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Abstract— We consider a security setting involving a defender
who is required to invest (subject to a budget constraint) in
protecting a given set of nodes against attacks. Each node has
a certain value to the defender, along with a probability of being
successfully compromised, which is a function of the investment
in that node by the defender. In this setting, we consider
the impacts of behavioral probability weighting (vis-a-vis the
probability of successful attack) on the investment strategies;
such probability weighting, where humans overweight low
probabilities and underweight high probabilities, has been
identified by behavioral economists to be a common feature
of human decision-making. We show that under appropriate
conditions on the probability of successful attack, the de-
fender’s optimization problem is convex (even under probability
weighting). Furthermore, we show that behavioral probability
weighting causes the defender to shift more of her investments
to the higher-valued nodes and underinvest in the low-value
nodes, compared to the case where the defender perceives the
probability of attack correctly. In particular, the number of
nodes that have positive investment decreases as the defender
becomes more behavioral.

I. INTRODUCTION

Today’s cyber-physical systems (CPS) are increasingly
facing attacks by sophisticated adversaries. The operators
of such CPS are typically responsible for managing and
protecting multiple assets against such attacks, and are tasked
with allocating their often limited security budget across
these assets to best mitigate their vulnerabilities. This has led
to significant research in understanding how to better secure
these systems, with strategic and game-theoretical models
receiving increasing attention due to their ability to system-
atically capture the decisions made by the various entities in
the system [1]-[7]. In particular, these settings have been
explored under various assumptions on the strategies and
information available to the defenders and attackers [8]-[10].

One of the seminal papers pertaining to strategic (or
economic) decision-making in security is [11], which con-
sidered a single defender protecting a single node, where the
vulnerability of the node can be reduced by investments in
that node. The authors provided insights into the investments
made by the defender for such settings. Such decision-
theoretic formulations of defender(s) choosing investments
to protect asset(s) against non-strategic attackers have been
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studied extensively (for example see [9], [12]-[14] and the
references therein).

In these works, the defenders are modeled as fully ra-
tional decision-makers (perhaps with some measure of risk-
aversion [13]) who choose their actions to maximize their ex-
pected utilities. However, a large body of work in behavioral
economics and psychology has shown that humans consis-
tently deviate from such classical models of decision-making.
A seminal model capturing such deviations is prospect theory
(introduced by Kahneman and Tversky in [15]), which shows
that humans perceive gains, losses, and probabilities in
a skewed (nonlinear) manner, typically overweighting low
probabilities and underweighting high probabilities. While a
large literature on prospect theory exists in economics and
psychology, relatively little research has investigated such
behavioral decision-making by defenders and/or attackers,
and its effects on CPS security and robustness (exceptions
include [16]-[18]).

In this paper, we introduce prospect theory into a decision-
theoretic security framework involving a defender protecting
multiple assets with heterogeneous valuations. Specifically,
we consider a CPS consisting of many assets, and assume
that the defender misperceives the probabilities of successful
compromise of each asset. We characterize the impacts of
such misperceptions on the security investments made by the
defender. Existing work on the study of behavioral decision-
making in CPS has focused on the impact of probability
weighting on defenders’ investments in networks (with the
emphasis being on understanding the role of the network
structure) [16], [18]. In contrast to these works, we consider
the effects of behavioral decision-making in a setting with
multiple targets with heterogeneous values to the defender.

We first establish the convexity of the objective function of
the defender in this setting, even under nonlinear probability
weighting (subject to appropriate conditions on the probabil-
ity of successful attack on the nodes). We then characterize
the optimal investments in the assets. Interestingly, we show
that behavioral probability weighting causes the defender
to shift more of her investments to higher-valued assets
compared to a defender who correctly perceives the attack
probabilities. In particular, the number of nodes that have
positive investment decreases as the defender becomes more
behavioral. This shift in investments thereby leads to an
increase in (true) expected loss for the behavioral defender.
We provide numerical examples to illustrate our theoretical
findings.
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II. THE MULTI-TARGET SECURITY PROBLEM
A. Strategic Defender

Let D be a defender who is responsible for defending a
set V= {v1,v2,...,v,} of assets. For each compromised
asset v,, € V, defender D will incur a financial loss L,,, €
R~,. To reduce the attack success probabilities on assets,
the defender can allocate security resources on these assets,
subject to the constraints described below.

Let n = |V|. We assume that defender D has a security
budget B € R+ (. Thus, we define the defense strategy space
of the defender by

X 2 {xeR%, Zx < B}. 1)
v, eV

In words, the defense strategy space for defender D consists
of all non-negative investments on assets such that the sum of
all investments does not exceed the budget B. We denote any
particular vector of investments by defender D by x € X.

B. Defender’s Cost

The investments made by the defender on each asset
changes the probability that the asset can be successfully
compromised by the attacker. Specifically, for each v; € V,
let p; : R>o — [0, 1] be a function mapping the total defense
investment x; to an attack success probability on node v;.

The goal of defender D is to choose her investment vector
x in order to best protect her assets from being attacked.
Mathematically, this is captured via the cost function

Cp(x) = Z Lipi(z;) (2)

v, €V

subject to x € X. In particular, defender D chooses her
investment x € X to minimize Cp(x).

As discussed in the introduction, problems of this flavor
have been studied in a variety of decision- and game-
theoretic settings [7], [11]-[13]. However, as also mentioned
in the introduction, humans have been shown to systemati-
cally misperceive probabilities, which can impact the deci-
sions that defenders make in the presence of risk. We next
review certain classes of probability weighting functions that
capture this phenomenon, and subsequently introduce such
functions into the above multi-target security formulation.

III. THE BEHAVIORAL MULTI-TARGET SECURITY
PROBLEM

A. Nonlinear Probability Weighting

The behavioral economics and psychology literature has
shown that humans consistently misperceive probabilities
by overweighting low probabilities and underweighting high
probabilities [15], [19]. More specifically, humans perceive
a “true” probability p € [0,1] as w(p) € [0, 1], where w(+)
is a probability weighting function. A commonly studied
probability weighting function was proposed by Prelec in
[19], and is given by

w(p) = exp | (~log(p)* ], pe.1, O

o o
o o N »

°© o o o o
o =

o
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Fig. 1: Prelec probability weighting function which transforms true
probabilities p into perceived probabilities w(p). The parameter o
controls the extent of overweighting and underweighting.

where o € (0,1] is a parameter that controls the extent
of overweighting and underweighting. When a = 1, we
have w(p) = p for all p € [0, 1], which corresponds to the
situation where probabilities are perceived correctly. Smaller
values of o lead to a greater amount of overweighting and
underweighting, as illustrated in Fig. 1.

Recall that the defender seeks to protect a set of assets. The
probability of each asset being successfully compromised
is itself determined by the investments on that asset by
the defender. This motivates an optimization problem that
incorporates probability weighting, as defined below.

B. The Multi-Target Behavioral Security Problem

Definition 1: We define a Multi-Target Behavioral Secu-
rity Problem as the optimization problem faced by a defender
D who is protecting a set of assets V', when she misperceives
the attack probability on each asset according to the prob-
ability weighting function defined in (3). Specifically, the
perceived attack probability on an asset v; € V' is given by:

w(pi(:) = exp |~ (~log(ps(a))* [, @)

where p;(z;) € [0,1], « € (0,1]. 0
Formally, the optimization problem faced by the defender
D is given by:

minimize
xeX

Cp(x) = ZLiw(Pi(Ii)% ®))

where the strategy space X is defined in (1).

The nonlinear (and nonconvex) nature of the probability
weighting function (as shown in Fig. 1) leads to a compli-
cated form for the utility function in (5). Nevertheless, we
will start in the next section by showing that this optimization
problem is convex under mild conditions on the probability
of attack at each node. We will subsequently characterize
properties of the investments by the defender, and identify
how probability weighting impacts those decisions.

IV. CONVEXITY OF MULTI-TARGET BEHAVIORAL
SECURITY PROBLEM

In this section, we prove the convexity of the cost function
for the Multi-Target Behavioral Security Problem defined in
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Section III. Throughout, let the function p;(x;) represent the
true probability of successful attack on an asset v; € V when
the total defense investment on that asset is x;. We make the
following assumption on p;(z;).

Assumption 1: The probability of successful attack on
each asset v; € V, p;(x;), has the following properties.

o p;i(x;) is twice differentiable with lim p;(x;) = 0 and

T;—>00
0 < pi(z;) < 1 for any z; < oco.
o pi(x;) is strictly decreasing and log-convex! in z;.

. gg; is bounded in z; € R>g.

0
In other words, the larger the defensive security investment
on a target, the less likely that the target will be successfully
attacked.
There are various probability functions that satisfy the
conditions in Assumption 1; two examples are

ai): pl(xl) =

where a; € R5( (a; € R>; in the second case) represents the
pre-existing security investments on a node, which decreases
the successful attack probability even under no additional
defense investment.

Proposition 1: Under Assumption 1, for every asset v; €
V, the perceived probability of attack w(p;(x;)) is strictly
convex in the defense investment ;. Thus, the Multi-Target
Behavioral Security Problem (5) is strictly convex.

The proof directly follows by calculating the second
derivative of w(p;(z;)) and using Assumption 1.

1

)
x; + a;

pi(;) = exp(—

V. PROPERTIES OF THE OPTIMAL INVESTMENT
DECISIONS

Proposition 1 showed that the optimization problem (5) is
convex as long as each node’s probability of successful attack
satisfies Assumption 1. However, to gain additional insights
and to focus on how heterogeneous node values affect the
investments by a behavioral defender, we will assume the
following throughout the rest of the paper.

Assumption 2: The nodes are ordered such that L; >

Lo > --- > L,. Furthermore, the probabilities of successful
attack satisfy pi(x) = pa(x) = -+ = p,(x) = p(z), where
p(x) satisfies Assumption 1. O

As we will see, interesting phenomomena arise even under
the above assumption of identical probability functions at
each node (note that compromise of each node is still
independent of compromise of any other node, and only
depends on the amount of investment on that node).

A. Ordering of Optimal Investments

Before characterizing the optimal investments by the
defender, we will start with the following useful result
pertaining to the marginals of the cost function (5).

IThis is a common assumption in the literature. In particular, [14] shows
that log-convexity of the attack probability functions is a necessary and
sufficient condition for the optimal security investment result of the seminal
paper [11] to hold.

Lemma 1: Under Assumption 2, the marginal Liw
is negative, continuous, and increasing to 0 in z for all ¢ €
{1,2,...,n}. Furthermore, for each pair of nodes v;, v; with

1 < j, the marginals satisfy

L 2]y 0vlrs (o)

(6)

for all x € Rxo.

Proof: The perceived expected loss at node v; is
given by L;w(p;(z;)). Differentiating (4) with respect to the
defender’s investment in that node, we obtain

LG o (log(pu(a)* wlpi(@) 2D )

This function is negative (since p}(z) is negative and
—log(pi(x)) is positive). Furthermore it is continuous, and
increasing in « (w(p;(z)) is strictly convex as shown in
Proposition 1, and thus we have %(M) > 0). To

Ox
show that the marginal goes to zero as x — oo, we note that

. ow(pi(z))|
J;H;o\Liax“
Jlim [aLi(~log(pi(x)))° " w(pi(@))| 228 -

since p;(x) = 0asz — oo (which means w(pi(z)) — 0and

—log(p;(z)) — 00), and (m; is bounded by Assumption 1.
This proves the first part ot( the result. For the second part,
note that if L; < L; and p;(z) = p;(x) = p(z) under

Assumption 2, we obtain

for all z € R>(. Multiplying both sides by « to obtain the
marginals, we have the ordering given by (6). |

We now give our first result on the nature of the optimal
investments by the defender. Note that the exact values of
these investments will be a function of «, but we elide
the dependence on « for notational convenience (unless we
explicitly require it).

Proposition 2: Consider a defender D and a set of n
assets satisfying Assumption 2. Then, the optimal defense
allocation of (5), denoted x* = [Jc’l‘ 5. xfl]T, has
the property that 7 > x5 > --- > x7.

Proof: From the KKT conditions for the defender’s
best response, for every pair of nodes v; and v; with

nonzero optimal investments, the marginals must satisfy
L 8(w(pl(% )))| 70(w(pj(wj)))

8:Ej ‘mj :I; °

It the probablhty of successful attack on the asset v; sat-
isfies Assumption 1, the perceived probability of successful
attack on v; would be given by (4).
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Under Assumption 2, the above marginals under the
defender’s optimal investments would satisfy

* aflw xik p/(l‘:)
=L;(—1o ) Lw(p(a* p’(x;f)

for all nodes v;,v; with nonzero optimal investments x;
and x , respectively. Using (8) and assuming without loss
of generality that ¢+ < j, we obtain

(—log(p(z;

Li(—log(p(

(®)

L et P )
= E(_log(p(xj))) w(P(%))p(x?)
> (~log(ol))" Mulple;)

since L; > L; and all of the above expressions are negative.
As the marginals are increasing in z (by Lemma 1), the above
expression implies z7 > x7. This concludes the proof. W
The above result shows that the defender will invest more
in higher-valued assets (and this is true for all o € (0, 1]).

B. Water-Filling Nature of Investments

To gain further insights into the optimal investments, we
can leverage Lemma 1 to introduce the following quantities.
Definition 2: Suppose the nodes satisfy Assumption 2.
For all i € {1,2,...,n} and j € {1,2,...,n} with i < j,
define the quantlty zj; € R> to be such that
Do) | ouwp ()

jpaaitail] =L,
ox . J ox

- ©))
=0
We will use the notation xlj (o) when needed to explicitly
indicate the dependence of z7; on . O

Note that by Lemma 1, the quantity xj; exists and is
unique for each ¢ < j (by virtue of the fact that the marginals
are negative, continuous, and increasing to 0 in x). Based on
the above definition, we now present the following result.

Proposition 3: Under Assumption 2, node v; will have a
nonzero optimal 1nvestment xj if and only if the defense
budget satisfies B > 7/~ Ty

Proof: First suppose that v; has a nonzero optimal

mvestment 7, and suppose by way of contradiction that B <
ZZ 1% Then Ji € {1,...,j—1} such that z; < z7; (i.e.,
it would not be possible to put z7; or more investment 1n each
node v; that precedes vj w1thout exceeding the budget). By
the definition of z7; in Definition 2, and using Lemma 1, we

have
d(w(pi(x;))) I(w(ps(z;)))
L mmet LTy im0
<1 5@((2;;5%))) oy

which yields a contradiction since the marginals must all be
equal at the optlmal investments. Thus, if 27 > 0, it must be

that B > S/~ la:

To prove the other direction, suppose that B > ZZ 1 T
Suppose by way of contradiction that 7 = 0. Then, we

have zj, = 0 Vk > j (from Proposition 2). Thus, we have
x’{—&—xé “+xj_; = Band Ji € {1,...,j — 1} st
x; > xj;. Now, we show that moving a sufﬁc1ently small

1nvestment e from asset v; to asset v; will lead to a net
reduction in perceived cost in (5), thereby contradicting the
optimality of these investments.

Starting with the given nonzero investments on the assets
{v1,...,vj_1}, the perceived cost in (5) will be:

(x) = 3 Liw(pi(ap)
k=1

From the asset v; that had =7 > z7;, remove a sufficiently
small investment ¢, and add an investment of € to asset v;.
Denote the modified investment vector by x. The perceived
cost in (5) under this investment vector will be

Cp(x) = Z Lyw(pr(z})) + Liw(pi(x] — €))
kg{i,j}
+ Ljw(p;(e)).

The net reduction in perceived cost will be positive if
CD( ) < CD( ) Define

f(€) = Liw(pi(zi — €)) + Ljw(p;(e)),
and note that
Cp(x*) = > Lyw(pi(a})) + £(0)
kg{i,i}
Co(®) = Y Liw(pu(ad) + £(e).
kg{i,i}
Thus, Cp(X) will be smaller than Cp(x*) if f(e) < f(0).
We have

df Law(pi(x)) I ow(p;(z))

& - Ox T=x}—€ " g O r=¢€
Since z7 > x7;, we have (from Lemma 1 and the definition
of z7;)

L 2um@)| i)
Oz =] Oz =0

i

d
Thus, liﬁ)l 4 is negative, which shows that f(e) is decreas-

€
ing for sufficiently small e. Thus, Cp(X) < Cp(x*) for
sufficiently small ¢ which yields a contradiction. [ ]
The above result indicates that the optimal investments
by the defender have a “water-filling” nature. Specifically,
given a budget B, the defender invests in node v; until the
investment reaches 75, at which point the defender invests
in both v; and vy (keeping their marginals the same) until
the investments in each reach z; and x5, respectively.
At that point, the defender adds investments to vy, ve
and vz simultaneously (keeping their marginals equal), and
continues in this manner until the entire budget is spent.
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C. Effect of Probability Weighting on Investments

The above results held irrespective of the particular value
of @ € (0,1]. Recall that « controlled the extent of un-
derweighting and overweighting in the Prelec probability
weighting function (3). In particular, smaller values of «
correspond to a larger amount of overweighting and under-
weighting (see Fig. 1). We now study the impact of probabil-
ity weighting on the investments (i.e., how the investments
change as a changes).

Lemma 2: Suppose Assumption 2 holds, and furthermore
that p(0) < L. Then, Vi € {1,...,n} and j € {1,...,n}
with i < j, the quantity z};(a) is decreasing in a.

Proof: From Definition 2, the value of z7;(a) is given
by (9) for all ¢ < j. Using the expression for the marginals
given by (7), and noting that p;(z) = p;(z) = p(z) from
Assumption 2, z7;(«) satisfies the equation

Li(—log(p(zj;
:Lj(—10g(P(0)))a71w(P(0))p7 (10)

In (10), taking the logarithm of both sides and differentiating
yields that dr

doy; [(f log(p(x

L is given by:

i1)))" = 1] log(~log(p(x7;)))

da z(z};)
_ [(=10g(p(0)))" — 1]log(—log(p(0)))
where
2(2;) = (a— 1 — a(-log(p(z};)))*) piz)
N T o) o (p(a7,))
P’ (] )p(x;k]) - (pl(xfj»Q
e AT R
From Assumption 1, we have p/(x};) < 0, log(p(z} )) <0
and p(z) is log-convex, thus p” (z} )p(;va) ' (z )) > 0.

Thus, the denominator z(z};) of ; is negative.

From Assumption 1 and the assumption that p(0) < I,
we have —log(p(x fj)) > 1 and —log(p(0)) > 1. Thus,
we have log(—log(p(z; ))) > 0 and log(—log(p(0))) > 0.

Moreover, we have

) < p(0)

—log(p(zj;)) > —log(p(0))

— ( log(p(x3;)))* > (—log(p(0)))*
)

> (—log(p(z;;)))* — 1 > (—log(p(0)))* — 1.

z;; >0 <:>p(

*

dzi. . .-
Thus, —2L is positive and hence the

derivative d;(;j is negative, yielding that z7; () is decreasing
in a. [ ]

The above result leads to the following key outcome,
showing that behavioral players will generally invest in fewer
nodes than non-behavioral players (given the same budget).

the numerator of

Proposition 4: Suppose Assumption 2 holds, and further-
more that p(0) < 1. Then, the number of nodes that have
positive optimal investment is nondecreasing in c.

Proof: Consider a1 € (0,1] and ay € (0,1], with
a1 < az. Let {z};(a1)} and {z];(az2)} be the corresponding
sets of investment thresholds for each of those values of «,
where x7;(«) is defined in Definition 2. From Lemma 2 we
have z; ( 2) < xj;(aq) for all i < j.

Let k; be the 1ndex of the last node that has positive
investment when the weighting parameter is ;. From Propo-
sition 3, we have

k—1 k—1
B> ajh(on) > aj(az).
=1 1=1

Thus, by Lemma 1, we see that node k& would also have
positive investment when the parameter is aws. Thus, the
number of nodes that have positive investment under « is
at least as large as the number of nodes that have positive
investment under «;. |

The above result shows that a behavioral defender may
choose to leave lower valued nodes vulnerable, and instead
concentrate their investments on the high-valued nodes. This
will have implications for the (true) expected loss faced by
the defender. We illustrate the phenomenon identified by the
above results and the resulting impact on the defender’s true
loss in the next section.

VI. NUMERICAL SIMULATIONS
A. Effect of Perception on Investments

In this subsection, we show the effects of probability
misperception identified in the previous sections on the
defense investment decisions in the Multi-Target Behavioral
Security Problem. In this context, consider a setting with
four critical assets (or targets). The first asset has very high
loss (i.e., L; = 1000) while the second, third, and fourth
assets have progressively lower losses (with Ly = 250,
Ls =60, and Ly = 15). We let the total defense budget for
defending the four critical assets be B = 10. The probability
of successful attack on each of the assets is given by

pla) =7}

where x is the investment on that asset. The above func-
tion satisfies the conditions in Assumption 1. The optimal
investments in the following scenarios were calculated using
Matlab Optimization toolbox [20]. Fig. 2 shows the differ-
ence in the defense investments for each of the assets as «
changes for the defender. We observe that the phenomena
identified in Propositions 2, 3, and 4 are indeed manifested
in these plots. First, for each value of «, the investments are
ordered by the value of the assets. Second, as a gets smaller
(i.e., the defender becomes more behavioral), the investments
are shifted to a smaller number of higher-valued assets. For
example, the non-behavioral defender (with a = 1) puts
nonzero investments on all of the four assets, a behavioral
defender (with o = 0.6) puts nonzero investments on the first
three assets, and a highly behavioral defender (with o = 0.4)
puts nonzero investments only on the first two assets.
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Fig. 2: Effect of behavioral probability weighting on the
defense investments on four assets. The asset with the
highest loss takes a higher portion of the defense investments
as the defender becomes more behavioral (i.e., o decreases).
Moreover, the number of assets with positive investment
decreases as the defender becomes more behavioral.
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Fig. 3: Effect of behavioral probability weighting on the true
expected loss of the defender. The true expected loss of the
defender is higher as the defender becomes more behavioral.
In particular, the true expected loss of a highly behavioral
defender (with o = 0.4) is approximately 3.5 times that for
the non-behavioral defender (with o = 1).

B. Effect of Behavioral Investments on Real Loss

We further consider the total expected system loss Fr of
the defender under their optimal investments, given by the
sum of the true expected losses of all assets. As shown in Fig.
3, when the defender is non-behavioral (i.e., « = 1) Ep =
32.67, while Er = 114.01 when o« = 0.4. This considerable
increase in the total real loss of the behavioral defender
shows that probability weighting induces the defender to
invest in a sub-optimal manner, specifically when some assets
are much more valuable than others.

VII. CONCLUSION

This paper presented a framework that accounts for be-
havioral attitudes of the defender in a Multi-Target Security
Problem where the defender places her investments to protect
the target assets. Specifically, we considered the scenario
where the (human) defender misperceives the probabilities
of successful attack in each asset. We first established the
convexity of the objective function of the defender. We
then studied the impacts of probability weighting on the
investment decisions made by the defender; in particular,

we showed that nonlinear perceptions of probability can
induce the defender to invest more on the assets with higher
values. Moreover, nonlinear perceptions of probability can
induce the defender to put nonzero investments on fewer
assets. Finally, we provided numerical simulations to show
the effect of probability misperceptions on the investment
decisions. Future avenues of research include considering
strategic attackers and exploring other factors in prospect
theory such as subjective assessments of outcomes.
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