]. https://hex-rays.com/products/ida/
[137] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella, Yan Shoshitaishvili, Christopher

Kruegel, and Giovanni Vigna. 2020. KARONTE: Detecting Insecure Multi-binary Interactions in Embedded Firmware.
In Proceedings of the IEEE Symposium on Security and Privacy.

[138] Teddy Reed. [n.d.]. subzero. https://github.com/theopolis/subzero
[139] ReFirm Labs. [n.d.]. binwalk. https://github.com/ReFirmLabs/binwalk
[140] Corinne Reichert. 2019. Google’s Android Bug Bounty Program Will Now Pay Out $1.5 Million. https://www.cnet.

com/news/googles-android-bug-bounty-program-will-now-pay-out-1-5-million/
[141] Samsung. [n.d.]. Jalangi2. https://github.com/Samsung/jalangi2
[142] Chase Schultz. [n.d.]. �rmware_collection. https://github.com/f47h3r/�rmware_collection
[143] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You Ever Wanted to Know About Dynamic

Taint Analysis and Forward Symbolic Execution (but Might Have Been Afraid to Ask). In IEEE Symposium on Security
and Privacy. IEEE Computer Society, Washington, DC, USA, 317–331. https://doi.org/10.1109/SP.2010.26

[144] Sen, Koushik. [n.d.]. jCUTE. https://github.com/osl/jcute
[145] Kostya Serebryany. 2017. OSS-Fuzz-Google’s Continuous Fuzzing Service for Open Source Software.
[146] Saumil Shah. [n.d.]. The ARM-X Firmware Emulation Framework. https://github.com/therealsaumil/armx
[147] Asankhaya Sharma. 2014. Exploiting Unde�ned Behaviors for E�cient Symbolic Execution. In Companion Proceedings

of the 36th International Conference on Software Engineering. ACM, New York, NY, USA, 727–729. https://doi.org/10.
1145/2591062.2594450

[148] Shellphish. 2017. Cyber Grand Shellphish. http://phrack.org/papers/cyber_grand_shellphish.html
[149] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing Functions in Binaries With Neural

Networks. In 24th USENIX Security Symposium. 611–626.
[150] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. 2015. Firmalice -

Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware. In Proceedings of the 2015 Network
and Distributed System Security Symposium.

[151] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey Dutcher, John Grosen, Siji
Feng, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SoK: (State of) The Art of War: O�ensive
Techniques in Binary Analysis. In IEEE Symposium on Security and Privacy.

[152] Sibyl. [n.d.]. Sibyl. https://github.com/cea-sec/Sibyl
[153] Sickendick, Karl. [n.d.]. pcode-emulator. https://github.com/kc0bfv/pcode-emulator
[154] Slack. [n.d.]. Slack. https://angr.slack.com
[155] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang, Zhenkai Liang, James Newsome,

Pongsin Poosankam, and Prateek Saxena. 2008. BitBlaze: A New Approach to Computer Security Via Binary Analysis.
In International Conference on Information Systems Security. Springer, 1–25.

[156] Prashast Srivastava, Hui Peng, Jiahao Li, Hamed Okhravi, Howard Shrobe, and Mathias Payer. 2019. FirmFuzz:
Automated IoT Firmware Introspection and Analysis. Proceedings Of The 2nd International ACM Workshop On Security
And Privacy For The Internet-Of-Things (2019), 15–21. https://doi.org/10.1145/3338507.3358616

[157] SSRFmap. [n.d.]. SSRFmap. https://github.com/swisskyrepo/SSRFmap
[158] Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,

Christopher Kruegel, and Giovanni Vigna. 2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.
In Proceedings of the 2016 Network and Distributed System Security Symposium.

[159] Vinaitheerthan Sundaram, Patrick Eugster, and Xiangyu Zhang. 2010. E�cient Diagnostic Tracing for Wireless
Sensor Networks. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems. ACM, 169–182.

[160] Florin Dragos Tanasache, Mara Sorella, Silvia Bonomi, Raniero Rapone, and Davide Meacci. 2019. Building an
emulation environment for cyber security analyses of complex networked systems. Proceedings of the 20th International
Conference on Distributed Computing and Networking (2019). https://doi.org/10.1145/3288599.3288618

[161] Matthew Tancreti, Mohammad Sajjad Hossain, Saurabh Bagchi, and Vijay Raghunathan. 2011. Aveksha: A Hardware-
Software Approach for Non-Intrusive Tracing and Pro�ling of Wireless Embedded Systems. In Proceedings of the 9th
ACM Conference on Embedded Networked Sensor Systems. ACM, 288–301.

[162] Matthew Tancreti, Vinaitheerthan Sundaram, Saurabh Bagchi, and Patrick Eugster. 2015. TARDIS: Software-Only
System-Level Record and Replay in Wireless Sensor Networks. In Proceedings of the 14th International Conference on
Information Processing in Sensor Networks. ACM, 286–297.

[163] TCPDump. [n.d.]. TCPDump. http://www.tcpdump.org/
[164] Radare2 Team. 2017. Radare2 Book. GitHub.
[165] Telerik. [n.d.]. Fiddler. https://www.telerik.com/�ddler
[166] Keen Security Lab Tencent. 2016. Car Hacking Research: Remote Attack Tesla Motors. https://keenlab.tencent.com/

en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

https://hex-rays.com/products/ida/
https://github.com/theopolis/subzero
https://github.com/ReFirmLabs/binwalk
https://www.cnet.com/news/googles-android-bug-bounty-program-will-now-pay-out-1-5-million/
https://www.cnet.com/news/googles-android-bug-bounty-program-will-now-pay-out-1-5-million/
https://github.com/Samsung/jalangi2
https://github.com/f47h3r/firmware_collection
https://doi.org/10.1109/SP.2010.26
https://github.com/osl/jcute
https://github.com/therealsaumil/armx
https://doi.org/10.1145/2591062.2594450
https://doi.org/10.1145/2591062.2594450
http://phrack.org/papers/cyber_grand_shellphish.html
https://github.com/cea-sec/Sibyl
https://github.com/kc0bfv/pcode-emulator
https://angr.slack.com
https://doi.org/10.1145/3338507.3358616
https://github.com/swisskyrepo/SSRFmap
https://doi.org/10.1145/3288599.3288618
http://www.tcpdump.org/
https://www.telerik.com/fiddler
https://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
https://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/

Challenges in Firmware Re-Hosting, Emulation, and Analysis 35

[167] Sam Thomas, Flavio Garcia, and Tom Chothia. 2017. HumIDIFy: A Tool for Hidden Functionality Detection in
Firmware. 279–300. https://doi.org/10.1007/978-3-319-60876-1_13

[168] Michael F. Thompson and Timothy Vidas. 2018. CGC monitor: A vetting system for the DARPA cyber grand challenge.
https://calhoun.nps.edu/handle/10945/59209

[169] Brian Van Leeuwen, Vincent Urias, John Eldridge, Charles Villamarin, and Ron Olsberg. 2010. Cyber security analysis
testbed: Combining real, emulation, and simulation. In 44th Annual 2010 IEEE International Carnahan Conference on
Security Technology. 121–126. https://doi.org/10.1109/CCST.2010.5678720

[170] Sebastian Vasile, David Oswald, and Tom Chothia. 2019. Breaking All the Things—A Systematic Survey of Firmware
Extraction Techniques for IoT Devices. In Smart Card Research and Advanced Applications, Begül Bilgin and Jean-
Bernard Fischer (Eds.). Springer International Publishing, Cham, 171–185.

[171] Marek Vasut. 2017. Adding New Architecture to QEMU. https://events17.linuxfoundation.org/sites/events/�les/
slides/ossj-2017.pdf

[172] Trygve Vea. [n.d.]. �rmwaredb. https://github.com/kvisle/�rmwaredb
[173] Vector 35. [n.d.]. Binary Ninja. https://binary.ninja/
[174] John Viega and Hugh Thompson. 2012. The State of Embedded-Device Security (Spoiler Alert: It’s Bad). IEEE

Symposium on Security and Privacy 10, 5 (Sep 2012), 68–70. https://doi.org/10.1109/MSP.2012.134
[175] Sebastian Vogl, Robert Gawlik, Behrad Garmany, Thomas Kittel, Jonas Pfoh, Claudia Eckert, and Thorsten Holz.

2014. Dynamic Hooks: Hiding Control Flow Changes Within Non-Control Data. In 23rd USENIX Security Symposium.
813–328.

[176] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Machiry Aravind, John Grosen, Paul Grosen, Christopher Kruegel,
and Giovanni Vigna. 2017. Ramblr: Making Reassembly Great Again. In Proceedings of the 2017 Network and Distributed
System Security Symposium.

[177] Xiajing Wang, Rui Ma, Bowen Dou, Zefeng Jian, and Hongzhou Chen. 2018. OFFDTAN: A New Approach of O�ine
Dynamic Taint Analysis for Binaries. Security and Communication Networks 2018 (2018), 13. 10.1155/2018/7693861

[178] Kayla Wiles. 2019. First all-digital nuclear reactor system in the U.S. installed at Purdue Univer-
sity. https://www.purdue.edu/newsroom/releases/2019/Q3/�rst-all-digital-nuclear-reactor-control-system-in-
the-u.s.-installed-at-purdue-university.html

[179] Wireshark. [n.d.]. Wireshark. https://www.wireshark.org/
[180] Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2017. Cryptographic Function Detection in Obfuscated Binaries Via

Bit-Precise Symbolic Loop Mapping. In IEEE Symposium on Security and Privacy. IEEE, 921–937.
[181] Hongfa Xue, Shaowen Sun, Guru Venkataramani, and Tian Lan. 2019. Machine Learning-Based Analysis of Program

Binaries: A Comprehensive Study. IEEE Access 7 (2019), 65889–65912.
[182] Seung Jei Yang, Jung Ho Choi, Ki Bom Kim, and Taejoo Chang. 2015. New Acquisition Method Based on Firmware

Update Protocols for Android Smartphones. Digital Investigation 14 (2015), S68 – S76. https://doi.org/10.1016/j.diin.
2015.05.008 The Proceedings of the Fifteenth Annual DFRWS Conference.

[183] Miao Yu, Jianwei Zhuge, Ming Cao, Zhiwei Shi, and Lin Jiang. 2020. A Survey of Security Vulnerability Analysis,
Discovery, Detection, and Mitigation on IoT Devices. Future Internet 12, 2 (Feb 2020), 27. https://doi.org/10.3390/
�12020027

[184] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A Practical Concolic Execution Engine
Tailored for Hybrid Fuzzing. In 27th USENIX Security Symposium. 745–761.

[185] Jonas Zaddach, Luca Bruno, AurÃľlien Francillon, and Davide Balzarotti. 2014. Avatar: A Framework to Support
Dynamic Security Analysis of Embedded Systems’ Firmwares. In Network and Distributed Systems Security Symposium.
https://doi.org/10.14722/ndss.2014.23229

[186] Jonas Zaddach, Anil Kurmus, Davide Balzarotti, Erik-Oliver Blass, Aurélien Francillon, Travis Goodspeed, Moitrayee
Gupta, and Ioannis Koltsidas. 2013. Implementation and Implications of a Stealth Hard-Drive Backdoor. In Proceedings
of the 29th Annual Computer Security Applications Conference. Association for Computing Machinery, New York, NY,
USA, 279–288. https://doi.org/10.1145/2523649.2523661

[187] Ruijin Zhu, Yu-an Tan, Quanxin Zhang, Yuanzhang Li, and Jun Zheng. 2016. Determining Image Base of Firmware
for ARM Devices by Matching Literal Pools. Digital Investigation 16 (2016), 19 – 28. https://doi.org/10.1016/j.diin.
2016.01.002

[188] Ruijin Zhu, Baofeng Zhang, Junjie Mao, Quanxin Zhang, and Yu-an Tan. 2017. A Methodology for Determining
the Image Base of ARM-Based Industrial Control System Firmware. International Journal of Critical Infrastructure
Protection 16 (2017), 26 – 35. https://doi.org/10.1016/j.ijcip.2016.12.002

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/10.1007/978-3-319-60876-1_13
https://calhoun.nps.edu/handle/10945/59209
https://doi.org/10.1109/CCST.2010.5678720
https://events17.linuxfoundation.org/sites/events/files/slides/ossj-2017.pdf
https://events17.linuxfoundation.org/sites/events/files/slides/ossj-2017.pdf
https://github.com/kvisle/firmwaredb
https://binary.ninja/
https://doi.org/10.1109/MSP.2012.134
10.1155/2018/7693861
https://www.purdue.edu/newsroom/releases/2019/Q3/first-all-digital-nuclear-reactor-control-system-in-the-u.s.-installed-at-purdue-university.html
https://www.purdue.edu/newsroom/releases/2019/Q3/first-all-digital-nuclear-reactor-control-system-in-the-u.s.-installed-at-purdue-university.html
https://www.wireshark.org/
https://doi.org/10.1016/j.diin.2015.05.008
https://doi.org/10.1016/j.diin.2015.05.008
https://doi.org/10.3390/fi12020027
https://doi.org/10.3390/fi12020027
https://doi.org/10.14722/ndss.2014.23229
https://doi.org/10.1145/2523649.2523661
https://doi.org/10.1016/j.diin.2016.01.002
https://doi.org/10.1016/j.diin.2016.01.002
https://doi.org/10.1016/j.ijcip.2016.12.002

	Abstract
	1 Introduction
	2 Emulation Background
	2.1 Evolution of Emulation
	2.2 Emulation Bases
	2.3 Related Vulnerability Discovery Techniques

	3 Surveyed Works
	4 Emulation Comparison Axes
	4.1 Emulation Techniques
	4.2 Types of Systems
	4.3 Fidelity
	4.4 Purpose of emulator
	4.5 Level of Control

	5 Classification of Surveyed Works
	5.1 Hardware In The Loop
	5.2 Instruction Level Execution Fidelity
	5.3 Basic Block Level Execution Fidelity
	5.4 Module Level Execution Fidelity

	6 Questions and Challenges
	6.1 Questions of Purpose and Value
	6.2 Key Research Questions
	6.3 Challenges

	7 Pre-Emulation
	7.1 Obtaining Firmware
	7.2 Instruction Set Architecture
	7.3 Determine Base Address
	7.4 Finding Entry Point
	7.5 Determine Memory Layout
	7.6 Identify Processor and/or Board Support Package (BSP)
	7.7 Disassembly, Initial Analysis, and CFG Recovery

	8 Emulation
	8.1 Emulation Setup
	8.2 Emulation Execution

	9 Post Emulation
	9.1 Finding Vulnerabilities
	9.2 Verification
	9.3 Analysis

	10 Considerations
	11 Summary and Conclusion
	References

