How Reliable is my Wearable: A Fuzz Testing-
based Study

Abstract—As wearable devices like smartwatches and fitness
monitors gain in popularity and are being touted for clinical
purposes, it becomes important to evaluate the reliability of
Android Wear OS and apps on such devices. To date there
has been no study done by systematic error injection into the
OS or the apps. We address this gap in this work. We develop
and open source a fuzz testing tool for Android Wear apps and
services, called Qui-Gon Jinn (QGJ). We perform an extensive
fault injection study by mutating inter-process communication
messages and Ul events and direct about 1M such mutated
events at 46 apps. These apps are divided into two categories:
health/fitness and other. The results of our study show some pat-
terns distinct from prior studies of Android. Over the years, input
validation has improved and fewer NullPointerExceptions
are seen, however, Android Wear apps crash from unhandled
IllegalArgumentExceptions at a higher rate. There are
occasional troubling cases of the entire device rebooting due to
unprivileged mutated messages. Reassuringly the apps are quite
robust to mutations of Ul events with only 0.03% of them causing
an app crash.

I. INTRODUCTION

Over the last few years, wearable devices have grown
tremendously in popularity. In the private consumer market,
wearables include items such as smart glasses, smart watches,
hearables, fitness and health trackers, smart jewelry, and smart
clothing. The most successful wearable devices on the market
today are smart watches and health and fitness trackers.
The number of connected wearable devices worldwide was
estimated to be 325 million at the end of 2016 and is expected
to grow to over 830 million in 2020 [1]. A key driver for
their growth has been how these wearable devices simplify our
everyday tasks. Wouldn’t it be nice to have a watch that also
displays a person’s location or her daily fitness data? Wouldn’t
it be nice to monitor the heart rate or movements of patients in
a senior home? Wouldn’t it be nice to receive calendar alerts
on our watches? The answers to all these situations are “yes”
and they have become realities due to the emergence of smart
wearable devices. Smart watches and health sensors today
are providing a window into our health. However, every new
technology brings with it new risks and reliability concerns
and these have not been adequately studied for the wearables.
In this paper, our objective is to explore the reliability of these
highly personalized devices that are collecting deeply personal
and in cases, sensitive, data. We also point to fundamental
software engineering and architecture work that will make the
apps more reliable.

While a few researchers have explored the design decisions
and their vulnerabilities in the context of wearables [2], [3],
they have not shed light on failure mechanisms and their

propagation, in a detailed and comprehensive study. Com-
pared to smart phones, wearable devices pose several new
reliability challenges to device manufacturers and software
developers. Limited display area, limited computing power,
limited volatile and non-volatile memory, non-conventional
shape of the devices, abundance of sensor data, complex com-
munication patterns of the apps, and limited battery size—all
these factors can contribute to salient software bugs and failure
modes. Moreover, since many of the wearable devices are
used for health purposes (either monitoring or treatment), their
accuracy and robustness issues can give rise to safety concerns.

Our paper, therefore, focuses on a systematic evaluation of

popular apps on Android Wear (AW) devices, with a special

focus on health/fitness apps.

There has been significant work on understanding the vul-
nerabilities of Android OS and its apps, adapting techniques
from software testing [4]-[6]. However, to the best of our
knowledge, we present the first study of the reliability of
AW applications. AW shares much of the codebase with
AndroidOS and follows Androids conventional programming
paradigm: they are written in Java, compiled ahead-of-time,
and executed atop the managed Android Runtime. However,
there are major differences between traditional Android apps
and Wear apps. This is primarily due to the smaller display
area and rich sensor data in AW, as mentioned above. The
richness of the user activities supported is much more limited
and Wear apps mostly run in the background, communicate
with users using notifications, and are typically controlled
by a companion app on the smartphone. Based on these
observations, we ask the following questions about reliability
of AW:

1) Exception Types: What are the key differences between
traditional Android apps and Wear apps in terms of
exception handling? Are the relative proportions of man-
ifestations of uncaught exceptions (such as, app crash or
system reboot) similar?

2) Failures across Applications: What are the differences be-
tween failure manifestations across application types? Are
health/fitness apps more or less robust than other apps?

3) Robustness: How well do Wear apps handle unexpected
interactive user inputs? Can a user-level process crash
the system?

To answer these questions, we present the design and im-

plementation of Qui-Gon Jinn (QGJ)!, a simple user-level

I'Named after a powerful but maverick Jedi Master from Star Wars, one who
would disobey the Jedi Code if he felt it was the right decision.



tool (i.e., does not need rooted devices) for testing robustness

of Android Wear apps. QGJ consists of two components—a)

QGJ-Master’: An Android app for sending inter-component

communication messages (intents) to targeted applications,

and b) QGJ-UI: A tool based on Android Monkey fuzzer [7],

which can send malformed UI events to the wearable device.

Using both these components, we systematically inject a large

number of mutated, synthetic intents or mutated Ul events to a

selection of 45 popular Wear apps. We then analyze the system

logs to find how well these applications handled the mutated
intents or events.

Our key findings from the study are:

o Distribution of exception types does indeed differ
between Android [8] and Wear apps. Over the
years, input validation in Android has improved and
fewer NullPointerExceptions are seen, how-
ever, AW apps suffer failures at a higher rate
from unhandled IT1legalArgumentException and
IllegalStateException.

« Across application types, built-in apps showed more failures
compared to third-party apps. This has worrying implica-
tion for error propagation since many Android apps reuse
built-in apps and components. Our results did not indicate
any significant difference between health/fitness apps and
other apps.

o Several times during the experiments, the Wear device
rebooted in response to malformed intents. These reboots
did not occur in response to a single “deadly” intent but
rather at specific states of the device due to escalation of
multiple errors. This would indicate that the malformed
intents caused error accumulation, which eventually re-
booted the system.

o AW apps offer significant scope for improvement of input
validation. Although, many input validations are per-
formed by the system (which is an encouraging sign),
apps are not taking full advantage of these routines.
Improvements in development environments (IDE), static
code analysis, and automated robustness testing tools
(such as QGJ) can help in bridging this gap.

The rest of the paper is organized as follows. First, we
present an overview of key technology elements in our study
in § II. Then in § III, we present the design of our tool,
QG]J, and how we design the experiments. § IV discusses the
experimental results. We compare QGJ with existing work in
§ V. Finally, we conclude the paper in § VI with a discussion
of threats to validity.

II. BACKGROUND

A. Intents and Application Components

Android programming model is based on passing intent
messages for communication within or across applications.
An intent can been seen as a passive data structure with an
abstract description of an operation to be performed. Intent

2Unless otherwise specified, we use the names QGJ-Master and QGJ inter-
changeably. The UI testing component is explicitly referred to as QGJ-UL

itself represents a message including the operation to be
performed and the data needed to perform that operation.
The basic information in a intent includes: Action: a defined
action specified in the Android API, such as ACTION_VIEW,
ACTION_EDIT, ACTION_DIAL, etc.; Data: an URI that
represents the data item to be operated on, such as the URL
for a website or the URI for the phone number of a contact.
For example, the following valid action/pair {ACTION_EDIT,
content://contacts/people/1} can be used to mod-
ify the contact information of the person identified by “1”.
Additional optional fields includes: Category: additional infor-
mation about the action to execute; Type: specifies the explicit
type for intent data (a MIME type); Component: indicates
the component class to be used for the intent; Extras: key
value pairs for additional information. Moreover, there are two
types of intent: implicit and explicit, depending if the target
or destination component is defined in the intent. Implicit
intents are delivered to the best matching component in the
system, based on the information contained in the intent. QGJ
is focused on explicit intent.

The three types of Android application components relevant
to this study are as follows. Activity: the entry point for
interacting with the user. One app can invoke an activity in
another app, if permissions are granted. Service: a component
that runs in the background to perform long-running operations
or to perform work for remote processes. A service does not
provide a user interface. Broadcast receiver: a component that
enables the system to deliver events to the app outside of a
regular user flow, allowing the app to respond to system-wide
broadcast announcements.

B. Android Wear

Android Wear (AW) is the version of Android OS designed
for smartwatches and other wearable devices. The first version
was released on 2014, and the latest (2.0) early this year.
Unlike Android, AW is not completely open source; but is one
of the most popular OSes for wearables, with Apple WatchOS
and Samsung Tizen. AW is based on Linux, and follows
the same programming paradigm as Android OS, with some
significant differences that we outline next. Contrary to mobile
phones, wearables require minimal human interaction (micro
transactions). Hence, AW user interface (UI) is designed to
be the least attention seeking to the user, by showing minimal
information and centered on notifications, watch faces, native
applications and voice commands. AW applications are more
services driven in contrast to Android applications, which
usually have rich GUI Besides, since wearables need to be
worn on the body, AW take advantage of context-awareness
by sensing information from hardware and software sensors
equipped on the devices.

III. DESIGN OF OUR TOOL AND EXPERIMENT

A. Testing Tool

We built our testing tool, Qui-Gon Jinn (QGJ), following
the architecture of Jar Jar Binks [8]. We have open sourced
our tool and hope that others will use it for benchmarking the



emerging class of wearable apps [9]. Jar Jar Binks (JJB) is an
Android robustness testing tool, as opposed to Android Wear,
and it exploits IPC on Android. The tool can fuzz a single
component or a group of components registered in a device.
JIB supports fuzz injection of Activities, Services, and Broad-
cast Receiver components. QGJ extends the JJB capabilities
to support Android Wear, thus broadening the applicability
significantly to wearables. The overall architecture of QGJ is
shown in Figure 1. QGJ allows us to inject randomly generated
intents to both mobile and wearable devices. Basically, the
tool, which needs to be installed on two paired devices (mobile
phone and wearable) consists of three main components: a
mobile application (QGJ Mobile), a wear application (QGJ
Wear), and a fuzzer library. We begin describing each compo-
nent briefly. In this particular evaluation, we are only focusing
on fuzz testing on the wearable device. Henceforth, we may
shorten this to simply saying “fuzz test”.

QGJ Mobile. This is an Android application, which runs
on the mobile and offers a Ul to interact with the fuzzer.
The user can choose the component type to fuzz (Activities,
Services or Broadcast Receiver) and the type of test to execute
(a specific campaign as outlined in Table I). The application
allows the user to choose the target device: mobile or wearable.
If the mobile device is chosen as target device, the fuzz test is
done locally. Otherwise, QGJ Mobile communicates with the
wearable device to orchestrate the fuzz test. Once the test is
completed, the app shows a summary of the results.

QGJ Wear. This is an Android Wear application, which
executes on the wearable. It communicates with the mobile
app using the Android Wear MessageAPI and DataAPI. The
application receives the selected options on the UI, and exe-
cutes the fuzz test using the Fuzzer library. After the fuzzing,
the wearable app sends a summary of the results to the mobile
application.

Fuzzer Library. This is the Java library, which contains the
main functions needed to inject intents on the target device.
Since intents have to be sent from the target device, this library
is shared by QGJ Mobile and QGJ wearable. The library runs
the fuzz experiments asynchronously in the target device, and
the output is stored in the execution logs on the device.

The communication between the mobile device and the
wearable is shown in Figure 1. The QGJ Mobile app re-
trieves automatically all the components (Activities, Services
or BroadcasterReceiver) from the installed app on the Android
wearable (@). Next, from the Android device, we choose a
target application and the fuzzing campaign to use. Then the
Android phone communicates with the wearable using the AW
MessageAPI (@). When the AW device receives the message,
the wearable app forwards the input (the target component and
FIC) to the Fuzzer library to initiate the intent injection, €.
The fuzzer library, which is part of the QGJ wear application,
triggers the fuzzing on the chosen target app component(@)).
One of the goals of QGJ is to keep the tool simple and broadly
usable. Therefore, QGJ does not need any root privilege on
the device to run.

Android Android Wear
(phane side) (watch side)
Target
App
Inject
Intents
QGJ QGJ
Mobile Wear
input
nput
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Extract components fro m
wearable device
Fig. 1. Operational workflow of using Qui-Gon Jinn for doing fuzz-based

injection of apps on the mobile device (a phone is shown here) or the wearable
(a watch is shown here). The mobile device runs Android while the wearable
runs Android Wear. The workflow shows the communication between the
phone and the watch. The diagram does not include a target app on the mobile
side for clarity since this study is focused on fuzzing Android Wear apps.

B. Fuzz Intent Campaigns

Table I summarizes the Fuzz Intent Campaigns (FIC) used
for our evaluation. The table includes the strategy used to
generate intents, the number of intents generated, and a sample
injected intent for each fuzz campaign. The fuzzer has over
100 different Actions and 12 types of data URI (e.g., https,
http, tel) configured. Combinations of these are used in the
intents generated during various FICs. An example intent with
the Action ACTION_DIAL used to display the phone dialer
with a given number tel:123 is shown in Table I. We use
these FICs to evaluate how different kinds of corruption, from
the subtle to the more egregious, affect how they are handled
by the app components. In the best case, these should be han-
dled “gracefully” and not cause a user-visible failure. FICs
are targeted to Activities and Services components because
they form the large majority of the components on AW apps.
It is therefore important to understand how resilient they are
to incorrect intents. Since we have comparable FICs to prior
work on Android, we compare the manifestations to what was
earlier reported for Android apps.

C. Target Applications and Error Manifestations

Target apps. As described in § II-B, we define two categories
of applications—Health/Fitness and Not Health/Fitness. This
categorization is suggested by the fact that health/fitness apps
are unique to the AW ecosystem. These are aimed to monitor
user activity through the use of hardware or software sensors
included in the wearable device. In most cases, these apps
interact with the Google Fit API to access the sensors. This de-
pendency could mean that Health/Fitness apps are susceptible
to propagation errors from the Google Fit API, a hypothesis
that we verify through our experiments.

Applications can be orthogonally classified as either built-
in or third party apps. This distinction is important to note



TABLE I
Fuzz INTENT CAMPAIGNS

Campaign [ Characteristics of Intents Generated [ # Intents Generated [ Intent Example
A: Semi-valid Action | Valid Action and valid Data URI are generated | |Action| X |TypeOf (Data)| | {act=ACTION_DIAL,
and Data separately, but the combination of them may be data=http://foo.com/,

invalid.

cmp=some . component .name}

B: Blank Action or

Either Action OR Data is specified, but not both.

|Action| + |TypeOf (Data)| | {data=tel:123,

Data All other fields are left blank. cmp=some .component .name}
C: Random Action or | Action or the Data is valid, and the other is set | [Action|+ [TypeOf (Data)| | {act=ACTION_DIAL,
Data randomly cmp=some . component .name}

D: Random Extras

with random values.

For each Action defined, we create a valid pair
{Action, Data} with a set of 1-5 Extra fields

|Action] {act=ACTION_DIAL,
data=tel:123,
cmp=some.component .name

(has extras)}

TABLE II
APPLICATION STATS
Category Classification # | # Activities | # Services
Health/Fitness Built-in 2 81 34
Health/Fitness Third Party 11 80 59
Not Health/Fitness | Built-in 9 168 188
Not Health/Fitness | Third Party 24 185 117
Total 46 514 398

because built-in apps were developed by Google and are
already pre-installed on the device. These apps could include
general purpose applications (e.g., Google Calendar, Gmail)
or Android Wear core apps, like Google Fitness. Third-party
applications can be downloaded from the Google Play Store
and installed by the user. We used the number of downloads for
third-party apps as a measure of the maturity and popularity
levels of applications and selected only those with greater
than 1 million downloads. The complete breakdown of the
apps selected for our study is shown in Table II. The table
includes the number of components (Activities and Services)
per category. Previous to the start of the experiments, we
chose the 46 third-party apps from the Google Play store and
installed them in the smartwatch.

Error manifestations. For the experiments, we defined four
possible reliability manifestation or behaviors, which we list
in decreasing order of severity.

System reboot. The Operating System reaches an unrecov-
erable state and the device reboots. The reboot can also be
confirmed in the log files collected from the target device. This
is a serious manifestation because it can be used to launch a
Denial-of-Service against the entire device.

Crash. The application crashes due its inability to handle
malformed intents. This behavior is identified in the log files
as a “FATAL EXCEPTION: main” entry.

Hang or unresponsive. The application experiences tem-
porary unresponsiveness or freezes permanently, and does not
respond to any action. Eventually a correct state is achieved,
in some cases with human intervention. This manifestation is
distinguish by an ANR (Application Not Responding) error in
the log files.

No effect. There is no effect or failure manifestation due to
the malformed intent. The application and the OS behave as
expected. We can verify this behavior from the log files by the
absence of exceptions or errors, or a SecurityException

triggered by the OS after receiving the malformed intent.

D. Experiment Setup

The FIC experiments were conducted using a phone paired
via bluetooth to a wearable device. The phone (LG Nexus
4) had Android 5.0 (release date: July 2016 and nicknamed:
‘Lollipop’) as its firmware, while the wearable, Moto 360
had Android Wear 2.0 as firmware (release date: February
2017). QGJ was installed on both devices. The phone was
used to choose the required input and start the FICs intended
to fuzz the applications installed on the smartwatch. Prior to
the experiments, we tested all the applications on the wearable
device to check for basic device-app compatibility. Moreover,
we performed any initial setup required by the apps, to ensure
that all the functionalities are available during the experiments.
One important point of departure in our app components is the
relatively high frequency of Services compared to Activities.
Previous studies had targeted Activities at a higher rate since
they are more numerous in regular Android applications. Since
the user interaction with wearable apps is usually shorter
as compared to mobile apps, most of each application’s
workload is done by Services, which are background running
components that do the work triggered by some user action.

During the experiments, around a million intents were sent
to over 900 components (between Activities and Services).
The mechanism to run the experiments is as follows. First,
we choose a particular wearable application using QGJ UI,
from the mobile phone, and begin the experiments. The fuzzer
starts injecting malformed intents according to the particular
FIC. All 4 campaigns are executed one after another. Once
the execution of the experiments is done, we collected all of
the log files (over 2GB) from the wearable using logcat,
through the adb interface. Then, we analyzed the logs to
gather information, and for each component classified the
behavior of the application according to the expected scenarios
described in § III-C. For any failure or error encountered, we
manually analyzed further to find their possible root cause. The
QG]J fuzzing model is based on injection of random intents
into the wearable app, following a pattern defined for each
experiment. To keep the load due to intents realistic, we insert
a delay of 250 ms after every 100 intents.



E. OGJ-UI Design

While QGJ-Master evaluates the robustness of AW applica-
tions by sending explicit intent messages, it does not test how
apps handle user interactions. In most cases, sending an intent
via QGJ-Master has the effect of launching an activity or a
service. However, after launching an application, users often
interact with the application (or the device underneath) either
via touchscreen or via hardware keys. Evaluating application
robustness against such interactions would require emulating
user interface (UI) events. For this purpose, we developed
QGIJ-UI based on the Android stress testing tool Monkey [7],
which mutates intents or user events resulting from UI actions.

First, monkey is run on the target device to generate a
specific number of UI events. For event generation, we specify
equal percentages for different types of events (e.g. touch,
trackball, app switch, permission etc.). These Ul events may
trigger monkey to generate some intents. Next, the monkey
logs are parsed to find the Ul events and intents sent to the
wearable. Similar to QGJ-Master, QGJ-UI generates two types
of mutated events — semi-valid and random. In semi-valid,
the arguments for an event are randomly replaced by another
valid value for that argument that had been observed during
the experiment. Similarly, for random events, the arguments
are replaced with a random ASCII string or a float value
(depending on type). An example random event would be:
input tap -8803.85 4668.17 (note the invalid X,Y
coordinates). These mutated events or mutated intents are then
sent to the target device using adb shell utilities.

For this experiment, we used an Android Watch emulator
(Android 7.1.1, API level 25) and paired it with a Nexus
6 phone (Android 7.1.1). The choice of the Watch emulator
instead of the actual watch from the QGJ-Master experiment
was so that we could study the core functionality in isolation
(which is incorporated into the emulator) rather than together
with the vendor-specific extensions (as would be present in
the actual watch). Similar to the apps listed in Table II, we
installed on the emulator all the built-in apps and the top 20
of the most popular third-party apps. Although we do not
target the phone for this study, several Wear apps caused Ul
components to pop-up on the phone. Logs from the emulator
were collected using 1ogcat and later analyzed to generate
the results, which we present in § IV-C.

IV. EXPERIMENTAL RESULTS

We discuss our results based on the following perspectives:
(1) distribution of the error manifestations in the apps in
response to fuzzed intents; (ii) distribution of exceptions and
their ultimate error manifestations.

A. Distribution of Exception Types

To understand how well Android Wear responds to mal-
formed intents, we measure the distribution of uncaught
exceptions over all FICs. Here each exception is counted
once per component, even if it was raised several times.
Fig. 2 shows the distribution without considering security
exceptions, which represent 81.3% of all exceptions. Some
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Fig. 2. Distribution of type for uncaught exceptions (without considering
Security Exception) grouped by component type.

intents are reserved for privileged OS processes and when
sent by QGIJ raises the security exception. For example, when
QGJ sends an intent {act=ACTION_BATTERY_LOW}, a
SecurityException is thrown and the intent is ignored
by AW. This is the specified and secure behavior. After
SecurityException, the second largest share belongs to
IllegalArgumentException. This type of exception is
raised because of the mismatch on the data contained in an
injected intent and what is expected by the component.

We next consider the proportion of application components
that are affected by the mutated intents and classify the
components according to the 4 manifestations. This is shown
in Figure 3a. If a component has different manifestations to
multiple injected intents, we take the most severe manifes-
tation. We find that almost 90% of the components are not
affected at all. The most dominant error class if crash, which
is more than 8X the next error class, unresponsive. The most
severe error class, device reboot, affects 4 of the components.

Next, for each error manifestation, we study what exceptions
are the ultimate cause of that manifestation. This is shown in
Figure 3. The exception to which an error is ascribed is the one
that we determine through a simplified and almost automatic
root cause analysis. With many cases, a simple temporal chain
is used to determine the root cause automatically—thus the
first exception in a chain of exceptions is assigned the guilt.
In some cases, a tight-knit pattern among the exceptions is
deduced and one cannot be inferred to causally precede the
others. In such cases, we assign the blame for that error
manifestation equally among the exception classes. The first
observatin we make is that the NullPointerException
still dominates the crash cases, as in all prior studies on An-
droid reliability [5], [8], [10]. However, the relative proportion
is less and the decrease has been taken up by an increase
in the proportion of IllegalArgumentException and
IllegalStateException. For the no effect case, in
about 90% of the cases, there is no exception thrown upon re-
ceipt of the injected intent. In the remaining 10% of the cases,
an exception is thrown but that is handled by the app grace-
fully. For the pathological case of device reboot, three excep-
tion classes are equally culpable. For the unresponsiveness er-



ror category, I1legalStateException dominates, while
the presence of android.os.DeadObjectException
hints that garbage collection can have the undesirable effect.

Furthermore, a crash due to ArithmeticException
is worth highlighting. First, the ArithmeticException
was reported by a Health & Fitness application because a
“divide by zero” operation was reported on an AW class
GridviewPager. This Layout Manager class, which allows
navigation in both axes, was deprecated in AW 2.0 in favor
of other classes since horizontal paging is not encouraged
anymore [11], [12]. This finding indicates the presence of
errors in Android Wear ecosystem due to the lack of migration
to the AW 2.0 specification of some applications.

Next, we turn our attention to the numerous
IllegalArgumentExceptions. This exception should
be thrown to indicate that an argument is either illegal or
inappropriate. It is not surprising to find this exception in the
logs; however, this exception should not cause the application
to crash. A crashing behavior would indicate that input
validation in the activity has been implemented only partially.
For instance, Google Fit, a core AW component, reported
a crash because an intent {act=ACTION_ALL_APP} was
sent without the expected message (Complication Provider).

B. Distribution of Error Manifestations

Table III presents the distribution of behaviors for all
applications over the four fuzzing campaigns, grouped by ap-
plication type (as Health/Fitness or Not Health/Fitness). Here
we classify the effect of the injection on an entire application
according to the four error manifestations. Since different
components within an app can have different manifestations,
we use the most severe manifestation for this result. We
conclude that there is no clear indication that Health/Fitness
apps, due to implicit complexity because of dependence on
other components (e.g., Google Fit API), are less robust than
others apps. Both categories have no effect due to the injection
at roughly the same rate, 69.2% for health apps versus 74.5%
for others. However, we found the highest severity error,
device reboots, in both categories of apps.

Fig. 4 presents the exceptions that cause the crashes, broken
down by built-in and third-party apps. The percentage is
calculated taking the two application classes together. It is
noteworthy that built-in apps reported crashes at a higher
rate (64%) than third-party apps (40%). The failures included
those in built-in core AW components aimed to track workout
activity, such as Google Fit and Motorola Body.

During the fuzzing campaigns, the system restarted twice
due to crashes. We find empirically that this manifesta-
tion depends on the transient state of device and happens
with error propagation across components and due to soft-
ware aging through repeated fuzzing campaigns. We give
the detailed post-mortem of these two cases considering
the severity of this error manifestation. First, a sequence
of malformed intents to a health app, which interacts with
heart rate sensor using SensorManager class (rather than
the more common Google Fit) provoked a system restart.

There were no exceptions raised before the crash, which
means the malformed intents were not rejected by the app.
During the sequence of injections, the application experi-
enced unresponsiveness (ANR) which explains the SIGABRT
sent by the system to shutdown the SensorService process
/system/lib/libsensorservice.so. Since this is
the core process which handles Sensor access on AW, the
system was left in an unstable state and the device rebooted.
The second device reboot was due to the inability of the system
to start an Activity because of missing data in the malformed
intent injected in a built-in app. The application crashed several
times due to the inability to start the activity that prevented
it from binding to the Ambient Service, a core AW service
to control low-power ambient mode. Then, the system sent
a SIGSEGV, which caused segmentation fault of the system
process, that eventually ended up rebooting the device.

C. QGJ-UI Results

In Table IV we give the results of our injection into the
UI events and resultant intents through the QGJ-UI, which
was introduced in § III-E. We only see two of the four
categories introduced earlier, “Crash” and “No effect”. Only
0.05% of the injections lead to app crash with semi-valid
injections, while there is no crash with random injections.
This is despite the fact that 1.5% of the injections lead to
exceptions, but all of these are handled. Reassuringly, we did
not observe any system crash during our UI injections. We
found that compared to QGJ-Master, QGJ-UI showed much
fewer number of exceptions and crashes, thereby showing
better resilience to malformed UI events. We posit that, besides
better input validation at the event handlers, two other factors
contribute to these positive results—(i) QGJ-UI only sends
intents to launcher activities of various applications, therefore,
the set of target components is fewer in QGIJ-UI These
components are also simpler and therefore tend to be more
reliable; (i1) We found that various adb tools (subcommands)
such as shell input, am (ActivityManager shell utility),
pm (PackageManager shell utility) have robust input vali-
dation and sanitization routines. For example, if an activity
com.android.phone is invoked by QGIJ-UI using am
without specifying an action or a category (similar to FIC
B), am automatically sets the action and category values as
{act=action.MAIN cat=category.LAUNCHER}.Itis
encouraging to see that Ul event handlers and adb tools
have better input validation and exception handling capabilities
compared to other application components.

During our experiments, we also found that different An-
droid components handle invalid inputs differently. For exam-
ple, if the pm utility is asked to send a random permission
string  SOme.r@ndom. $trinG’ to some.component,
it rejects the input string saying that no such permission
exists. However, the am utility would forward the string
’SOme.r@ndom.$trinG’ as an action string to a com-
ponent and relies on the correctness of input validation at the
component. Although this did not lead to crashes, we suggest
that input validation be consistent across Android components.
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TABLE III
DISTRIBUTION OF BEHAVIORS AMONG FUZZ INTENT CAMPAIGNS
Reboot Crash Hang No Effect
Health  Not Health | Health  Not Health | Health  Not Health | Health  Not Health
A: Semi-valid Action and Data 3% 0% 15% 12% 8% 0% 69% 88%
B: Blank Action or Data 0% 0% 31% 24% 0% 0% 69% 76%
C: Random Action or Data 0% 0% 31% 33% 8% 0% 62% 67%
D: Random Extra 0% 3% 15% 30% 8% 0% 77% 67%
B Builtin @ Third Party handing in Java applications [13]. The high-level idea is to
perform static analysis of the application codes to check
java.lang.RuntimeException . . . .
- , ) ) how exception handling codes are linked together. We believe
java.util.concurrent.RejectedExecutionException R
android view WindowManager$BadTokenException similar approaches may be taken to detect the absence of
Javalang AvithmeticException exception handling codes and warn the developers within
Java lang ClassNotFoundException the IDE. Inspiration can be taken from the Eclipse IDE,
android content ActivityNotFoundException which warns developers if file 10 code is not guarded by
java.lang.Exception . h dl d
java.lang.lllegal ArgumentException IOEXC@pthD an lng codes.
java.lang eption
java.lang.NullPointerException . . . . .
Consistent input validation: In § IV-C, we found that various
0% 10% 20% 30% 40%

Fig. 4. Distribution of exceptions that originated crashes grouped by app
classification.

TABLE IV
DISTRIBUTION OF EXCEPTIONS AND CRASHES DURING QGJ-UI
EXPERIMENTS.

[ Experiment [ #Injected Events | Exceptions Raised [ Crashes |
Semi-valid 41405 1496 (3.6%) 22 (0.05%)
Random 41405 615 (1.5%) 0 (0%)

D. Software engineering techniques for improving robustness

Based on the results, it can be seen that Wear applications
often crash in response to unexpected intents, which cause
uncaught exceptions. Although these results are better com-
pared to [8] where NullPointerExceptions contributed
to 46% of all exceptions, there is still significant scope for im-
provement. For example, I11legalArgumentExceptions
are often not handled correctly by apps leading to crashes.
From our insights, we suggest three software engineering
techniques for improving robustness of Android Wear apps.
Better tool support: In the software engineering community,
there has been significant amount of work to analyze exception

Android components handle invalid arguments inconsistently.
For example, while PackageManager only accepts known
permission strings as valid values, ActivityManager tries
to interpret any string as a valid action or category. Inconsistent
handling of inputs can give rise to confusion among developers
and consequently more bugs. We recommend that intent fields
that can only have a limited number of valid values be more
rigorously validated by the Android system. However, semi-
valid intents will need more sophisticated techniques like
subtyping or Domain Specific Languages (IDL) as proposed
in [8].

Research on software aging: During our experiments, we
found the Adroid Watch rebooted twice. These reboots were
not due to a single malformed intent, but rather manifested
at certain stages of the experiments. We hypothesize that
such reboot is a manifestation of error accumulation in the
Android watch. We believe that research on software aging
and rejuvenation can help detect and potentially recover from
such accumulated errors. A recent work by Cotroneo et
al. [14] supports our observation and suggests some metrics
for detetcting software aging in Android.



V. RELATED WORK

Android. Over the years, there have been several projects
on testing of Android applications. At a high level, these can
be broadly classified into papers that focus on Android security
and those that focus on application robustness or correctness.
In Android security testing, popular themes are—Android
permission model [15], Inter-process communication vulner-
abilities [16], and privilege escalation [17]. Among these,
research related to inter-process communication in Android
is closest to our work. Although we do not exploit IPC
vulnerabilities, our testing attempts to find input validation
errors in intra and inter application messages which may lead
to detection of security vulnerabilities. Non security-related
research can be broadly classified into two categories: (i)
solutions that focus on testing application GUI in Android
[6], [18], [19], and (ii) solutions that focus on finding bugs or
design flaws in application components [4], [8], [20].

Our work is closest to the JarJarBinks (JJB) tool presented
by Maji et al. [8]. JJB uses different types of fuzz injection
campaigns (FIC) to detect exception handling errors in stock
Android applications and services. Following a similar fuzzing
architecture, we evaluate the robustness of Android Wear
applications in this paper. Our paper differs from [8] in two
significant aspects: (i) we focus on Android Wear apps instead
of Android mobile apps and (ii) we not only inject intent
messages, but also inject UI events.

Android Wear. Existing research work on Android Wear
primarily focuses on the efficiency, performance, and correct-
ness of Wear runtime and applications. Liu et al. examined
the execution of AW apps by profiling the OS and discovered
execution inefficiencies and OS design flaws [3], [21]. Chen
et al. [22] characterized various properties of smartwatch
usage in the wild, by analyzing collected data from 27 AW
users during a 106 day span. Their study provides a better
understanding of wearables, and characterizes key system
aspects, such as power modeling and network behaviors.
More recently, Zhang et al. presented a testing tool based on
modeling the AW notification mechanism, geared to achieve
high coverage [19]. However, to the best of our knowledge, our
paper presents the first robustness study of AW applications.
We found that in contrast to [8], Android Wear shows fewer
crashes from NullPointerExceptions and more crashes
from IllegalArgumentExceptions.

VI. CONCLUSION

Here we have done an extensive study of the re-
liability of Android Wear apps through mutating inter-
process communication messages (called intents) and Ul
events. We find that while NullPointerException han-
dling has improved relative to Android, there is still a
disturbingly high incidence of other exceptions, such as
IllegalArgumentException. We find that built-in apps
crash at a higher rate than popular third-party apps and a con-
fluence of factors—software aging and cascading failures—
can cause the entire device to reboot even through mutating
unprivileged intents. The apps are remarkably resilient to

mutating UI events with only 0.03% of them causing an app
crash. We shed light on three approaches that can improve the
resilience of AW apps—better IDE support, consistent input
validation, and guarding against software aging.

We acknowledge three primary threats to validity. First, our
study has used a single wearable device and thus is blind to
vendor-specific customizations. Second, while most AW apps
are two-part, with a mobile device and a wearable component,
we have ignored the inter-device interactions and focused
only on the wearable components. Third, our comparison with
Android error manifestations is not fully accurate since the
earlier studies were done on a different version of Android.
Our future work will focus on addressing these concerns.
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