
Reactive redundancy for data destruction
protection (R2D2)

Christopher N. Gutierrez *, Eugene H. Spafford, Saurabh Bagchi,
Thomas Yurek 1

Purdue University, CERIAS, 656 Oval Dr., West Lafayette, IN 47907, USA

A R T I C L E I N F O

Article history:

Received 30 September 2017

Received in revised form 12

December 2017

Accepted 25 December 2017

Available online 12 January 2018

A B S T R A C T

Data destruction programs, such as Wiper Malware, cause substantial damage by overwrit-

ing critical digital assets on compromised machines, denying users access to computing

resources. Our system, called R2D2, analyzes write buffers before they can reach a storage

medium, determines if the write is destructive, and preserves the data under destruction.

We interpose the inspection in the Virtual Machine Monitor (VMM) through a technique known

as Virtual Machine Introspection (VMI). This has the benefit that it does not rely on the entire

OS as a root of trust. We demonstrate the effectiveness of our prototype implementation

by preserving data targeted for destruction by Wiper Malware such as Shamoon and Stonedrill,

and a host of secure delete tools. We discover that R2D2 detects data destruction with high

accuracy (99.8% true negative and true positive rates) and preserves critical data for all the

Wiper Malware samples in the wild that we experimented with. While our prototype is not

optimized for performance, we show that it is applicable for common user tasks in an office

or home setting, with a latency increase of 1%–4% and 9%–20% to complete batch tasks and

interactive tasks respectively. VMI accounts for 90.7%–98.5% of the latency overhead and

thus R2D2 incurs a small cost for environments already using VMI.

© 2018 Elsevier Ltd. All rights reserved.

Keywords:

Computer security

Virtual Machine Introspection

Operating systems security

Data integrity

Data availability

Data resiliency

Malware

1. Introduction

In the information age, digital data is a critical asset. When
adversaries destroy digital information, it is challenging to
recover it without a copy stored elsewhere. Early examples date
back to 1988 with programs like the Jerusalem Virus, which de-
stroyed files on Fridays that fall on the 13th of each month
(Solomon, 1993). Such malware is referred to as Wiper Malware
because it aims to destroy files and make them unrecover-
able. In the present day, loss of data, through an adversarial
attack on data availability, utility, and integrity (Parker, 2012),

is more than just a nuisance and can cause substantial damage.
Recent high profile Wiper Malware, such as Shamoon and
Stonedrill, have been responsible for the destruction of files
on many tens of thousands of computer systems (Perloroth,
2012; Raiu et al., 2017).

Similar to Wiper Malware, Crypto Ransomware causes
severe damage and has increased in usage among cyber
criminals (Verizon Wireless, 2017). Rather than destroying
critical data, Crypto Ransomware renders a target’s computer
or data unusable unless the user pays a fee. In May 2017, the
WannaCry Crypto Ransomware reportedly spread onto 200,000
computers across 150 countries and is regarded as the

* Corresponding author.
E-mail addresses: gutier20@purdue.edu (C.N. Gutierrez), spaf@purdue.edu (E.H. Spafford), sbagchi@purdue.edu (S. Bagchi), tyurek@

purdue.edu (T. Yurek).
1 Present address: University of Illinois at Urbana-Champaign Dept. of Computer Science.

https://doi.org/10.1016/j.cose.2017.12.012
0167-4048/© 2018 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2017.12.012&domain=pdf
mailto:gutier20@purdue.edu
mailto:spaf@purdue.edu
mailto:sbagchi@purdue.edu
mailto:tyurek@purdue.edu
mailto:tyurek@purdue.edu
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE

most widespread instance of Crypto Ransomware to date
(Piper, 2017).

Although the two types of malware differ in attack pat-
terns, motivation, and end goals, there are similarities. Both
Wiper Malware and Crypto Ransomware make data or com-
puting services unavailable or unusable to users. Both spread
quickly within a computing network and evade analysis to
prolong their effectiveness. Both deny access to user data by
overwriting critical files.

However, Wiper Malware differs from Crypto Ransomware
in subtle ways that warrant investigation. Crypto Ransomware
overwrites files with high entropy, because of encryption, while
Wiper Malware may overwrite files with arbitrary data. Crypto
Ransomware targets specific user files and typically leaves the
compromised system in a running state to present the ransom
note to the user. Wiper Malware typically is more indiscrimi-
nate in the files it destroys and does not care if the system is
operational afterward. Our proposed system, Reactive Redun-
dancy for Data Destruction (R2D2), reactively preserves data
that is under active destruction. We evaluate our prototype and
demonstrate that it is effective in preserving data against in-
famous Wiper Malware samples. We also show that our system
is effective against other data destruction attacks, such as anti-
forensic secure deletion algorithms. Our results demonstrate
that we can accurately detect data destruction and preserve
the critical data under destruction. We also demonstrate that
the performance of R2D2 may be acceptable to users who are
in need of data destruction protection.

Through our experimental evaluation, we discovered that
some of the existing detection features for Crypto Ransomware
apply to Wiper Malware and secure deletion tools. However,
prior work (Continella et al., 2016; Kharaz et al., 2016; Scaife
et al., 2016) protects against Crypto Ransomware by placing the
monitoring and analysis within the OS where the attacker
resides. Attackers may disable defenses such as anti-virus soft-
ware, shadow copies, or checkpoints, as observed in Crypto
Ransomware (e.g. TeslaCrypt (Sinitsyn, 2015)) and Wiper
Malware (e.g. Jokra (McMillen, 2014)).

Our solution places R2D2 outside the operating system that
is under protection. Our prototype implementation of R2D2
exists within a Virtual Machine Monitor (VMM), which moni-
tors for data destruction in a guest virtual machine through
Virtual Machine Introspection (VMI). VMI allows the VMM to
access the contents of memory within a guest virtual machine,
interposes events, and uses this information to “extrapolate
the software state” of the virtual machine (Garfinkel and
Rosenblum, 2003). Placing R2D2 outside the operating system
under protection isolates the attacker from R2D2, signifi-
cantly reducing the risk that an attacker can disable R2D2 from
within the guest virtual machine. R2D2 is effective in an en-
terprise environment where users work within a Virtual
Machine Guest Operating System hosted on a Virtual Machine
Server to complement other VMM security monitoring tools.

Our novel contributions are the following:

1. We demonstrate effectiveness against recent Wiper Malware
threats (Destover, Shamoon, Shamoon 2, and Stonedrill).

2. A system that successfully preserves data under destruc-
tion with high accuracy (99.8% true negative and true positive
rates in our worst performing experiment) and acceptable

performance for the home user or office related tasks (1%–
4% additional latency for storage and 9%–20% additional
latency for user tasks, which reduces to 0.1%–1.6% if the
system is already using VMI).

3. Design and implementation separate the monitoring and
the analysis components from the system under protec-
tion, an improvement over prior related work.

4. R2D2 does not rely on signature-based detection, but it is
designed to operate in conjunction with other VMM secu-
rity monitoring tools, such as signature-based anti-malware
software or intrusion detection systems.

5. Our solution is policy driven, consisting of interposition,
analysis, and preservation policies, allowing flexibility for
practitioners.

2. Overview

R2D2 is designed to protect against data destruction attacks
and is a supplement to existing security monitoring tools, such
as anti-malware or intrusion detection systems, and data back-
up/redundancy technology. R2D2 observes persistent storage
I/O and provides resiliency against destructive I/O. The high-
level design of R2D2 is shown in Fig. 1. The Trusted Monitoring
System, shown on the right, monitors for data destruction on
the Untrusted System, shown on the left. The monitoring
system is isolated from the potentially compromised “Untrusted
System,” where a destructive attacker may reside. We assume
that the monitoring and the analysis code are trusted and in-
accessible from the compromised machine.

The top of Fig. 1 shows an application in the Untrusted
System that writes data to a file located on some storage
medium such as a Solid State Drive (SSD). R2D2, located on the
Trusted Monitoring System, (1) interposes when a file is open
for writing to create a temporary checkpoint. (2) Next R2D2 in-
terposes all writes to an existing file, determines if the I/O is
destructive, and (3) the checkpoint is preserved if the behav-
ior is suspect. If the application is malicious, it may overwrite
a critical file and compromise the file’s integrity, availability,
or utility (Parker, 2012).

Each of the numbered items in Fig. 1 are policy driven, to
provide flexibility in deployment. The Interposition Policy
(Section 3.1) defines the files/directories under protection, and

Fig. 1 – R2D2 interposes storage medium I/O in isolation. If
the I/O appears to be destructive, R2D2 preserves the data.

185c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

the I/O related system calls to interpose. The Analysis Policy
(Section 3.2) describes a set of metrics derived from the inter-
posed system call parameters and defines a procedure to
determine if a destructive action is taking place on the live
system. The Preservation Policy (Section 3.3) describes how to
preserve the data under destruction.

2.1. Threat model

For data destruction, an adversary does not simply delete data
objects, but rather, securely deletes the data, rendering the data
object unrecoverable. A standard delete command unlinks the
data object from the file system, freeing the area where the
data resided. The data may still reside on the storage medium
if other files have not occupied the space. A secure delete over-
writes the location of a data object, usually with a fixed
sequence/pattern of bits, an arbitrary file, or random bits. We
assume that the attacker overwrites files for data destruction
and not through physical destruction.

Wiper Malware and secure delete tools use the above tech-
niques for data destruction. For instance, Destover, the Wiper
Malware that infamously infected Sony computers in 2014, over-
wrote master boot records with 64 KB of 0xAA (Baumgartner,
2014). Shamoon destroyed data on a storage medium by over-
writing with a JPEG file fragment (Tarakanov, 2012). Eraser, a
freely available secure delete application, can overwrite with
pseudorandom bits (Trant et al., 2016). An attacker may destroy
a file by overwriting the entire file or portions of the files that
would render the file unusable for some applications (Sammes
and Jenkinson, 2000).

2.2. Assumptions

To summarize, we make the following assumptions:

1. The attacker destroys data by overwriting a data object, par-
tially or completely, that is located on the compromised
machine.

2. The attacker does not have physical access to the storage
medium. Ergo, the attacker cannot physically destroy the
disk.

3. The attacker may have administrator access to the com-
promised machine but cannot avoid monitoring of our
proposed system1.

4. The VMM, analysis, and storage use by R2D2 are assumed
to be within our Trusted Computing Base (TCB).

5. Our proposed system works in conjunction with other se-
curity monitoring tools, such as Anti-Virus Scanners (AVS),
and Intrusion Detection Systems (IDS). However, we assume
that AVS, IDS, and other security monitoring systems fail
to identify the entity that is destroying data as malicious
to demonstrate the effectiveness of R2D2.

6. Our prototype implementation does not consider the case
when valid users wish to securely destroy data. A discus-
sion on the topic is presented in Section 6.

2.3. Requirements

Preservation: Upon detecting events of interest, a log of the event
and the data under destruction should be preserved.The logging
and preserved data should be inaccessible to the adversary.

High Accuracy: Detection of data destruction should be ac-
curate with few false negatives (incorrectly identifying a
suspicious write as benign). False positives (incorrectly iden-
tifying a benign write as destructive) should also be kept low,
to avoid encumbering the end user with degraded system per-
formance. We focus on obtaining low false negative rates to
reduce the risk of data loss when destruction occurs.

Acceptable Performance: R2D2 should impact latency and
throughput for legitimate users as little as possible.

3. Prototype design and implementation

Our prototype implementation R2D2 interposes system calls
through Virtual Machine Introspection (VMI) and places the
analysis and preservation within the Virtual Machine Monitor
(VMM), which is part of the Trusted Monitoring System (Fig. 1).
The challenge with VMI is bridging the semantic gap, i.e., de-
termining file activity from outside the operating system. Prior
work (Lee et al., 2007) and an associated open source project
(Payne et al., 2016) address semantic gap challenges, which se-
curity monitoring tools (Lengyel, 2016) use reliably.

Our evaluation of R2D2 protects a Windows2 VM against data
destruction and uses VMI to intercept system calls associ-
ated with storage medium I/O. The cost of R2D2 is a decrease
in I/O performance. However, we show that the additional over-
head may be applicable for some settings.

Fig. 2 illustrates the high-level design of R2D2 when placed
within the VMM. When a process invokes a system call that
writes to a file, R2D2 intercepts the system call and inspects
the parameters (1). The Interposition Policy defines the set of
system calls to monitor and a set of files that are under pro-
tection. A temporary checkpoint of the file system occurs each
time a file is open for writing. Later, when the process writes
to the file (2), the Analysis Policy examines the system call

1 For example, Kernel Object Hooking (KOH), Dynamic Kernel
Object Manipulation (DKOM), or Direct Kernel Structure Manipu-
lation (DKSM) (Jain et al., 2014; Kong, 2007) could be used to remain
hidden from security monitoring.

2 Our prototype and associated third party software protect
Windows 7, but we do not anticipate significant obstacles to using
R2D2 with more recent versions of Windows. Conceptually, it should
also port to Linux, Mac OS, and other systems.

Fig. 2 – R2D2 examines file modifications and preserves the
file if data destruction is suspected.

186 c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

parameters and decides if the write is suspect or benign. If
the write is suspicious, the temporary checkpoint converts to a
permanent snapshot. If an attacker destroys the files, a system
administrator can use the snapshot of the file system to recover
the files. Temporary checkpoints are later consumed by a
garbage collector to free up storage space if they are no longer
needed, according to the Preservation Policy.

3.1. Prototype interposition

3.1.1. Method
To intercept I/O system calls and inspect their parameters, we
used the Drakvuf Dynamic Malware Analysis System (Lengyel
et al., 2014). Drakvuf runs inside the VMM and inserts break-
points in key memory locations inside the VM’s memory to
transfer control to the VMM. When an application within the
VM issues a system calls, control is transferred to Drakvuf. The
design of Drakvuf is stealthy, such that it is difficult to detect
the presence of Drakvuf within the monitored environment.
We implement R2D2 as a plug-in for Drakvuf.

3.1.2. Policy
Our R2D2 prototype intercepts two system calls on the guest
VM: open file and write file. To open a file for writing, appli-
cations within the guest VM must issue an open system call
and request access permission for a given file. Our policy ex-
amines all open system calls and determines if the file is open
for writing by examining the call parameters. If the system call
requests a write permission, a policy determines if the file
should be protected based on a blacklist or whitelist. Algo-
rithm 1 contains pseudocode summarizing the Interposition
Policy decision flow for open file system calls 3.1.

If the file is on the blacklist, we take a snapshot of the file
system because the file is considered critical to system sta-
bility. Whitelisted files are considered unimportant and do not
require preservation. If the file is on neither list, R2D2 takes a
temporary checkpoint of the file system, and subsequent write
system calls are analyzed, according to Analysis Policy, to de-
termine if the write is suspect.

3.1.3. Implementation
Several files may always need protection from destruction, re-
gardless of the write pattern. Data objects that are critical for
system stability, such as the Master Boot Record (MBR), are
present in the blacklist. If a file on a blacklist is opened for
writing, the Protection Policy is automatically triggered, which
handles the preservation of the file that is open for writing.

The blacklist for our evaluation consists of any references to
the MBR. The MBR is an obvious target for Wiper Malware
(Tarakanov, 2012). Destroying the MBR or partition table will
render the storage medium unusable.The blacklist for our evalu-
ation includes “e:,” “PhysicalDisk1,” and “Harddisk1” (Microsoft
Corporation, 2016b), which point to NTFS data structures pro-
tected by R2D2.

Ignoring certain data objects, defined as the whitelist, could
provide an increase in performance by avoiding analysis on
files that are not important. Data objects on the whitelist, such
as caches and temporary files, are ignored. For our experimen-
tal evaluation, the whitelist includes all files that exist outside
a specified “evaluation” directory. We do this for two reasons.
First, it allows us to have better control over our experimen-
tal analysis since the system may contain file caches that are
periodically written to, potentially interfering with our results.
Secondly, in practice, the system files are much easier to recover
from if destroyed. Users are more concerned with personal files,
typically stored in their home directory.

R2D2 examines the following Windows system calls ac-
cording to our Interposition Policy:

NtOpenFile is the Windows system call used to open ex-
isting files, while NTCreatFile can both open existing files and
create new ones. Our prototype Interposition Policy identifies
that the file exists and opens with the write permission by ex-
amining the DesiredAccess and CreateDisposition call
parameters.

The NtWriteFile Windows system call writes data to an
open file (Microsoft Corporation, 2016a). The FileHandle,
Buffer, ByteOffset, and Length parameters are given to the
Analysis Policy, if the file is not in the blacklist or whitelist, to
determine if write is suspect of being destructive.

3.2. Prototype analysis

The interposed information is analyzed to identify destruc-
tive actions. The Analysis Policy describes the set of algorithms
to determine if a write call is suspect.The Analysis Policy details
feature extraction which is then used to decide if a write is
suspect. Feature extraction should be quick to minimize analy-
sis latency.

3.2.1. Method
The Interposition Policy provides the analysis with: a write
buffer, containing the data to be written to a file; a file handle,
metadata information about the file; an offset, the location of
where the write buffer should write to the file.

Let Bi represent the write buffer provided by the Interpo-
sition Policy. A sample offset So defines the starting location in
Bi for analysis. A sample size Sk which defines the amount of
data to that is inspected per Bi. A sample frequency, Sf, defines
the frequency to inspect the write buffer Bi. An illustration of
the above is shown in Fig. 3.

The sample offset, in conjunction with the offset pro-
vided by the Interposition Policy, defines locations of interests
within the file. Several files use magic numbers (Sammes and
Jenkinson, 2000) and metadata located at the beginning of a
file.

There are several design choices that one must consider for
the Analysis Policy. The sample size and sample frequency are

187c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

a trade-off between accuracy and time: larger samples provide
more information to identify if the write is destructive but the
analysis latency grows as the sample size increases.

3.2.2. Policy
Our experimental policy examines the first write to the be-
ginning of a file. We later demonstrate in our evaluation that
our conservative sampling provides high accuracy and accept-
able performance. The analysis extracts the following features.

File Signatures. Overwriting a file signature is a promising
indicator for data destruction, as indicated in Scaife et al. (2016)
for Ransomware. While some files, such as ASCII text files, do
not use file signatures, multimedia files often do. When over-
writing the beginning of a file, we check to see if the write buffer
contains a file signature that matches the file extension3. We
use the file signature corpus found in Kessler (2017). If the
system call overwrites the file signature with data that does
not match the file extension, we flag the write as suspicious.

Data Destruction Patterns. Several secure delete algo-
rithms, as shown in Table 1, overwrite files with repetitive
patterns.To identify common secure delete patterns, the Analy-
sis Policy examines if the entire write buffer consists of
repetitive bytes, such as 0xFF or 0x00. If the first 4 KiB of the
write buffer contain a fixed pattern, we flag the write a
suspicious.

Randomness Testing Several data destruction tools use
random binary data to overwrite files. Prior work in Continella
et al. (2016), Kharaz et al. (2016), and Scaife et al. (2016) use
entropy as a metric to identify encryption in Ransomware. We
found that entropy can be problematic when trying to distin-
guish high entropy files, such as compressed files (e.g. zip and
rar). Instead, we use a classification tree with features used in
evaluating cryptographic pseudorandom number generators
(Rukhin et al., 2010). The benefit of using a classification tree
is the ease of implementation in C to provide a minimum
impact on latency. A detailed description of the randomness
test training and validation is given in Section C. If the first
4 KiB of the write buffer appear to contain random binary data,
we flag the write as suspicious.

Algorithm 2 shows the flow of our prototype implementa-
tion to handle system write calls. The ordering of the detection
methods is from most efficient to least efficient to compute.
First, we check to see if the file extension in the FileHandle

does not match the file signature found in the write buffer. Next,
we check if the buffer contains known destructive patterns.
Finally, a randomness test examines the write buffer. If any of
the tests returns true, then the checkpoint, created when the
file was open, converts to a persistent snapshot.

3.2.3. Implementation
Drakvuf interposes system calls within the guest VM trans-
fers control between the guest VM and the VMM. When the
guest VM issues an open or write system call, control trans-
fers to the VMM. The previously mentioned features are
extracted then pass through a decision process, shown in

3 An adversary may circumvent this analysis by writing a file sig-
nature that matches the file extension then overwriting the rest
of the file. We do not observe this behavior in our evaluation and
but nonetheless discuss the strategy in Section 6.

Table 1 – A list of secure delete methods considered in the evaluation of R2D2. “Random byte” is defined as a single
random byte that overwrites the file. “Random data” overwrites the entire file with pseudorandom bits.

Algorithm Description

AFSSI-5020 Three passes: random data, complement w/ 8-bit shift, complement w/ 16-bit shift (Trant et al., 2016)
AR 380-19 Three passes: random byte, random byte, complement of the second random byte (Trant et al., 2016)
British HMG IS5 (Baseline) Single pass of zeros (Trant et al., 2016)
British HMG IS5 (Enhanced) Three passes: zeros, ones, random data (Trant et al., 2016)
Canadian RCMP TSSIT OPS-II Seven passes: three alternating passes of zeros and ones, then a random byte (Trant et al., 2016)
DoD 5220.22-M(ECE) Seven passes: a combo of random bytes, complement of random bytes, and zeros (Trant et al., 2016)
DoD 5220.22-M (e) Three passes: zeros, then ones, then random (Russinovich, 2016; Trant et al., 2016)
German VSITR Same as Canadian RCMP TSSIT OPS-II (Trant et al., 2016)
Gutmann’s 35-pass method 35 passes: data (1–4), fixed patterns (5–31), random data (32–35) (Gutmann, 1996)
Overwrite with zeros Single pass of all zeros (Ziem, 2016)
Pseudorandom data Overwrite with random bits (Trant et al., 2016)
Russian GOST P50739-95 Three passes: single pass of zeros, then random data (Trant et al., 2016)
Schneier’s Algorithm (Schneier, 1996) Seven passes: zeros, ones, remaining passes consist of random data (Trant et al., 2016)

Fig. 3 – An illustration of write buffer sampling for R2D2.

188 c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

Section 3.2.2. After the analysis completes, control transfers
back to the guest VM, and the operating system continues.

A tree classifier identifies if a buffer contains random data.
In Appendix C, the details regarding parameter constraints and
features to produce our classification tree. We train and vali-
date our classification tree on disjoint datasets.The classification
tree can identify write buffers that contain random bits, with
Precision and Recall above 99%.

3.3. Prototype preservation

If a protected file is undergoing data destruction, the Preser-
vation Policy defines the actions necessary to preserve the data,
the information to log regarding the state of the VM, and the
policies relating to the retention of temporary checkpoints when
a file is open for writing.

3.3.1. Method
Several design choices are possible regarding the preserva-
tion of data under destruction. Upon detecting a destructive
write and before the write is committed to storage, the files
under destruction can move into a container that is isolated
from the attacker. We define the above to be a reactive strat-
egy. While the design is simple, the latency may be high if the
file size is large. The reactive strategy only creates back-ups
of files as destruction occurs, thus only occupying space when
necessary.

In contrast to the reactive strategy, the proactive strategy pro-
tects data in anticipation of a destructive action.The advantage
is that there are several existing schemes to quickly create a
checkpoint of the storage medium or file to reduce latency rela-
tive to the reactive strategy. For example, a copy-on-write (CoW)
scheme may outperform a reactive strategy. A checkpoint under
a CoW scheme preserves the storage state, and any changes
to the storage are tracked. Analysis of destructive actions can
occur after the data is written, reducing the latency com-
pared to the reactive strategy. If destruction is determined, the
system can roll back to the checkpoint. One disadvantage is
that a checkpoint must be taken in a consistent state and be
updated periodically to save disk space.

A version control or log-structured file system provides ad-
vantages over a CoW scheme. All writes are appended to the
disk with a checkpoint number, which indicates the version
of the disk. Checkpoints are taken continuously, allowing for
a system administrator to roll back to a consistent state if data
destruction occurs. A disadvantage is a need for garbage col-
lection. As writes occur on the disk, checkpoints are created
and consume disk space. A policy for the garbage collector can
run periodically, have a minimum time to retain check-
points, and run when the disk is nearly full.

We find that for data preservation, a log-structured file
system works well because writes are in append mode only,
writes are efficient, and automatic garbage collection is pos-
sible (when checkpoints are no longer needed). We choose to
use NILFS (Konishi et al., 2006) for this purpose because of its
superior performance for file writes. NILFS uses checkpoints,
which can be garbage collected, and snapshots, which are per-
manent. A checkpoint converts to a snapshot upon command.
We use the snapshot feature to make a permanent copy of the

file system when we suspect a file is the target of data de-
struction. From the perspective of the Windows VM, the user
is writing files to an NTFS disk while the hypervisor and Host
OS translate the writes to NILFS. The creation of NILFS snap-
shots is done outside the Windows VM thus protecting it from
a compromised guest OS.

3.3.2. Implementation
For our experimental evaluation, we take checkpoints syn-
chronously when a file is open. When a checkpoint is required,
the task is handed off to a thread pool. Although NILFS takes
checkpoints quickly, we do not want the VM to hang during
the checkpoint creation. Subsequent writes block until the
checkpoint completes. From our experimental evaluation, we
found that this strategy does not impact the write perfor-
mance significantly while providing certainty that the
checkpoint matches the storage state.

4. Experimental evaluation

Our experimental evaluation is conducted on a machine
running Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-75-generic x86_64)
configured with Xen 4.8.0 with 4096 MB Domain0 memory and
four dedicated vCPUs. The host machine is a Dell PowerEdge
R410 with two Intel Xeon X5570s clocked at 2.93 GHz with 16 GB
DDR3 Synchronized 1333 MHz RAM and a Samsung 850 250 GB
SSD. We use the Drakvuf v0.4-7a79990 VMI tool to intercept
Windows system calls associated with file I/O. The Windows
Guest VM uses 2 GB of RAM, two vCPUs, and two virtual disks.
The first disk contains the operating system and uses a Logical
Volume Manager (LVM) partition on the host machine. The
second virtual machine disk exists within a NILFS partition.
All the experimental evaluation is conducted on the second
disk, as it is easier to control the read/write accesses on a disk
without interference from the OS related temporary files.

We compare the experimental results to our baseline system,
which is a Windows VM that does not have R2D2 enabled but
uses NILFS to create a periodic checkpoint.The baseline system
is a fair comparison to R2D2 as it has the benefits of using NILFS
to periodically take checkpoints but without the benefit of moni-
toring for potential data destruction. The garbage collector and
continuous checkpointing are disabled to provide the optimal
disk performance for the baseline. The hardware and VM con-
figuration for the baseline and R2D2 are identical.

We evaluate the three requirements identified in Section
2.3: accuracy, preservation, and performance. For data preser-
vation, we check the difference between the files under
protection before and after running Wiper Malware samples,
listed in Table 2, and the secure delete tools, listed in Table 1.
Some of the secure delete tools use deterministic patterns for

Table 2 – Wiper Malware samples for evaluation.

Name MD5

Destover 2618dd3e5c59ca851f03df12c0cab3b8
Shamoon d214c717a357fe3a455610b197c390aa
Shamoon 2 2cd0a5f1e9bcce6807e57ec8477d222a
Stonedrill 0ccc9ec82f1d44c243329014b82d3125

189c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

every secure delete, such as overwriting with all zeros (e.g.,
British HMG IS5). Other methods generate random data at
runtime (e.g., AFSSI-5020), so the data used to overwrite the
file is different each run of the algorithm. While the sample
size of Wiper Malware seems small, consider that modern Wiper
Malware is not designed to be as widespread as other malware
such as botnets or Ransomware. The samples in our evalua-
tion represent a sample of all the latest Wiper Malware found
in the wild.

We refer to ordinary files that should not trigger the system
as benign. The benign files used in our evaluation are from
GovDocs (Garfinkel et al., 2009).

For accuracy, we measure the recall and precision rates of
our Analysis Policy to identify benign writes and destructive
writes. Finally, to measure the performance impact of our pro-
totype implementation, we measure and compare the latency
and throughput on the same hardware with and without R2D2
enabled. We also run PCMark 8 (Futuremark Corporation, 2016)
to measure the performance impact of completing office tasks.

4.1. Metrics of interest

For the experimental evaluation of R2D2, two metrics of in-
terest are calculated: the ability to accurately classify write
buffers as “benign” or “destructive” and the impact on the
latency associated with conducting such an analysis on a live
system.

While both metrics are of importance, the cost of false posi-
tive classification is producing a NILFS snapshot on benign
writes, which produces write latency for valid users. There-
fore, we favor a higher recall value than precision when
selecting parameters for our classifier.

The components that contribute to latency include the
latency to intercept system calls via VMI, the time needed to
calculate features, the latency to run the Analysis Policy (e.g.,
classification time), and the latency to trigger and create a
checkpoint or snapshot.

4.2. Accuracy analysis

In this section, we evaluate the accuracy of our Analysis Policy
to distinguish between benign writes and destructive writes.
The test set consists of two classes of files: Benign and De-
structive. The Benign Class consists of Govdocs1 files from
Thread2, which represents common files real users typically

encounter and R2D2 should not mistake writing these files as
suspicious. The Benign files consist mostly of multimedia files
such as PDF, HTML, and JPEG. Fig. A1 lists the file type distri-
bution for testing accuracy.

The evaluation consists of overwriting files and observing
the outcome of the Analysis Policy. For the Benign class, we
overwrite the files’ contents, without changing the file type,
as would be the common case for benign use. For the Destruc-
tive class, we overwrite the files with all of the secure delete
tools found in Table 1.

R2D2 with our experimental Analysis Policy can correctly
preserve files for all data destruction tools at 100% true posi-
tive rate, except for the Pseudorandom Data destruction method.
Fig. 4a shows the confusion matrix for R2D2 under the Pseu-
dorandom Data destruction method, which consists of
overwriting a file with a single pass of pseudorandom bits. The
false negative rate is 0.2%, in other words, out of 989 files, R2D2
falsely identified two destructive overwrites as benign. A CSV
file and an XML file are not triggered by file signature/extension
mismatch because of the lack of fixed file signature for flat text
files. In practice, false negative files are not necessarily lost.
The checkpoints are available until the NILFS garbage collec-
tor runs, which can be set to only remove checkpoints if older
than some date/time or if the file system is nearly full.

The false positive rate is 0.51%: five files out of 989 benign
writes were incorrectly classified as destructive. Four of the five
files triggered a snapshot because of a mismatched file sig-
nature. Upon further inspection, we verified that the four files
(three Excel spreadsheets, and one PDF) in our testing set simply
have mismatched file extensions and signatures. There are
several reasons why the mismatch can happen in practice. As
mentioned in Scaife et al. (2016), file signatures may change
between different software versions. The three Excel spread-
sheets use a file signature for which was not in our file signature
corpus. It appears that these three files use an older file sig-
nature that we did not account. After adjusting the file signature
corpus, we have a false positive rate of 0.2%, as shown in Fig. 5.
The PDF file (206709.pdf in the GovDocs dataset) has 112 bytes
of data before the correct file signature, which may indicate
file corruption. The other false positive file, 186957.pdf in
GovDocs, was incorrectly classified as destructive by our ran-
domness classification tree.

R2D2 also successfully detects all of the Wiper Malware in
Table 2 upon the first suspicious write. Not only did we detect the
first suspicious write for all of the samples, but we show in

Fig. 4 – Confusion matrix for PRNG data destruction, the worst performing test. (a) Initial Results. (b) Corrected Results.

190 c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

the following section that all of the files were successfully pre-
served without any unauthorized modification.

4.3. Preservation under wipers

To test if R2D2 can accurately preserve data under destruc-
tion, we test it against four Wiper Malware samples that have
caused substantial damage to real systems. Table 2 lists all the
malware we evaluate.

Our test environment consists of files found in GovDocs
Thread9. The files in GovDocs Thread9 represent common files
that a user may open or edit. The majority of the files consist
of PDF documents, HTML files, and JPG images. Fig. A1 in
Appendix C details the test files stored in the VM to evaluate
the protection under Wiper Malware. We place all of the files
under a protected directory in a separate disk image in our
Windows VM. We also propagate the VM with synthetic data
to make the VM appear to be a real system rather than a
malware analysis system.

Software installation for the guest VM includes Google
Chrome Web Browser, Sumatra PDF Reader, Notepad++ text
editor, and WinRAR file archiver. File interaction with the above
software is done on a subset of GoveDoc1 files to produce tem-
porary files that are present on real computer systems. We also
visit several websites with the Chrome Internet Browser. Ad-
ditionally, the VM OS runs for several days before running any
of the malware samples. Internet connection is disabled in our
test environment, as none of the samples require a network
connection to destroy files on the system, according to the tech
reports for each of the malware samples. The specific samples
for the evaluation invoke the wiper modules, which may not
include anti-analysis methods as it is the last step of the attack.
Nonetheless, the setup for the guest OS successfully runs the
data destruction for each malware sample considered.

The malware samples use two approaches to destroy files
on the system: overwriting each user file or bypassing the file
system and overwriting the raw disk. The Shamoon, Shamoon
2, and Stonedrill samples overwrite data using raw disk access,
which triggered the blacklist in our Analysis Policy.The Destover
sample overwrites the protected files using a JPEG image

fragment. The Analysis Policy triggers a snapshot, because of
the mismatching file extension and file signature, to pre-
serve the files under destruction. Therefore, the detection
happens either before or upon the first destructive write to a
protected file.

We ran each sample under administrative privileges with
R2D2 enabled and verified that the malware samples destroy
data. After the destruction completes, we mount the disk image
of the first snapshot taken because of the malware’s data de-
struction actions. We then compare all of the files from the
snapshot to the original files using the Unix diff tool. All files
were successfully preserved against all of the Wiper Malware samples
considered.

4.4. Performance analysis

The performance evaluation consists of two categories: the
latency for benign user tasks and suspect file writes.

4.4.1. Benign activity
For benign user activity, we evaluate the performance by using
PCMark 8 (Futuremark Corporation, 2016). PCMark 8 is a bench-
mark suite to measure system performance under common
user tasks. We evaluate R2D2 using the “Work Benchmark” test
suite which consists of web browsing, document processing,
and spreadsheet editing4. These tests mimic how real users in-
teract with the software and measure user interface and
runtime latencies. We briefly summarize each of the PCMark
8 Work Benchmark test for the evaluation in Appendix A. For
details, refer to the PCMark 8 Technical Guide (Futuremark
Corporation, 2016).

Fig. 5a illustrates the overhead of R2D2 under several benign
user tasks, from the Work Benchmark, which is typical in a work
environment. The ratio shown in the bar chart is the Median
overhead introduced by VMI and the R2D2 Analysis Policy.
The plot shows that the majority of the overhead is from VMI

4 We do not consider the video chat test because our experi-
mental machine does not properly pass through GPU requests from
the VM to the host machine.

Fig. 5 – PCMark 8 office benchmark results showing the overhead incurred by R2D2 for a variety of common office tasks.
The results are with respect to our baseline where no VMI but with NILFS in use. We observe that the bulk of the overhead
arises from VMI provided by the Drakvuf analysis system (Lengyel, 2016). (a)Work Tests. (b) Storage Tests.

191c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

for all tests, with R2D2 analysis contributing to less than 1.6%
overhead, compared to the baseline, for all cases.The JunglePin
Test performs the worst, with 20.09% total overhead, with 1.54%
overhead caused by R2D2 analysis. It appears that the over-
head is caused by the rich image content of the JunglePin
website. The majority of the overhead is from intercepting the
file creation and write system calls for each image on the
JunglePin web page. Additional overhead may also be caused
by a system-wide impact associated with the use of VMI.

The Work Benchmark measurements include the latency
that affects user interface elements, such as the scroll speed
for both JunglePin and Amazonia, resizing the window when
writing a document, and the latency to edit a cell in a spread-
sheet citepcmark. It appears that the UI elements are affected
by using VMI (discussed with the throughput analysis), even
without running any analysis or preservation. Since R2D2 in-
terposes storage I/O, we want to examine the impact of I/O
performance degradation without considering the degraded UI
performance. We run PCMark 8’s “Storage Benchmark,” which
measures storage latency performance, to compare the latency
of the baseline and R2D2. The Storage Benchmark simulates
disk usage and does not simulate the UI, which is the main
distinction compared to the Work Benchmark. A summary of
the Storage Benchmark test is described in Appendix B.

Fig. 5b shows the median overhead for storage I/O for R2D2.
The Adobe Photoshop and AfterEffects Test performed the worst
with a median overhead of 3%–4%. Based on the description
of the tests (Futuremark Corporation, 2016), it appears that the
Photoshop and AfterEffects Tests are heavy in random access
I/O and writing.The best performing tests are World of Warcraft
and Battlefield 3 with a median overhead of less than 1.5%.
Both games are heavy in reading content on the disk and R2D2
does not interpose file read system calls. Based on the results,
it appears that R2D2 introduces a latency increase of between
1% and 4% on disk storage.

To confirm that VMI interposition adds overhead to
the entire system (including the UI), we ran R2D2 using
the CrystalDiskMark 5.2.1 (Kasumu, 2017) throughput, a
Windows disk benchmarking application, to measure reading

performance under R2D2. Recall that our experimental poli-
cies do not interpose read system calls.VMI reduces throughput
for sequential reads by an average of 5.6% and 27% for random
reads, compared to our baseline. The above provides evi-
dence that the VMI methods we rely on account for overhead
outside of system calls we interpose for R2D2.

We also examined the write throughput under R2D2, which
exposes a limitation to using VMI in this implementation. Under
the CrystalDiskMark random write test, we observed a de-
crease in performance of 57.5% in our prototype implementation
of R2D2. However, 95.4% of the performance reduction was
caused by VMI. Nonetheless, these results show that R2D2 may
not be suitable for applications that demand high through-
put of random writes. Sequential writes, however, perform
relatively well with 4.12% decrease in throughput, with VMI ac-
counting for about 72.1%.

4.4.2. Suspicious activity
To measure performance when a write is suspect, we measure
the latency for destructive actions under various file sizes. Our
test consists of overwriting different files of different sizes, from
4 KiB to 32 MiB. We measure the median latency (n = 100) to
destroy an individual file of a specific size by overwriting the
file with pseudorandom data. As defined by our Analysis Policy,
the randomness test executes last, so all features of the analy-
sis and classification execute during the test. Thus, the test
represents the longest execution path for R2D2 analysis.

Fig. 6 contains the latency results of writing a fixed file size
that triggers R2D2 to convert a checkpoint into a snapshot.
Recall that R2D2 only examines the first 4 KiB to identify if a
write is suspected of data destruction. As the size of the file
increases, as shown on the x-axis, the analysis time becomes
a smaller ratio to the time it takes to write the file. Thus, for
small destructive writes, we see a large multiplicative factor
in overhead. For 4 KiB files, the overhead is increased by a factor
7.44X compared to the baseline. While the overhead seems to
be quite large, this may not be relevant to a legitimate user.
Foremost, if the latency is increased for a malicious action (data
destruction), then that is a desirable outcome. So, we only worry

Fig. 6 – Median Latency introduced by R2D2 and VMI when data destruction is suspect.

192 c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

about this increased latency for a false positive, i.e., a legiti-
mate write by a legitimate user is mistaken to be a destructive
write. We have seen from our accuracy analysis (Fig. 4b) that
this happens very rarely (0.2% of the cases). Finally, the worst
case increase in latency is for the smallest file size of 4 KiB,
and that increases latency from 0.16 ms to 1.20 ms, which is
not perceptible for a user-interactive workload.

4.4.3. Summary of results
Our results show that R2D2 protects against data destruction
attacks at the cost of tolerable overhead under several common
workloads. While the overhead is non-negligible, our results
indicate that there are several use cases where the overhead
may be acceptable. The majority of the overhead is caused by
VMI and not the R2D2 analysis. For benign user tasks, the R2D2
analysis only accounts for 1.4%–9.29% (Fig. 5a) of the total
latency introduced, which is between 0.13% and 1.54% addi-
tional overhead compared to the baseline system. There has
already been more than a 5× reduction in VMI overhead from
2004 to 2011 (Dolan-Gavitt et al., 2011; Garfinkel and Rosenblum,
2003) and as VMI mechanisms continue to improve in perfor-
mance, R2D2 will also inherit the benefits.

5. Alternative methods and policies

Our experimental evaluation is on a single design choice of
R2D2, and a policy that is intended to provide reasonable per-
formance while protecting files within a VM, based on the
current threat landscape. Below, we discuss design alterna-
tives that may provide performance improvements as well as
analysis policy alternatives, some of which are from related
work, which protects against Crypto Ransomware. Nonethe-
less, the design alternatives for the analysis policies may help
protect against Wiper Malware that uses data encryption to
destroy files, which reportedly (Ivanov and Mamedov, 2017;
Suiche, 2017) is the case for the Petya malware.

5.1. Placement of R2D2

There are several alternative interposition methods for R2D2
with several advantages or disadvantages. In practice, the design
choices should reflect the needs of the system. For our experi-
mental evaluation, we felt that placing R2D2 within the VMM
may provide a balance of performance and isolation from the
attacker. While our results show that there is moderate latency,
which may be unsuitable for some applications, R2D2 can be
placed in other locations to improve performance.

For instance, R2D2 can interpose writes to the storage
medium from within the operating system. Placing R2D2 within
an operating system avoids the overhead associated with VMI,
which we have seen is by far the most significant contributor
overhead. However, the major disadvantage of this approach
is that the controls to the file versioning system, and other R2D2
mechanisms, are located within the protected system and not
isolated from the (potentially) untrusted operating system. If
an adversary can compromise the OS, he or she can disable
R2D2.

Another plausible placement for R2D2 is near the hard-
ware. A hardware controller on a storage device could inspect
the write buffers for destructive features before writing the data
to the storage device. However, the challenge of placing R2D2
within a hardware controller is to log and preserve data that
is meaningful for a user, system administrator, or forensic ex-
aminer. Mapping low-level disk operations to files is a well-
known semantic gap problem for disk storage (Jiang et al., 2007;
Mankin and Kaeli, 2012). Alternatively, a network file system
can also work with R2D2, similar to the work in Strunk et al.
(2000), which inspects file interactions for malicious behav-
ior. One advantage is that R2D2 can be isolated from the attacker
unless he or she can overwrite the hardware controller or gains
access to the network file storage server.

5.2. Analysis policy

An effective tool in identifying Crypto Ransomware are read/
write patterns, as shown in Continella et al. (2016), Kharaz et al.
(2016), and Scaife et al. (2016). Ransomware follows several pre-
dictable read/write patterns, such as overwriting the file with
the encrypted version or copying the encrypted file else-
where and destroying the original file (Kharaz et al., 2016).

Read/write patterns may be applicable in detecting Wiper
Malware. However, it appears that Wipers overwrite files and
not necessarily read the file contents before destruction. Other
possible detection metrics include the process-centric ap-
proach in Continella et al. (2016), which measures the rate at
which a process writes to files.

File type funneling quantifies the number of file types read
and written to a storage medium per process (Scaife et al., 2016).
Other patterns, such as directory listing, file type coverage, and
file renaming, are features for the classifier in Continella et al.
(2016). File-centric features may not be applicable for Wiper
Malware. Wipers may write directly to a storage medium, by-
passing file system conventions (Baumgartner, 2014; Raiu et al.,
2017; Tarakanov, 2012). All of the above metrics are file-
centric and are not readily applicable to low-level disk writing.
Applying the above metrics for low-level storage access re-
quires the defender to bridge the semantic gap for a raw storage
medium. Prior work (Mankin and Kaeli, 2012) provides some
solution to the raw storage medium semantic gap problem.

Some of the metrics listed above are not applicable to secure
delete tools. For example, secure delete tools do not need to
read a file before destroying it. Listing the files within a direc-
tory is not required for secure deletion. Some secure delete tools
do not follow conventional patterns and thus make detec-
tion difficult without knowledge of how the tool works ahead
of time. For instance, the sdelete secure delete tool renames
a file 26 times before destruction (Russinovich, 2016). However,
it appears that renaming files before destruction is uncommon.

Anomaly detection is another viable detection method, pro-
posed in Garfinkel and Rosenblum’s VMI work (Garfinkel and
Rosenblum, 2003), that we do not consider in our experimen-
tal evaluation. The risk is small for R2D2 as false positives only
generate an additional snapshot of the file system, which we
show has acceptable overhead in our assessment. The disad-
vantage is the need to train for benign interactions of files.

A substantial difference between Wiper Malware and
Ransomware is the stability of the compromised system. The

193c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

goal of Ransomware is to collect an extortion payment.
Ransomware must present the ransom note to the end user,
which means there must be a system that is at least partly func-
tional to provide such output to the user. Presumably, if the
user pays the extortion, the files are unlocked.

The goal of Wiper Malware is to make a system or data un-
available to users. The attacker is not required to present a
message to the end user upon wiping a machine5. Several ex-
amples (Raiu et al., 2017; Tarakanov, 2012) restart the
compromised machine, which displays a Master Boot Record
error.

6. Discussion and limitations

The attacker may try to execute writes to the disks without
triggering the snapshot/checkpoint creation of R2D2. There are
three obvious attack strategies, observed in real malware, which
are (i) to remain hidden from security monitoring tools from
within the OS, (ii) run the data destruction before booting the
operating system, or (iii) avoid the behaviors and heuristics that
cause the snapshot to trigger.

6.1. Hide from monitoring

Attackers have an array of techniques to hide from security
monitoring tools and system administrators. Kernel Object
Hooking (KOH) and Dynamic Kernel Object Manipulation
(DKOM) are well-known strategies that rootkits utilize to stay
hidden from anti-malware software and system administra-
tors. If the attacker is successful in avoiding the VMM
monitoring, then snapshot or checkpoint creation never trig-
gers, which makes the recovery of the destroyed data difficult.
Specifically, the adversary may install his or her own privi-
leged I/O software to avoid the R2D2 system call monitoring
altogether. In addition to writing the I/O software, the at-
tacker must circumvent software integrity and authenticity
validation6, and have the privilege to install custom drivers or
to make changes to the kernel.

Another approach for the attacker is to use rootkit hiding
techniques to avoid monitoring. In the current prototype con-
figuration of R2D2, an attacker who uses a KOH should be able
to circumvent the system call monitoring. However, a KOH de-
tection technique already exists in Drakvuf, the VMI tool on
which R2D2 builds. The System Service Descriptor Table (SSDT)
Monitoring plug-in allows Drakvuf to detect if the system call
table within Windows is modified. The SSDT Monitoring plug-
in can be extended to work with R2D2 and trigger a snapshot
before any modification to the SSDT is observed, in addition
to other actions at the security administrator’s discretion. The
attacker must use a hiding technique that R2D2, or VM secu-
rity monitoring software, fails to detect. While there are several
methods, such as KOH or DKOM, the attacker must evaluate
the stealthiness against VM security monitoring tools. Rather

than avoiding all monitoring, the attacker may choose a strat-
egy that requires less effort to avoid some aspects of R2D2. The
attacker may alter his or her destructive behavior to avoid
the snapshot trigger or destroy the data from a location that
the current configuration of R2D2 cannot observe.

6.2. Out-of-band destruction

Another method to circumvent monitoring is to modify the
bootloader and destroy data from outside the operating system.
An attacker who writes over the bootloader without detec-
tion can destroy the files or the entire file system without the
risk of the VMM interposing OS system calls. In our evalua-
tion, any changes to the master boot record automatically trigger
a snapshot of the file system. Our experimental evaluation does
not include malware that attempts to replace the bootloader,
but some samples did modify the MBR, which is detected and
in principle should work the same if the malware overwrites
the bootloader. However, a limitation of R2D2, assuming the
KOH/DKOM detection methods fail, is if the attacker replaces
the MBR or the bootloader by circumventing the VMI interpo-
sition, then he or she may be able to destroy files without
triggering checkpoints/snapshots. Under the experimental con-
figuration of R2D2, an attacker may be able to replace the
bootloader without detection if he or she can execute before
R2D2 is enabled. The experimental evaluation assumes that
R2D2 is enabled before any malware or data destruction tools
execute. In practice, if a race condition exists, the attacker is
likely to use it for out-of-band destruction. An attacker may
modify an existing Wiper Malware to execute before R2D2 is
enabled.

Bacs et al. (2016) successfully demonstrate the ability to
modify changes to virtual disks at specified locations such as
the MBR or bootloader. The work observes specific regions of
the virtual disk for any modification without relying on VMI.
One solution is to combine the detection mechanism in Bacs
et al. (2016) with the preservation methods in the work pro-
posed here. Before modifying the bootloader, create a snapshot
so that the file system is recoverable if the modification is
malicious.

6.3. Modify behavior to misclassify destruction

An attacker may avoid the behavior and heuristic indicators
that trigger a snapshot of the file system. To circumvent our
experimental Analysis Policy, the attacker may destroy a file
by overwriting it with data that is non-random, that does not
follow common data destruction patterns, and avoids over-
writing file signatures. However, note that our experimental
policy creates a checkpoint each time a protected file is opened
for writing. For an attacker to overcome the checkpoint and
destroy a file permanently, she must circumvent the Analysis
Policy and force the NILFS garbage collector to deallocate the
relevant checkpoint. The effort to force the NILFS garbage col-
lection to run is high (compared to the baseline system),
requiring the attacker to either fill the storage space and wait
until the checkpoint is destroyed or wait until the minimum
retention time for checkpoints is met. For both cases, the speed
of the attacker is reduced compared to the state of practice.

5 There are exceptions (Baumgartner, 2014) if the attacker wishes
to let the defenders know of the destruction and convey a message.

6 Such as Windows 10 driver verification (Microsoft Corporation,
2017).

194 c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

Alternatively, an attacker may also avoid the Analysis Policy
by overwriting small segments of the file. The experimental
Analysis Policy only analyzes write buffers of at least 4096 KB
and when writes occur at the beginning of a file, as a trade-
off of robustness for speed. Currently, the experimental Analysis
Policy is easily adjustable to sample all writes or to sample the
write buffers randomly. Additional experimentation is neces-
sary to determine the sampling rate to provide sufficient
protection without compromising performance.

The attacker may move a file from a blacklisted directory
into one that is whitelisted, such as a web browser cache, and
destroy the file there. The Interposition Policy can monitor the
NtSetInformationFile system call, which renames and moves
files, to mitigate the attack. R2D2 takes a snapshot if a file is
moved from a protected directory to one with less strict moni-
toring rules. Similarly, NtDeleteFile should also be monitored
to prevent an attacker from deleting protected files and then
filling the space on the disk. The evaluation of R2D2 demon-
strates the feasibility of protecting files under destruction under
several malware samples and data destruction tools. Our evalu-
ation does not observe the above behavior, which may be used
to circumvent R2D2. Further enhancements to R2D2 are nec-
essary to provide sufficient protection against file movement
or renaming attacks, which is left for future work.

The weaknesses above are not exclusive to R2D2 but all se-
curity monitoring tools. Attackers are persistent and eventually
discover new methods to avoid monitoring. However, the design
of R2D2 increases the challenge of unauthorized data destruc-
tion by isolating the snapshot/checkpoint mechanism and
preserving the data under destruction that is out of reach for
the attacker. Some policy changes can help mitigate destruc-
tive attackers by periodically taking snapshots regardless of the
changes observed, a standard configuration of NILFS. Further,
R2D2 can introduce inconsistencies to produce doubt for the
attacker’s data destruction methods. As mentioned in prior
work related to VMI, the latency associated with VMI can be
hidden from the attacker by adjusting for the timing delay
within the guest VM (Garfinkel and Rosenblum, 2003), making
the detection of R2D2 from the attacker’s perspective more dif-
ficult. Further, injecting deceptive faults into the VM to disrupt
the data destruction may also slow down or disrupt the at-
tacker. The uncertainty and confusion may cause the attacker
to stall and waste time overcoming faults that may not exist,
as shown by the work of Sun et al. (2015). For opportunistic
adversaries, the confusion may cause the attacker to look else-
where for a vulnerable system, which is an advantage for the
defenders.

6.4. Other limitations

A valid user may have a legitimate reason to destroy or encrypt
data, and that should not trigger R2D2. The grounds to destroy
or encrypt data may be completely valid for privacy reasons.
Our current implementation does not support valid data de-
struction or encryption from within the VM and is left for future
work. However, some possible solutions are briefly described
below.

One simple solution to support valid data destruction or en-
cryption is through a manual out-of-band mechanism whereby

the user notifies the system administrator to disable R2D2 for
the specific user’s VM temporarily.The simple solution, however,
is a path for an attacker to subject the users and system ad-
ministrators to social engineering whereby the protection is
temporarily disabled for unauthorized data destruction.

Alternatively, software within the guest VM could commu-
nicate with the R2D2 through the use of a time-based one-
time password (TOTP7) algorithm.The TOTP could be generated
outside the guest OS, say through a smartphone application
or keyfob, where the attacker does not reside. The user then
provides the TOTP to a trusted encryption application within
the guest OS. R2D2 verifies the TOTP and the correctness of
the encryption application. The R2D2 snapshot mechanism is
then disabled to allow for encryption temporarily. The above
mechanism allows trusted users to destroy data within the
system. However, if the TOTP password fails, a snapshot of the
file system is taken.

Alternatively, the TOTP could be replaced with a challenge–
response scheme to authenticate that a valid user is encrypting
or destroying data within the system. Hardware support could
also help provide encryption or data destruction. Requests for
encryption/destruction could be handled by a hardware com-
ponent, such as a hardware security module, such that the
storage of the decryption key is inaccessible from the Guest
OS. If the user wishes to decrypt data within the Guest OS, she
must authenticate with R2D2 before the decrypted file is ac-
cessible from within the guest OS. The above scheme works
only if the user is trusted and is not conducting on data de-
struction attacks.

The extra storage requirement of R2D2 is directly related
to the frequency and size of edits made to protected files. As
NILFS behaves similarly to a versioning file system, the physi-
cal size of a snapshot is only the size of changes made to files.
With a false positive rate of roughly one in one thousand, an
administrator can expect that a snapshot, containing all changes
to all protected files since the last snapshot, will be gener-
ated for roughly every one thousand saved changes. In practice,
the size of these snapshots should be much smaller than the
total size of all protected directories, and so the extra storage
needed to use R2D2 is comparatively small, depending heavily
on entropy of the writes.

Our prototype implementation of R2D2 only supports the
snapshot/checkpointing at the file system level and does not
allow for recovery of individual files without reverting the entire
file system. While it is suitable for recovering devastating Wiper
Malware that attempts to bring a system and data offline
quickly, the current solution does not directly provide methods
to repair individual files. The system administrator would then
need to manually identify what files should be saved or re-
verted before rolling back to an earlier snapshot. One solution
is to replace the log-structured file system with one that tracks
changes at the file level. The system administrator may then
revert specific files to previous versions without rolling back
the entire file system.

Another limitation of the current prototype of R2D2 is if de-
struction actions are intermingled with benign writes to the
storage medium. It may be difficult to manage and revert the

7 RFC6238: https://tools.ietf.org/html/rfc6238.

195c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

https://tools.ietf.org/html/rfc6238

effects of destructive actions when benign applications are af-
fected by the destruction. Fortunately, there are existing systems
that help reduce the severity and work well with R2D2. For in-
stance, the Taser Intrusion Recovery System (Goel et al., 2005)
uses taint analysis to help identify and revert file changes after
an attack discovery. Taser also resolves the conflicts that may
occur when a tainted file or process interacts with a benign
file or process. Taser requires snapshots which are already in
place in R2D2. However, incorporating R2D2 will require ad-
ditional engineering effort to work with a taint analysis system
in future work.

7. Related work

Early works (2003) presented in Pennington et al. (2010) and
Strunk et al. (2000) have inspired the design of systems that
prevent the accidental or unauthorized data destruction or
modification of files on persistent storage. The Self-Securing
Storage System (S4) (Strunk et al., 2000) keeps all versions of
changes to files for a fixed window of time. The work builds
on log-structured file systems but at a finer granularity of file
changes. Further, S4 uses security perimeters, which sepa-
rates access to the recovery and configuration mechanisms from
the OS in case the OS becomes untrusted. Without the secu-
rity perimeter, an attacker can remove versions of a file,
effectively destroying the data. For an attacker to destroy data
on S4, she must compromise the OS and the management in-
terface. If the attacker only destroys data on the OS, the
administrator of S4 can recover the data.

An extension to S4 is a Storage-Based Intrusion Detection
System (SBIDS) (Pennington et al., 2010), which observes disk
access patterns for unauthorized actions. SBIDS watches for
unusual access patterns that indicate that a machine may be
under attack. The suspicious actions include erroneous data/
time modifications, unexpected update patterns for critical files
(e.g., system binaries or log files), or the hiding of files and di-
rectories. By combining S4 with SBIDS, an administrator can
react to attacks, which are observed and analyzed outside of
the untrusted OS, and recover files that suffer a loss of a se-
curity element.

SBIDS and S4 provide an excellent solution for attacks
against system binaries, configuration files, logs, libraries, kernel
objects, or unauthorized data and timestamp modifications.
Specifically, SBIDS demonstrates the ability to detect unau-
thorized modifications to date and time stamps, deletion of
log records in log files, and the creation of hidden files.

However, SBIDS does not address the problem of detect-
ing unauthorized actions on critical user files that are frequently
updated. User critical files can vary and do not have a rigid
structure and access pattern compared to critical system files.
Further, both SBIDS and S4 do not provide detection indica-
tors for Wiper Malware, data destruction anti-forensic tools,
or Crypto Ransomware. While the implementation of S4 and
SBIDS enhance NFS specifically, the authors in SBIDS suggest
that their design of “compromised independence” can be ac-
tualized through a VMM, which we explore. Placing data
destruction protection mechanisms within a VMM has its
advantages when combined with VMI. Particularly, our imple-
mentation reports the active running process, date/timestamp,

and user information that is responsible for the data destruc-
tion. Additional logging information is extendible to the security
administrator’s discretion.

Several detection methods from prior work inspire the ap-
proach in R2D2. Unveil (Kharaz et al., 2016) monitors for stealthy
Ransomware within an anti-malware analysis system which
monitors for writes that have high entropy as a sign of unau-
thorized data encryption. CryptoDrop (Scaife et al., 2016) uses
file signatures and entropy as part of its detection features.
Rather than using entropy, we found that our randomness test
produces low false positives across a wide range of secure delete
tools and Wiper Malware.

Closely related to our work, ShieldFS (Continella et al., 2016)
protects a Windows OS against Crytpo Ransomware through
the usage of a Copy on Write (CoW) system, which recovers
files if a rogue process encrypts them. The system monitors
write patterns through a custom driver. Features are ex-
tracted from disk activity, through the custom driver, along with
in-memory cryptographic features, referred to as CryptoFinder.
The features feed into a multi-tier classifier, which examines
various changes to the storage medium over time. ShieldFS
mostly relies on the CryptoFinder, which contributed to 69.3%
of all the malicious samples in their experimental evaluation.

Unfortunately, there are a variety of methods to destroy data.
As discussed throughout the paper, data destruction method-
ologies are more open-ended compared to Crypto Ransomware,
which contributes to the challenge of protecting user files from
Wiper Malware. The work presented here focuses on Wiper
Malware while other work focuses on unauthorized data en-
cryption (Continella et al., 2016; Kharaz et al., 2016; Scaife et al.,
2016). Other forms of data destruction, such as unauthorized
data replacement that compromises the authenticity of a file
are left for future work.

The ShieldFS (Continella et al., 2016) inspired the design and
architecture decisions. In particular, we found the proactive
shadow copying of user files, in case of unauthorized encrypt-
ing, worked well in protecting files from destructive malware.
The difference in the experimental design is that the moni-
toring, analysis, and data preservation mechanism are isolated
from the attacker and the OS where the attacker resides is
assumed to be untrusted, just as in S4 (Strunk et al., 2000) and
SBIDS (Pennington et al., 2010). ShieldFS provides some defense
against an attacker who attempts to disable ShieldFS. Al-
though the ShieldFS drivers are designed to be immutable, the
authors describe a path to disable ShieldFS under an at-
tacker, who has administrative privileges or by compromising
the OS kernel.The design ultimately led to the decision of using
a log-structured file system as in Strunk et al. (2000) to allow
quick checkpoint creation and recovery of user files.

Drakvuf (Lengyel et al., 2014) is capable of capturing deleted
files from memory by intercepting specific system calls. Drakvuf
checks the system call parameters to determine if the file is
cached in memory and set for deletion, a strategy used by
malware droppers. If the conditions are met, Drakvuf calls Vola-
tility from the VMM to save the file from memory before it is
deleted. In our evaluation of R2D2, we explore adversaries who
use secure delete methods to destroy data objects, rather than
referencing objects in-memory. Since R2D2 is a plug-in for
Drakvuf, it is possible to run R2D2 in conjunction with the in-
memory file recovery.

196 c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

8. Conclusion

Data destruction programs, such as Wiper Malware, cause
substantial damage by overwriting critical digital assets on
compromised machines, affecting the availability, utility,
and integrity of critical files. We take inspiration from some
recent work on detecting and preserving data in the face of
Ransomware but realize that there are some fundamental dif-
ferences between the two. We successfully demonstrate that
some of the features from prior work may help identify data
destruction attacks invoked by several Wiper Malware samples
and we improve the design by isolating the analysis and data
preservation away from the attacker.

Our system, R2D2, analyzes write buffers before they reach
a storage medium, determines if the write is destructive, and
preserves the data under destruction. We interpose the in-
spection in the Virtual Machine Monitor (VMM) through a
technique known as Virtual Machine Introspection (VMI). This
has the benefit that it does not rely on the entire OS as a root
of trust, unlike prior systems that protect Crypto Ransomware,
due to the isolation of the analysis and monitoring within a
VMM.We demonstrate the effectiveness of our prototype imple-
mentation by preserving data targeted for destruction by Wiper
Malware such as Shamoon and Stonedrill, and a host of secure
delete methods. We discover that R2D2 detects data destruc-
tion for all of the secure delete methods considered, except for
one, where its detection percentage is 99.8%. With a host of
benign file operations, R2D2 suffers only a 0.2% false positive
rate. We see that R2D2 can successfully preserve the integrity
of the data under destruction against the latest wave of Wiper
Malware, such as Shamoon 2 and Stonedrill, and provide an
acceptable performance under several office and home use
cases. While our prototype implementation is not optimized
for performance, the overhead associated with R2D2 analysis
contributes to about 0.1%–1.6%; an additional 9.5%–18.6% over-
head is due to VMI. Efforts in reducing the overhead of VMI
will directly benefit R2D2 and allow it to be used in scenarios
where higher storage throughput is required than in a home
or an office setting.

Acknowledgments

The authors would like to thank the National Science Foun-
dation for supporting this research through the EAGER Grant
#1548114 and Adam Hammer at the Center for Education and
Research in Information Assurance and Security (CERIAS) for
his technical assistance.Thank you Mathias Payer for your valu-
able feedback and discussion on topics presented in this
paper.

Appendix A

PCMark work benchmark summary

The Work Benchmark contains two separate web browser per-
formance tests. The JunglePin Test simulates a user browsing

on a social networking website. The test measures the latency
to render the page and the rendering speed for several ani-
mations.The other web browser test, Amazonia Test, is an online
commerce website, which consists of the latency to update a
shopping cart and several animations. Both tests use Inter-
net Explorer 9.

The Work Benchmark also includes a word processing test
called the Writing Test. The test measures the time to load/
save a document, resize the window, copy/paste text, and add
a picture to a document. The Writing Test uses a document
editor develop by PCMark.

The Spreadsheet Test measures the time to open and close
a spreadsheet, copy and paste data between spreadsheets,
process data, and edit cells. The Spreadsheet Test uses
LibreOffice Calc, an open source office document editor, for data
processing.

Appendix B

PCMark storage benchmark summary

The storage performance consists of I/O traces of several popular
applications: four from Adobe Systems, three from Microsoft,
and two computer games. The Adobe Systems applications
include Photoshop, a photo editing application; InDesign, a web-
publishing application; AfterEffects, a video editing and effects
application; and Illustrator, a vector image editing applica-
tion. The Microsoft tests include Microsoft Word, Excel, and
Powerpoint. The two computer games are Battlefield 3, a first-
person shooter, and World of Warcraft, an online role-playing
game. All tests have a single configuration except Photoshop,
which runs under a “light” or “heavy” usage.

Appendix C

Randomness classifier

The classification tree training uses the scikit-learn Python
library (Pedregosa et al., 2011), which uses an optimized version
of Classification and Regression Tree (CART) algorithm. We
explore the maximum depth parameter, up to a maximum
depth of four, which produces classification trees that consist
at most of four randomness features and four Boolean
statements.

For each interposed write buffer, we must consider the
sample size, sample offset, and sample frequency for system write
calls issued to a file. The sample size should be at least the
recommended minimum input size for each NIST random-
ness feature used in our classifier. The maximum sample size
must also consider testing the entire write buffer, sub-segment
of the write buffer, or combine several write buffers. We con-
strain the maximum buffer size as the smallest file size in
Windows, 4096 bytes. We validate our classifier by exploring
several buffer sizes between 16 bytes to 4096 bytes and iden-
tify a buffer size which provides high accuracy while not
blowing the latency overhead.

197c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

The features for our classification tree consist of p-values
returned by NIST randomness tests (Rukhin et al., 2010). Our
evaluation shows that even with four randomness tests (or
fewer), FP/FN rates can fall below 1% and would be accept-
able in many scenarios.

We also observed through experimentation that a sample
offset of zero provides viable information, such as file signa-
tures. Further, we also set the sample frequency to only analyze
the first write to a file. We show that only sampling the first
write is sufficient to detect the data destruction in our evalu-
ation. However, an adversary can adjust their strategy to
circumvent the conservative sample frequency. A discussion
is provided in Section 6.

We use disjoint training and validation sets for our experi-
mental evaluation. The training set is used to train our
classification tree, the validation set explores the optimal pa-
rameters for our classification tree, and the testing set evaluates
previously unseen data with the optimal classification param-
eters, which we present in conjunction with other detection
mechanisms in Section 4.

For the Benign class, we use the forensics files corpora de-
tailed in (Garfinkel et al., 2009). Specifically, R2D2 is evaluated
against the Govdocs18 dataset, which consists of files gath-
ered from .gov domains. The full distribution of training,
validation, and testing sets are show in Fig. A1.

The Govdocs1 dataset provides ten “threads,” each consist-
ing of about 1000 randomly selected files from the entire
corpora. The intention for the “threads” is for researchers
to select distinct threads for training, validation, and
testing.

The Benign class consists of all 991 files in thread0 for
training and 993 files in thread1 for validation. For the de-
structive class, we use the same files overwritten with
pseudorandom bits using the shred (Free Software Foundation,
Inc, 2016) utility. The training and validation sets each

consists of an equal number of Benign and Destructive class
samples.

Parameter settings for randomness classifier
For our evaluation, we measure the accuracy with increasing
write buffer sizes for R2D2. We find the optimal buffer size by
evaluating the precision and recall for buffers ranging from 16,
32, …, 4096 bytes. We vary the depth of the classification tree
from 1 to 4. As the depth of the tree increases, the classifica-
tion latency increases, but there is a better fit to the data. Our
policy defines a sample offset of zero, and the sampling fre-
quency is defined to sample only the first system write call to
a file. The rationale is derived from the observation that the
secure delete tools we examine, shown in Table 1, destroy files
sequentially from the beginning of the file to the end of the
file. Therefore sampling from every system write call on a file
is redundant. The parameter values can be changed either de-
terministically or can be sampled from a distribution to add
to the entropy of the protected system.

Randomness tests
Through our evaluation, we decided on a tree that uses four
different randomness tests that provide high accuracy and low
computational cost: The Frequency (Monobit) Test, Frequency
Test Within a Block, Runs Test, and Longest-Run-of-Ones in a
Block Test.

Frequency Monobit TestThe Frequency (monobit) Test calcu-
lates the proportions of zero and one bits in a binary sequence.
Each proportion is expected to be about 1/2 if the sequence is
to be considered random. A sample size of at least 100 bits is
recommended. NIST recommends that this test be con-
ducted first because if this test fails, other randomness tests
are likely to fail as well.

Frequency Test Within a BlockRather than comparing the ratio
of one-bit to zero-bit over the entire sequence, the Frequency8 http://digitalcorpora.org/corpora/govdocs.

Fig. A1 – The distribution of files in training, validation, and testing sets.

198 c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

http://digitalcorpora.org/corpora/govdocs

Test within a Block breaks the sequence up into blocks. For each
block, the number of ones observed should be approximately
half the length of the block size if the sequence is random. NIST
recommends a sample that is at least 100 bits long, a block size
of at least 20 bits, a block size greater than 1% of the input se-
quences, and less than 100 block segments.

Runs TestThe Runs Test examines the “runs” within a given se-
quence. A run is an uninterrupted sequence of identical bits.
The test examines if the runs within a given sequence “vary
in length as expected for a random sequence” (Rukhin et al.,
2010). The minimum sample size is 100 bits.

Longest-Run-of-Ones in a Block TestThe longest-run-of-ones is
measured within a block of the given sequence and is com-
pared to what is expected for a random sequence of the same
block size. NIST provides recommendations for the block size
relative to the size of the input sequence. For instance, for a
sample length of at least 128 bits NIST recommends block sizes
of eight bits. For larger sample lengths, the block size is in-
creased: block size of 128 for input length of 6272 and 10,000
for input length of 750,000 (Rukhin et al., 2010).

Classification training and validation
Figs A2 and A3 illustrate the recall and precision of various
buffer sizes and max tree depth configurations. The x-axis is
the maximum depth training parameter and the y-axis is the
write buffer size. Each cell in the figures represents the precision/
recall rate of training and validating the classifier with the given
parameters. The general trend is that as the size of the buffer
increases, the recall and precision increases. A buffer size above
512 bytes is capable of over 0.95 precision and over 0.98 recall.
For the tree depth parameter, our results show a trend of in-
creasing recall and precision rate as the depth of the tree

increases. Note that even while inspecting small write buffers
between 16 to 256 bytes, R2D2 is capable of recall rate above
0.9 and precision rate above 0.84.

The box highlighted in red in Figs A2 and A3 indicates the
classification parameters selected for our testing of R2D2. We
select a buffer size of 4096 and tree depth of two because the
recall and precision rates on our validation sets are both above
99% and increasing the depth of the tree does not signifi-
cantly improve the accuracy. Fig. A4 details the classification
tree created by our training.Three features are used in this clas-
sification tree: Frequency Test within a Block, Block Frequency
(monobit) Test, and longest runs (Rukhin et al., 2010). The false
positives we observed in our validation did not follow any dis-
cernible pattern and were approximately uniformly spread
among html, gif, and swf files.

Fig. A2 – Recall Score on validation set for increasing buffer
sizes and maximum depth of tree parameters. For our
experimental evaluation, we select the parameters of tree
depth of two and buffer size 4096 bytes. (For interpretation
of the references to color in the discussion of this figure,
the reader is referred to the web version of this article.)

Fig. A3 – Precision Score on validation set for increasing
buffer sizes and maximum depth of tree parameters. For
our experimental evaluation, we select the parameters of
tree depth of two and buffer size of 4096 bytes. (For
interpretation of the references to color in the discussion of
this figure, the reader is referred to the web version of this
article.)

Fig. A4 – Classification tree selected for testing with input
buffer size of 4096 bytes and tree depth of two.

199c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

R E F E R E N C E S

Bacs A, Giuffrida C, Grill B, Bos H. Slick: an intrusion detection
system for virtualized storage devices. In: Proceedings of the
31st annual ACM Symposium on Applied Computing (SAC
’16). New York: ACM; 2016. p. 2033–40. https://doi.org/10.1145/
2851613.2851795.

Baumgartner K. Sony/Destover: mystery North Korean actor’s
destructive and past network activity. Technical Report.
Kaspersky Lab; 2014. Available from: https://securelist.com/
destover/67985/. [Accessed 6 May 2017].

Continella A, Guagnelli A, Zingaro G, De Pasquale G, Barenghi A,
Zanero S, et al. ShieldFS: a self-healing, Ransomware-aware
file system. In: Proceedings of the 32nd Annual Conference
on Computer Security Applications (ACSAC ’16). New York:
ACM; 2016. p. 336–47. https://doi.org/10.1145/2991079
.2991110.

Dolan-Gavitt B, Leek T, Zhivich M, Giffin J, Lee W. Virtuoso:
narrowing the semantic gap in virtual machine introspection.
In: Security and Privacy (SP), 2011 IEEE symposium on. IEEE;
2011. p. 297–312.

Free Software Foundation, Inc. GNU Coreutils 11.6 shred: remove
files more securely. Free Software Foundation, Inc. Technical
Manual; 2016. Available from: https://www.gnu.org/software/
coreutils/manual/html_node/shred-invocation.html.
[Accessed 27 November 2016].

Futuremark Corporation. 2016 a. PCMark 8 technical guide; 2016.
Garfinkel S, Farrell P, Roussev V, Dinolt G. Bringing science to

digital forensics with standardized forensic corpora. Digit
Investig 2009;6:S2–11.

Garfinkel T, Rosenblum M. A virtual machine introspection
based architecture for intrusion detection. Proc Netw
Distrib Syst Secur 2003;1:253–85. https://doi.org/10.1109/
SP.2011.11.

Goel A, Po K, Farhadi K, Li Z, de Lara E. The Taser intrusion
recovery system. In: Proceedings of the twentieth ACM
Symposium on Operating Systems principles (SOSP ’05). New
York: ACM; 2005. p. 163–76. https://doi.org/10.1145/1095810
.1095826.

Gutmann P. Secure deletion of data from magnetic and solid-
state memory. In: Proceedings of the 6th conference on
USENIX Security Symposium, focusing on applications of
cryptography – (SSYM’96), vol. 6. Berkeley (CA): USENIX
Association; 1996. p. 8.

Ivanov A, Mamedov O. ExPetr/Petya/NotPetya is a wiper, not
ransomware. Technical Report. Kaspersky Lab; 2017.
Available from: https://securelist.com/expetrpetyanotpetya
-is-a-wiper-not-ransomware/78902/. [Accessed 17 September
2017].

Jain B, Baig MB, Zhang D, Porter DE, Sion R. SoK: introspections
on trust and the semantic gap. In: 2014 IEEE symposium on
security and privacy. 2014. p. 605–20. https://doi.org/10.1109/
SP.2014.45.

Jiang X, Wang X, Xu D. Stealthy malware detection through
VMM-based out-of-the-box semantic view reconstruction.
In: Proceedings of the 14th ACM conference on Computer
and communications security. ACM; 2007. p. 128–38.

Kasumu K. CrystalDiskMark; 2017. Available from:
http://crystalmark.info/?lang=en. [Accessed 2 June 2017].

Kessler GC. File signatures table; 2017. Available from: http://
www.garykessler.net/library/file_sigs.html. .

Kharaz A, Arshad S, Mulliner C, Robertson W, Kirda E. UNVEIL:
a large-scale, automated approach to detecting ransomware.
In: 25th USENIX security symposium (USENIX security 16).
Austin (TX): USENIX Association; 2016. p. 757–72. https://
www.usenix.org/conference/usenixsecurity16/technical
-sessions/presentation/kharaz.

Kong J. Designing BSD rootkits. San Francisco (CA): No Starch
Press; 2007.

Konishi R, Amagai Y, Sato K, Hifumi H, Kihara S, Moriai S. The
Linux implementation of a log-structured file system. SIGOPS
Oper Syst Rev 2006;40(3):102–7. https://doi.org/10.1145/
1151374.1151375.

Lee W, Payne BD, Carbone M. Secure and flexible monitoring of
virtual machines. Comput Secur Appl Conf Ann 2007;385–97.
https://doi.org/doi.ieeecomputersociety.org/10.1109/ACSAC
.2007.10.

Lengyel TK. Drakvuf. GitHub Repository; 2016. Available from:
https://github.com/tklengyel/drakvuf. .

Lengyel TK, Maresca S, Payne BD, Webster GD, Vogl S, Kiayias A.
Scalability, fidelity and stealth in the DRAKVUF Dynamic
Malware Analysis System. In: Proceedings of the 30th
annual computer security applications conference. 2014.

Mankin J, Kaeli D. Dione: a flexible disk monitoring and
analysis framework. Berlin, Heidelberg: Springer Berlin
Heidelberg; 2012. p. 127–46. https://doi.org/10.1007/978-3
-642-33338-5_7.

McMillen D. Wiper malware analysis – research and intelligence
report. Technical Report. IBM MSS; 2014.

Microsoft Corporation. ZwWriteFile Routine; 2016a. Available
from: msdn.microsoft.com/en-us/library/windows/hardware/
ff567121(v=vs.85).aspx. [Accessed 27 November 2016].

Microsoft Corporation. Naming files, paths, and namespaces;
2016b. Available from: https://msdn.microsoft.com/en-us/
library/windows/desktop/aa365247(v=vs.85).aspx. .

Microsoft Corporation. Driver signing. Software documentation;
2017. Available from: https://docs.microsoft.com/en-us/
windows-hardware/drivers/install/driver-signing. [Accessed 4
December 2017].

Parker DB. Toward a new framework for information security?
John Wiley & Sons, Inc.; 2012. p. 3.1–23. https://doi.org/
10.1002/9781118851678.ch3.

Payne B, Maresca S, Lengye TK, Saba A. LibVMI. GitHub
Repository; 2016. Available from: github.com/libvmi/libvmi. .

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel
O, et al. Scikit-learn: machine learning in python. J Mach
Learn Res 2011;12:2825–30. http://dl.acm.org/citation.cfm?id
=1953048.2078195.

Pennington AG, Griffin JL, Bucy JS, Strunk JD, Ganger GR. Storage-
based intrusion detection. ACM Trans Inf Syst Secur 2010;
13(4):Article 30, 27 pages. https://doi.org/10.1145/1880022
.1880024.

Perloroth N. In cyberattack on Saudi firm, U.S. sees Iran firing
back. New York Times; 2012. Available from: http://
www.nytimes.com/2012/10/24/business/global/cyberattack
-on-saudi-oil-firm-disquiets-us.html. .

Piper E. Cyberattack hits 200,000 in at least 150 countries –
Europol. Reuters; 2017. Available from: http://www.reuters
.com/article/us-cyber-attack-europol-idUSKCN18A0FX. .

Raiu C, Hasbini MA, Belov S, Mineev S. From Shamoon to
Stonedrill – Wipers attacking Saudi organizations and
beyond. Technical Report. Kaspersky Lab; 2017. Available
from: https://securelist.com/files/2017/03/Report_Shamoon
_StoneDrill_final.pdf. [Accessed 6 May 2016].

Rukhin A, Soto J, Nechvatal J, Miles S, Barker E, Leigh S, et al. A
statistical test suite for random and pseudorandom number
generators for cryptographic applications. National Institute
of Standards and Technology; 2010. p. 800.

Russinovich M. SDelete. Version 2.0; 2016. Available from: https://
technet.microsoft.com/en-us/sysinternals/sdelete.aspx.
[Accessed 27 November 2016].

Sammes T, Jenkinson B. Forensic computing: a practitioner’s
guide. London (UK): Springer-Verlag; 2000.

Scaife N, Carter H, Traynor P, Butler KRB. CryptoLock (and drop
it): stopping ransomware attacks on user data. In: 2016 IEEE

200 c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0010
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0010
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0010
https://doi.org/10.1145/2851613.2851795
https://doi.org/10.1145/2851613.2851795
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9000
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9000
https://securelist.com/destover/67985/
https://securelist.com/destover/67985/
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0020
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0020
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0020
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0020
https://doi.org/10.1145/2991079.2991110
https://doi.org/10.1145/2991079.2991110
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0025
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0025
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0025
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0025
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9005
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9005
https://www.gnu.org/software/coreutils/manual/html_node/shred-invocation.html
https://www.gnu.org/software/coreutils/manual/html_node/shred-invocation.html
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0035
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0040
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0040
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0040
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0045
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0045
https://doi.org/10.1109/SP.2011.11
https://doi.org/10.1109/SP.2011.11
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0050
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0050
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0050
https://doi.org/10.1145/1095810.1095826
https://doi.org/10.1145/1095810.1095826
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0055
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0055
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0055
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0055
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0055
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9010
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9010
https://securelist.com/expetrpetyanotpetya-is-a-wiper-not-ransomware/78902/
https://securelist.com/expetrpetyanotpetya-is-a-wiper-not-ransomware/78902/
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0065
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0065
https://doi.org/10.1109/SP.2014.45
https://doi.org/10.1109/SP.2014.45
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0070
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0070
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0070
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0070
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0075
http://crystalmark.info/?lang=en
http://www.garykessler.net/library/file_sigs.html
http://www.garykessler.net/library/file_sigs.html
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0085
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0085
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0085
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0090
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0090
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0095
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0095
https://doi.org/10.1145/1151374.1151375
https://doi.org/10.1145/1151374.1151375
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0100
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0100
https://doi.org/doi.ieeecomputersociety.org/10.1109/ACSAC.2007.10
https://doi.org/doi.ieeecomputersociety.org/10.1109/ACSAC.2007.10
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0105
https://github.com/tklengyel/drakvuf
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0110
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0110
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0110
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0110
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0115
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0115
https://doi.org/10.1007/978-3-642-33338-5_7
https://doi.org/10.1007/978-3-642-33338-5_7
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0120
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0120
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0125
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567121(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567121(v=vs.85).aspx
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0130
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9015
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0140
https://doi.org/10.1002/9781118851678.ch3
https://doi.org/10.1002/9781118851678.ch3
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0145
http://github.com/libvmi/libvmi
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0150
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0150
http://dl.acm.org/citation.cfm?id=1953048.2078195
http://dl.acm.org/citation.cfm?id=1953048.2078195
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0155
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0155
https://doi.org/10.1145/1880022.1880024
https://doi.org/10.1145/1880022.1880024
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0160
http://www.nytimes.com/2012/10/24/business/global/cyberattack-on-saudi-oil-firm-disquiets-us.html
http://www.nytimes.com/2012/10/24/business/global/cyberattack-on-saudi-oil-firm-disquiets-us.html
http://www.nytimes.com/2012/10/24/business/global/cyberattack-on-saudi-oil-firm-disquiets-us.html
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0165
http://www.reuters.com/article/us-cyber-attack-europol-idUSKCN18A0FX
http://www.reuters.com/article/us-cyber-attack-europol-idUSKCN18A0FX
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9020
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9020
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9020
https://securelist.com/files/2017/03/Report_Shamoon_StoneDrill_final.pdf
https://securelist.com/files/2017/03/Report_Shamoon_StoneDrill_final.pdf
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0175
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0175
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0175
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0175
https://technet.microsoft.com/en-us/sysinternals/sdelete.aspx
https://technet.microsoft.com/en-us/sysinternals/sdelete.aspx
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0185
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0185
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0190
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0190

36th International Conference on Distributed Computing
Systems (ICDCS). 2016. p. 303–12. https://doi.org/
doi.ieeecomputersociety.org/10.1109/ICDCS.2016.46.

Schneier B. Applied cryptography: protocols, algorithms, and
source code in C. 2nd ed. New York: John Wiley & Sons, Inc.;
1996.

Sinitsyn F. TeslaCrypt 2.0 disguised as CryptoWall. Technical
Report. Kaspersky Lab; 2015. Available from: https://securelist
.com/teslacrypt-2-0-disguised-as-cryptowall/71371/.
[Accessed 6 June 2016].

Solomon A. A brief history of PC viruses. Comput Fraud Secur
Bullet 1993;12:9–19. https://doi.org/10.1016/0142
-0496(93)90263-V.

Strunk JD, Goodson GR, Scheinholtz ML, Soules CAN, Ganger GR.
Self-securing storage: protecting data in compromised
system. In: Proceedings of the 4th conference on symposium
on Operating System Design & Implementation – (OSDI’00),
vol. 4. Berkeley (CA): USENIX Association; 2000. p. Article 12.
Available from: http://dl.acm.org/citation.cfm?id=1251229
.1251241.

Suiche M. Petya.2017 is a wiper not a ransomware. Technical
Report. Comae Technologies; 2017. [Accessed 17 September
2017].

Sun R, Porter DE, Oliveira D, Bishop M. The case for less
predictable operating system behavior. In: 15th workshop on
Hot Topics in Operating Systems (HotOS XV). HotOS; 2015.
Available from: https://www.usenix.org/conference/hotos15/
workshop-program/presentation/sun. [Accessed 27 November
2016].

Tarakanov D. Shamoon the wiper: further details (part II).
Technical Report. Kaspersky Lab; 2012. Available from: https://
securelist.com/shamoon-the-wiper-further-details-part-ii/
57784/. [Accessed 6 May 2017].

Trant G, Low J, van Lith D. Eraser Appendix A: erasure methods;
2016. Available from: http://eraser.heidi.ie/appendix-a-erasure
-methods/. [Accessed 27 November 2016].

Verizon Wireless. 2017 data breach investigations report. 10th ed.
2017.

Ziem A. BleachBit – clean your system and free disk space; 2016.
Available from: https://www.bleachbit.org/. [Accessed 6 June
2016].

201c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 1 8 4 – 2 0 1

https://doi.org/doi.ieeecomputersociety.org/10.1109/ICDCS.2016.46
https://doi.org/doi.ieeecomputersociety.org/10.1109/ICDCS.2016.46
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0195
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0195
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0195
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9030
https://securelist.com/teslacrypt-2-0-disguised-as-cryptowall/71371/
https://securelist.com/teslacrypt-2-0-disguised-as-cryptowall/71371/
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0205
https://doi.org/10.1016/0142-0496(93)90263-V
https://doi.org/10.1016/0142-0496(93)90263-V
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0210
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0210
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0210
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0210
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0210
http://dl.acm.org/citation.cfm?id=1251229.1251241
http://dl.acm.org/citation.cfm?id=1251229.1251241
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0215
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0215
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0215
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9035
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9035
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9035
https://www.usenix.org/conference/hotos15/workshop-program/presentation/sun
https://www.usenix.org/conference/hotos15/workshop-program/presentation/sun
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr9040
https://securelist.com/shamoon-the-wiper-further-details-part-ii/57784/
https://securelist.com/shamoon-the-wiper-further-details-part-ii/57784/
https://securelist.com/shamoon-the-wiper-further-details-part-ii/57784/
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0230
http://eraser.heidi.ie/appendix-a-erasure-methods/
http://eraser.heidi.ie/appendix-a-erasure-methods/
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0235
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0235
http://refhub.elsevier.com/S0167-4048(17)30281-X/sr0240
https://www.bleachbit.org/

	 Reactive redundancy for data destruction protection (R2D2)
	 Introduction
	 Overview
	 Threat model
	 Assumptions
	 Requirements

	 Prototype design and implementation
	 Prototype interposition
	 Method
	 Policy
	 Implementation

	 Prototype analysis
	 Method
	 Policy
	 Implementation

	 Prototype preservation
	 Method
	 Implementation

	 Experimental evaluation
	 Metrics of interest
	 Accuracy analysis
	 Preservation under wipers
	 Performance analysis
	 Benign activity
	 Suspicious activity
	 Summary of results

	 Alternative methods and policies
	 Placement of R2D2
	 Analysis policy

	 Discussion and limitations
	 Hide from monitoring
	 Out-of-band destruction
	 Modify behavior to misclassify destruction
	 Other limitations

	 Related work
	 Conclusion
	 Acknowledgments
	 Appendix A
	 PCMark work benchmark summary

	 Appendix B
	 PCMark storage benchmark summary

	 Appendix C
	 Randomness classifier
	 Parameter settings for randomness classifier
	 Randomness tests
	 Frequency Monobit Test
	 Frequency Test Within a Block
	 Runs Test
	 Longest-Run-of-Ones in a Block Test

	 Classification training and validation

	 References

