
A Experiment Details

(a)

0

12

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 23

24

(b)

0

1

2

3
4 5

6

7

8

9

10

11

12

13

14

15
1617

18

19

20

21

22

23

24

(c)

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

(d)

0

1

2

3

4

5

6 7
8

9

10

11

12

13
1415 16

17

18

19

20
21

22

23

24

Figure 3: Graphical models used for generating simulated data. (a) complete: all nodes directly
dependent, (b) cycle: only adjacent nodes are directly dependent, (c) grid: other than edge nodes, all
nodes have direct dependency with four other nodes, and (d) random (Erdos-Renyi): dependencies
between nodes randomly generated (note: the random graph changes with every seed).

A.1 Fixed Single Sensor

This experiment2 simulates where a users wants to know if a specific sensor in a network is compro-
mised.Each experiment was run with MB-SM, MB-KS, KNN-KS, and Marginal-KS methods, for each
of the four graph types, and each with decreasing mutual information, MI ∈ {0.2, 0.1, 0.05, 0.01}.
These MI values were chosen via the breakdown points from previous empirical results (from where
the models start performing poorly (0.2) to where the models perform very poorly (0.01)). Each
experiment was ran with 600 replications (300 with j-th sensor compromised, 300 without compro-
mise) using three random seeds (0, 1, 2). In each experiment, the j-th sensor which is attacked or not
attacked is chosen randomly per replication, and detection success is measured solely on the chosen
sensor in each replication. The results can be seen in Table 6 where it can be seen that the MB-SM
method has the greatest recall for each MI. The Marginal-KS method has the greatest precision,

2Our code for all experiments can be found at https://github.com/SeanKski/feature-shift.

12

https://github.com/SeanKski/feature-shift

but with a near zero recall. Excluding the Marginal-KS method, the MB-SM and MB-KS methods
have similar levels of precision for each MI, with the MB-SM being the method with the lowest
computational time of them all. In each experiment the computational time is approximated to be
tγ
d where tγ is the time to calculate the threshold, γ, for all sensors, and d is the number of sensors.

This assumption is reasonable since in practice only γj needs to be calculated, thus dividing γ’s
computational time by d.

A.2 Unknown Single Sensor

This experiment explores the task of detecting if a sensor is compromised and if so, localizing which
sensor has been taken over. The setup of the experiment is the same as the fixed sensor case, but with
a different detection method, and the KNN-KS and Marginal-KS are not included due to expensive
computational costs combined with low performance. The detection method consists of first seeing if
any γj is significant at αbon = α

d (i.e. if ∃γj > γ0j where γ0j is the 1− αbon percentile of the j-th
feature’s conditional distance found from the bootstrapping step and αbon is the Bonferroni correction
for multiple tests). If any of the feature-level tests satisfy this condition, then a ‘global attack’ is
detected. The attack is localized to a specific sensor by finding the sensor with the highest estimated
conditional distance (i.e. ĵ = arg max j γ̂j). The results for the localization of the unknown sensor
can be seen in Table 1.

A.3 Unknown Multiple Sensors

Here we consider the more complex case where multiple sensors could be compromised. We assume
we are seeking to identify which k sensors have been compromised. The setup for this experiment is
the same as the unknown single sensor case, except we explore k = {2, 3, 4, 5}, and like-wise if an
attack is detected, localize the compromised sensors with |A| = k (i.e. the top k sensors with the
highest conditional distance are predicted to be compromised). When a set of sensors are attacked,
their compromised outputs sample from the joint marginal rather than from each individual sensor’s
marginal distribution. This is a much smarter attack, and can be more difficult to detect. The results
are measured in two ways, the first is the detection results (i.e. detecting if a ‘global attack’ has
occurred), and the second is localization results (i.e. if a ‘global attack’ was detected, how many
of the predicted compromised sensors in Â actually compromised). This is done by computing a
confusion matrix for each feature, and then summing along the feature axis (i.e. micro precision and
recall). The detection results for k = {2, 3, 4, 5} can be seen in Table 7 and Table 8 where it can
be seen that the MB-SM outperforms the MB-KS in precision, recall, and as seen in the previous
results, computational complexity. It can also be seen that there are slight improvements in detection
as the number of compromised sensors increases, which makes sense as this means an attack should
be easier to detect. The localization results can be seen in Table 9 and Table 10. Again the MB-SM
outperforms the MS-KS in every category, except for the random graphs in which the MB-KS has
higher precision and recall. The results show that as k grows, the ability to localize which sensors
are in A diminishes for both MB-KS and MB-SM. This makes sense as more and more conditional
information is being destroyed (e.g. in the case of d = 2 if one sensor is compromised, it would be
impossible to detect which is acting anomalously without any prior knowledge.)

A.4 Detecting and localizing time-series attack

This experiment is to simulate detecting and localizing feature shift in time-series data. To do so,
we sample 10,000 samples according to our Gaussian copula model to produce a time series where
the samples are temporally independent. We set X ∼ p as our reference distribution. Y ∼ WK is
our query distribution whereWK is a window of size K = |X| = |Y | (unrelated to k compromised
sensors). WK slides over the time-series data with a step size of 50 (i.e. each step updates 50
new samples into and the 50 oldest samples out of the window), which was chosen as it is large
enough to speed up calculations of the whole time series, but not too large that detection is strongly
affected. The experiment was run for all graphs with MI=0.5 (in time-series experiments this is a
less direct metric of problem hardness), with k = {1, 2, 3}, and the attack happening at 80% of the
time-series (samples 8,000+). It should also be noted that the random selection of A (which sensors
are compromised) only happens once, and A stays constant for the entire time of the attack. Within
each window, the detection process is the same for the unknown multiple sensors experiment, with an
additional metric introduced: time-delay. This metric measures how many steps ofWK are taken

13

between the time when an compromised sample enters the window and a attack is detected. More
formally, t∆ = tdet − tcomp where tcomp is the first time step when a compromised sample entersWK ,
and tdet is the step when an attack is detected. The detection results can be seen in Table 11, where
it can be seen that larger window sizes typically have better precision and recall when compared to
smaller window sizes, however they also have longer time-delays (excluding K = 200 which can
have very large time-delays due to poor detection overall). On average, the K = 500 has the best
intersection of precision, recall, and time-delay. The localization results can be seen in Table 12
where again a clear trend of larger window-sizes (K ≥ 500) have on average greater precision and
recall than smaller window-sizes (K < 500). Choice of window-size will depend on the preferences
of the user, but as a starting point, we suggest setting setting K = 500 for a balance of detection
speed and localization accuracy. One thing we wish to explore further is how changing the step size
affects these metrics as well.

A.5 Experiments on Real-World Data

While our extensive simulation experiments were meant to demonstrate the feature-shift detection
task, we also performed more experiments on real-world data. Each experiment consisted of detecting
whether a non-benign distribution shift has happened, and if so, localizing it to a specific feature.
This was performed on three datasets, the UCI Appliances Energy Prediction dataset [4], the UCI
Gas sensors for home activity monitoring Data Set [10], and the CDC’s United States COVID-19
Cases and Deaths by State over Time [1] as of late Sepetember, 2020. For the COVID-19 data, we
extracted the number of new deaths per day for the 10 states with the greatest total number of deaths
(‘MI’, ‘PA’, ‘IL’, ‘NY’, ‘MA’, ‘FL’, ‘TX’, ‘CA’, ‘NJ’, ‘NYC’) (note: the dataset lists New York state,
’NY’ and New York City, ’NYC’ as separate entities), and used a 2nd order polynomial to interpolate
between each day with a resolution of 1

2 hour. This resulted in an upsampling to ∼ 10,000 samples.

We used two models for the experiments. The first was simply fitting X and Y to multivariate
Gaussians using p̂ = N (mean(X), var(X)) and likewise for q̂. The second used a deep density
model which fit a normalizing flow using iterative Gaussianization with the number of layers set to 2
for each X and Y . The score function was used with both models, but two variants of bootstrapping
were used. The first was the simple form of bootstrapping as explained in section 3, we will
denote this as ‘Simple Boot’ for the remainder of this section. The second was ‘Time Boot’ which
randomly subsampled contiguous time-series from held out clean data and set (X,Y) to be the

first and second half, respectively, of the subsampled data. More formally,
{
X

(b)
boot, Y

(b)
boot

}B
b=1

={
Tclean[t(b) − n : t(b)], Tclean[t(b) : t(b) + n]

}B
b=1

where B = number of bootstrap runs, n is the
number of samples in X and Y , T is the held out clean data, and t(b) ∼ U [n,Nclean − n] is
the b(th) split index uniformly sampled across the held out data (from n to Nclean − n to avoid
boundary conditions and assure X(b) and Y (b) are the same size). As a preprocessing step for both
bootstrapping methods, a first order approximation of the gradient of the samples w.r.t. time (i.e.
Xti = Xti+1 − Xti) was taken on the concatenation of X and Y in order to lessen some of the
time-dependencies. Next, a power-transform (using Sklearn’s power-transform with the Yeo-Johnson
and standardizing set to true) was performed on the concatenation in order to make the data more
Gaussian-like. Finally, the respective model was fit on the transformed X and Y .

For experiments with ‘Simple Boot’ the number of trials was determined by bN−2n
s c where N is the

number of samples in the dataset, n is the number of samples in X and Y , and s is the step size for
stepping through the dataset. For experiments with ‘Time Boot’, the number of trials was similarly
determined after half of the data was removed for our global time-based bootstrapping. X and Y
were set via a sliding window through the dataset with size 2n and with a step size s. For half of
the trials the Marginal Attack was performed on a random feature on a local copy of Y , and for the
other half of the trials no attack was performed. For the experiments with ‘Simple Boot’, p̂ and q̂
were re-fit with each new X , Y (i.e. each trial), and the hypothesis testing was performed with the
threshold, γ specific to that trial. In these experiments, we set BSimple = 50 and α = 0.05. Thus,
due to time constraints the ‘Simple-Boot’ experiments were only performed using the score function
with the multivariate Gaussian (‘MB-SM’). For experiments with ‘Time-Boot’, a global threshold,
γglobal was used for the hypothesis testing. The threshold was determined using the held out data
with Btime = 500 and α = 0.05. The results for these experiments can be seen in Table 5.

14

Table 6: Top: precision and recall vs. mutual information with each divergence method for fixed
single sensor, averaged over all four graphs. Bottom: wall-clock run time (seconds) per test (* fixed
single index time is approximate).

Fixed Single Sensor
MB-SM MB-KS KNN-KS Marginal

MI Pre Rec Pre Rec Pre Rec Pre Rec
0.2 0.96 1.00 0.97 0.92 0.983 0.664 1.00 0.01
0.1 0.96 0.99 0.96 0.97 0.96 0.399 1.00 0.02

0.05 0.94 0.88 0.96 0.78 0.892 0.138 1.00 0.02
0.01 0.76 0.20 0.81 0.15 0.581 0.021 1.00 0.02

Time* 0.0018 0.0563 0.0898 0.008

Table 7: Precision and Recall of the compromised sensor detection results using MB-SM with
k = {2, 3, 4, 5} compromised sensors (out of 25 sensors total).

MB-SM
Complete

K 2 3 4 5
MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.920 0.997 0.930 1.000 0.880 1.000 0.923 1.000
0.1 0.922 0.980 0.910 1.000 0.904 0.998 0.919 1.000
0.05 0.912 0.913 0.920 0.940 0.912 0.963 0.920 0.992
0.01 0.856 0.720 0.870 0.750 0.862 0.762 0.872 0.798

Cycle
K 2.000 3.000 4.000 5.000

MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.946 1.000 0.940 1.000 0.909 1.000 0.898 1.000
0.1 0.943 0.995 0.930 1.000 0.916 1.000 0.924 1.000
0.05 0.923 0.944 0.930 0.970 0.914 0.966 0.915 0.989
0.01 0.824 0.731 0.850 0.770 0.855 0.784 0.870 0.793

Grid
K 2.000 3.000 4.000 5.000

MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.906 0.997 0.940 1.000 0.926 1.000 0.904 1.000
0.1 0.916 0.962 0.930 0.980 0.927 0.997 0.914 0.992
0.05 0.920 0.879 0.930 0.900 0.916 0.941 0.917 0.958
0.01 0.836 0.685 0.870 0.710 0.862 0.753 0.867 0.773

Random
K 2.000 3.000 4.000 5.000

MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.917 0.993 0.910 1.000 0.931 0.993 0.901 1.000
0.1 0.912 0.982 0.930 0.990 0.919 0.993 0.913 0.997
0.05 0.919 0.937 0.920 0.960 0.909 0.973 0.910 0.973
0.01 0.861 0.763 0.870 0.780 0.865 0.795 0.885 0.801

15

Table 8: Precision and Recall of the compromised sensor detection results using MB-KS with
k = {2, 3, 4, 5} compromised sensors (out of 25 sensors total).

MB-KS
Complete

K 2 3 4 5
MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.934 0.997 0.930 1.000 0.929 1.000 0.955 1.000
0.1 0.930 0.973 0.910 1.000 0.925 1.000 0.938 1.000
0.05 0.914 0.866 0.920 0.940 0.921 0.960 0.931 0.972
0.01 0.827 0.678 0.870 0.750 0.882 0.763 0.881 0.779

Cycle
K 2.000 3.000 4.000 5.000
MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.912 1.000 0.930 1.000 0.935 1.000 0.929 1.000
0.1 0.939 0.985 0.930 1.000 0.939 0.998 0.930 1.000
0.05 0.937 0.906 0.930 0.930 0.931 0.969 0.929 0.977
0.01 0.873 0.722 0.850 0.730 0.867 0.772 0.885 0.783

Grid
K 2.000 3.000 4.000 5.000
MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.927 0.977 0.910 1.000 0.925 0.990 0.920 1.000
0.1 0.930 0.905 0.920 0.980 0.924 0.977 0.921 0.995
0.05 0.909 0.779 0.910 0.850 0.901 0.883 0.928 0.900
0.01 0.840 0.604 0.840 0.660 0.833 0.698 0.866 0.721

Random
K 2.000 3.000 4.000 5.000
MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.927 0.847 0.900 0.920 0.369 0.343 0.927 0.970
0.1 0.928 0.875 0.920 0.930 0.450 0.435 0.925 0.980
0.05 0.925 0.826 0.910 0.900 0.486 0.440 0.933 0.947
0.01 0.868 0.662 0.870 0.720 0.431 0.346 0.883 0.768

16

Table 9: Precision and Recall of the compromised sensor localization results using MB-SM with
k = {2, 3, 4, 5} compromised sensors (out of 25 sensors total).

MB-SM
Complete

K 2 3 4 5
MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.754 0.832 0.710 0.780 0.576 0.699 0.583 0.682
0.1 0.728 0.789 0.640 0.720 0.580 0.684 0.556 0.653
0.05 0.668 0.689 0.600 0.640 0.547 0.620 0.527 0.615
0.01 0.552 0.527 0.490 0.490 0.463 0.478 0.460 0.482

Cycle
K 2.000 3.000 4.000 5.000
MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.820 0.883 0.740 0.810 0.642 0.753 0.614 0.738
0.1 0.769 0.827 0.690 0.770 0.627 0.731 0.603 0.706
0.05 0.696 0.730 0.660 0.710 0.595 0.673 0.569 0.664
0.01 0.564 0.555 0.530 0.540 0.497 0.524 0.485 0.516

Grid
K 2.000 3.000 4.000 5.000
MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.788 0.883 0.740 0.810 0.662 0.763 0.611 0.730
0.1 0.764 0.818 0.690 0.760 0.646 0.741 0.598 0.701
0.05 0.704 0.698 0.640 0.650 0.596 0.658 0.564 0.639
0.01 0.554 0.528 0.530 0.500 0.498 0.508 0.480 0.498

Random
K 2.000 3.000 4.000 5.000
MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.492 0.543 0.440 0.500 0.420 0.478 0.401 0.481
0.1 0.538 0.590 0.490 0.550 0.460 0.531 0.440 0.518
0.05 0.563 0.582 0.500 0.540 0.465 0.531 0.448 0.517
0.01 0.488 0.460 0.450 0.440 0.420 0.425 0.402 0.413

17

Table 10: Precision and Recall of the compromised sensor localization results using MB-KS with
k = {2, 3, 4, 5} compromised sensors (out of 25 sensors total).

MB-KS
Complete

K 2 3 4 5
MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.658 0.715 0.620 0.690 0.570 0.655 0.544 0.615
0.1 0.638 0.681 0.600 0.660 0.557 0.643 0.531 0.612
0.05 0.597 0.583 0.560 0.590 0.527 0.588 0.508 0.574
0.01 0.473 0.442 0.470 0.460 0.442 0.452 0.442 0.449

Cycle
K 2.000 3.000 4.000 5.000
MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.632 0.706 0.610 0.680 0.568 0.648 0.561 0.652
0.1 0.642 0.686 0.600 0.660 0.569 0.645 0.548 0.636
0.05 0.615 0.610 0.570 0.600 0.543 0.604 0.535 0.608
0.01 0.498 0.466 0.480 0.460 0.463 0.469 0.457 0.472

Grid
K 2.000 3.000 4.000 5.000
MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.680 0.730 0.630 0.710 0.584 0.667 0.555 0.652
0.1 0.658 0.654 0.600 0.670 0.578 0.652 0.540 0.630
0.05 0.611 0.543 0.570 0.560 0.535 0.565 0.521 0.551
0.01 0.491 0.411 0.450 0.420 0.441 0.433 0.432 0.425

Random
K 2.000 3.000 4.000 5.000
MI Precision Recall Precision Recall Precision Recall Precision Recall
0.2 0.369 0.343 0.350 0.370 0.356 0.385 0.366 0.413
0.1 0.450 0.435 0.420 0.440 0.403 0.440 0.403 0.461
0.05 0.486 0.440 0.440 0.450 0.424 0.446 0.419 0.458
0.01 0.431 0.346 0.390 0.350 0.385 0.354 0.384 0.367

18

Table 11: Precision and Recall of detecting which sensors are compromised using the score method
with different window sizes (WS) and k = {1, 2, 3}.

MB-SM
Complete

K 1 2 3
WS Pre Rec Delay Prec Rec Delay Prec Rec Delay
200 0.67 0.13 18 0.84 0.34 7 0.87 0.63 7
300 0.70 0.52 12 0.74 0.82 5 0.82 0.93 4
400 0.85 0.82 25 0.82 0.95 6 0.80 1.00 8
500 0.80 0.91 8 0.82 0.99 18 0.62 1.00 7
600 0.80 0.97 15 0.75 1.00 10 0.69 1.00 7
700 0.80 0.96 16 0.74 1.00 16 0.70 1.00 8
800 0.68 1.00 23 0.69 1.00 12 0.66 1.00 10
900 0.69 1.00 20 0.66 1.00 8 0.67 1.00 12
1000 0.66 1.00 20 0.60 1.00 9 0.60 1.00 8

Cycle
K 1 2 3
WS Pre Rec Delay Prec Rec Delay Prec Rec Delay
200 0.95 0.99 7 0.89 0.91 6 0.85 1.00 3
300 0.75 1.00 6 0.82 1.00 4 0.79 1.00 4
400 0.80 1.00 5 0.80 1.00 6 0.80 1.00 2
500 0.66 1.00 4 0.63 1.00 4 0.68 1.00 3
600 0.74 1.00 5 0.68 1.00 2 0.70 1.00 3
700 0.69 1.00 3 0.66 1.00 6 0.64 1.00 5
800 0.56 1.00 3 0.67 1.00 6 0.66 1.00 3
900 0.63 1.00 4 0.57 1.00 8 0.61 1.00 5
1000 0.64 1.00 6 0.58 1.00 5 0.63 1.00 6

Grid
K 1 2 3
WS Pre Rec Delay Prec Rec Delay Prec Rec Delay
200 0.74 0.26 21 0.84 0.52 9 0.81 0.93 5
300 0.77 0.72 12 0.80 0.82 7 0.90 1.00 8
400 0.77 0.81 22 0.78 0.97 12 0.74 1.00 7
500 0.79 1.00 12 0.81 1.00 6 0.69 1.00 7
600 0.79 1.00 16 0.64 1.00 8 0.75 1.00 8
700 0.72 1.00 14 0.66 1.00 12 0.64 1.00 4
800 0.74 1.00 18 0.76 1.00 11 0.66 1.00 9
900 0.75 1.00 26 0.65 1.00 12 0.63 1.00 6
1000 0.68 1.00 12 0.66 1.00 10 0.60 1.00 8

Random
K 1 2 4
WS Pre Rec Delay Prec Rec Delay Prec Rec Delay
200 0.88 1.00 0 0.88 1.00 1 0.81 1.00 0
300 0.78 1.00 0 0.78 1.00 0 0.83 1.00 0
400 0.73 1.00 1 0.72 1.00 0 0.72 1.00 0
500 0.70 1.00 1 0.71 1.00 0 0.60 1.00 0
600 0.57 1.00 0 0.67 1.00 0 0.56 1.00 0
700 0.67 1.00 1 0.64 1.00 0 0.65 1.00 0
800 0.63 1.00 1 0.64 1.00 0 0.64 1.00 0
900 0.54 1.00 1 0.60 1.00 0 0.59 1.00 0
1000 0.61 1.00 1 0.55 1.00 1 0.55 1.00 0

19

Table 12: Precision and Recall of localizing which sensors are compromised using the score method
with different window sizes (WS) and k = {1, 2, 3}.

MB-SM
Complete

K 1 2 3
WS Precision Recall Precision Recall Precision Recall
200 0.08 0.02 0.13 0.05 0.29 0.21
300 0.27 0.20 0.29 0.33 0.26 0.30
400 0.49 0.47 0.43 0.50 0.41 0.52
500 0.57 0.65 0.50 0.60 0.37 0.59
600 0.65 0.78 0.49 0.66 0.48 0.70
700 0.73 0.88 0.57 0.77 0.46 0.66
800 0.64 0.93 0.53 0.76 0.48 0.73
900 0.67 0.97 0.60 0.91 0.55 0.81
1000 0.66 0.99 0.54 0.89 0.46 0.76

Cycle
K 1 2 3

WS Precision Recall Precision Recall Precision Recall
200 0.40 0.14 0.44 0.27 0.46 0.53
300 0.70 0.65 0.54 0.55 0.61 0.68
400 0.75 0.78 0.55 0.68 0.54 0.73
500 0.77 0.98 0.57 0.70 0.51 0.75
600 0.79 1.00 0.52 0.81 0.61 0.80
700 0.72 0.99 0.58 0.88 0.49 0.77
800 0.74 1.00 0.69 0.91 0.53 0.80
900 0.75 1.00 0.63 0.98 0.49 0.77
1000 0.68 1.00 0.61 0.93 0.48 0.81

Grid
K 1 2 3

WS Precision Recall Precision Recall Precision Recall
200 0.95 0.99 0.74 0.76 0.69 0.81
300 0.75 1.00 0.68 0.83 0.68 0.86
400 0.80 1.00 0.69 0.86 0.70 0.88
500 0.66 1.00 0.54 0.86 0.61 0.90
600 0.74 1.00 0.61 0.89 0.64 0.92
700 0.69 1.00 0.58 0.88 0.58 0.91
800 0.56 1.00 0.60 0.88 0.59 0.89
900 0.63 1.00 0.51 0.89 0.54 0.89
1000 0.64 1.00 0.51 0.88 0.57 0.90

Random
K 1 2 4

WS Precision Recall Precision Recall Precision Recall
200 0.85 0.98 0.57 0.65 0.38 0.47
300 0.78 1.00 0.52 0.67 0.44 0.53
400 0.73 1.00 0.48 0.67 0.34 0.47
500 0.70 1.00 0.47 0.67 0.31 0.51
600 0.57 1.00 0.45 0.67 0.27 0.48
700 0.67 1.00 0.43 0.67 0.32 0.49
800 0.63 1.00 0.43 0.67 0.32 0.50
900 0.54 1.00 0.40 0.67 0.28 0.48
1000 0.61 1.00 0.37 0.67 0.25 0.46

20

	Experiment Details
	Fixed Single Sensor
	Unknown Single Sensor
	Unknown Multiple Sensors
	Detecting and localizing time-series attack
	Experiments on Real-World Data

