Rariki: A Middleware for Parameter Tuning of NoSQL Datastores
for Dynamic Metagenomics Workloads

Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh

Purdue University

Wolfgang Gerlach, Travis Harrison, Folker Meyer

Argonne National Laboratory

Abstract

High performance computing (HPC) applications, such as metage-
nomics and other big data systems, need to store and analyze huge
volumes of semi-structured data. Such applications often rely on
NoSQL-based datastores, and optimizing these databases is a chal-
lenging endeavor, with over 50 configuration parameters in Cas-
sandra alone. As the application executes, database workloads can
change rapidly from read-heavy to write-heavy ones, and a system
tuned with a read-optimized configuration becomes suboptimal
when the workload becomes write-heavy.

In this paper, we present a method and a system for optimizing
NoSQL configurations for Cassandra and ScyllaDB when running
HPC and metagenomics workloads. First, we identify the signifi-
cance of configuration parameters using ANOVA. Next, we apply
neural networks using the most significant parameters and their
workload-dependent mapping to predict database throughput, as
a surrogate model. Then, we optimize the configuration using
genetic algorithms on the surrogate to maximize the workload-
dependent performance. Using the proposed methodology in our
system (RAFIKI), we can predict the throughput for unseen work-
loads and configuration values with an error of 7.5% for Cassandra
and 6.9-7.8% for ScyllaDB. Searching the configuration spaces using
the trained surrogate models, we achieve performance improve-
ments of 41% for Cassandra and 9% for ScyllaDB over the default
configuration with respect to a read-heavy workload, and also
significant improvement for mixed workloads. In terms of search-
ing speed, RAFIKI, using only 1/10000-th of the searching time of
exhaustive search, reaches within 15% and 9.5% of the theoreti-
cally best achievable performances for Cassandra and ScyllaDB,
respectively—supporting optimizations for highly dynamic work-
loads.

CCS Concepts +Software and its engineering — Software con-
figuration management and version control systems;

Keywords Database automatic tuning, Metagenomics workloads,
NoSQL datastores

ACM Reference format:

Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Subrata Mitra, Wolfgang
Gerlach, Travis Harrison, Folker Meyer, and Ananth Grama, Saurabh Bagchi,
Somali Chaterji. 2017. RarFikr: A Middleware for Parameter Tuning of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

Middleware ’17, Las Vegas, NV, USA

© 2017 ACM. 978-1-4503-4720-4/17/12...$15.00

DOI: 10.1145/3135974.3135991

28

Subrata Mitra
Adobe Research

Ananth Grama, Saurabh Bagchi, Somali Chaterji

Purdue University

NoSQL Datastores for Dynamic Metagenomics Workloads. In Proceedings
of Middleware ’17, Las Vegas, NV, USA, December 11-15, 2017, 13 pages.
DOI: 10.1145/3135974.3135991

1 Introduction

Metagenomics applications, poised alongside other big data sys-
tems, have seen explosive data growth, placing immense pressure
on overall datacenter I/O [13]. Automatic database tuning, a corner-
stone of I/O performance optimization, remains a challenging goal
in modern database systems [11, 39, 44]. For example, the NoSQL
database engine Cassandra offers 50+ configuration parameter, and
each parameter value can impact overall performance in different
ways. We demonstrate that the performance difference between
the best and worst configuration files for Cassandra can be as high
as 102.5% of throughput for a read-heavy workload. Further, the
optimal configuration setting for one type of workload is subopti-
mal for another and this results in as much as 42.9% degradation
in database performance in the absence of optimized parameter
versions, such as in our system RAFIKI. In this paper, we present
RAFIKT!, an analysis technique and statistical model for optimizing
database configuration parameters to alleviate I/O pressures, and
we test it using Cassandra, when handling dynamic metagenomics
workloads.

Prior work and the state-of-practice have left several gaps in
database configuration optimization that RAFIKI addresses. First,
most approaches rely on expert knowledge for significant param-
eter selection or simply include all parameters for tuning. For
example, [25] singles out a parameter from prior work surveys
(over-simplification), while [6, 7] include most, if not all, parame-
ters, with consequent time-complexity issues. In RAFIKI, we utilize
analysis of variance (ANOVA [28]) to identify key parameters from
the set of all parameters for further analysis, thus, reducing the
computational complexity and data collection overheads for model
training. Second, many techniques utilize optimization approaches
that are vulnerable to local maxima, by making linear assumptions
about the performance response of each tuning parameter [5], or
rely on online tuning techniques. In practice, this results in sub-
optimal performance and very long wall-clock convergence times
due to the overhead of performance metric collection (minutes per
trial). RAFIKI utilizes trained surrogate models for performance to
enable rapid searching via stochastic models to mitigate local max-
ima concerns. Finally, most approaches do not account for dynamic
workload changes when tuning. For example, [19, 42] require over
30 minutes to adapt to new workloads. RAF1KI includes workload
characteristics directly in its surrogate model so that large step

1Just as RAFIKT was the wise monkey from “The Lion King” who always knew how to
avoid dead ends, we wish our system to avoid poor-performing dead-spots with its
sagacity.

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

Data Collection

Configuration Configuration

Workload applied Parameters Parameters
on each —_—
#I data-store
[Workload

t

avg. throughput

1/7/7 TS
‘//Performang\‘
_ Moniter /
L %, i

parameters T

A. Mahgoub et al.

Runtime

avg. throughput

Prediction Model

(deep neural network)

predicted new config
avg. space to
throughput explore

Termination:
close-to-optimal

configuration
- T

Search Strategy

(genetic algorithm)

Figure 1. A high-level overview schematic of our proposed system RAFIKI that searches through the configuration parameters’ space of
NoSQL datastores to achieve close-to-optimal performance. RAFIKI is agile enough to quickly adapt to changing workload patterns. In the
first phase (data collection), varying workloads and configurations are applied to the NoSQL datastore to identify the key configuration
parameters and to generate training data for a surrogate model. In the second phase, a prediction model is built and used to identify the
relation of configurations and workloads to performance. Finally, a search strategy is applied for a given workload to find close-to-optimal

configurations.

changes in workloads are rapidly met with large step changes in
configuration parameters. We find that this last piece is crucial in
big data applications, such as in metagenomics, where key reuse
distance is large, putting large pressures on the hard disk, and
the ratio of read-to-write queries changes rapidly during different
phases of its data manipulation pipeline.

We apply RAFIKI to database traces from Argonne National Lab’s
MG-RAST? system, the most popular metagenomics portal and
analysis pipeline. The field of metagenomics encompasses the se-
quencing and analysis of community microbial DNA, sampled di-
rectly from the environment. In recent years, DNA sequencing has
become significantly more affordable and widespread, being able
to sequence metagenomic samples more efficiently, affording the
exploration of microbiomes in different ecosystems, including in
the human gut [24] in different clinical manifestations, strongly
motivating research in metagenomics [8]. Consequently, metage-
nomics analysis have come to the fore in the realm of big data
systems for personalized medicine applications. Big data systems
must deal with ever-growing data volumes and access patterns that
are rising fast and exhibit vast changes, respectively. In MG-RAST,
for example, user counts and data volumes have grown consis-
tently over the past 9 years, and the repository today has roughly
280k total metagenomes, of which 40,696 are public, containing
over a trillion sequences and 131.28 Terabasepairs (Tbp) [43], us-
ing about 600 TB resources. Such growth has placed significant
pressure on I/O [40]. The system allows multiple users to insert
new metagenomes, analyze existing ones, and create new meta-
data about the metagenomes—operations that mirror many big
data applications where new data is inserted and existing data is
analyzed continuously. Such processes, especially in a multi-user
system like MG-RAST, result in highly dynamic database workloads
with extended periods of mixed read-write activity, punctuated by
bursty writes, and a dynamic mix of reads and writes during the
longest periods. Such accesses are atypical of the archetypal web
workloads that are used for benchmarking NoSQL datastores, and
consequently, the default configurations woefully under-perform

Zhttp://metagenomics.anl.gov

29

RAFIKI's optimized solutions. For example, due to the volume of
data and the typical access patterns in MG-RAST, key re-use dis-
tance is very large and this puts immense pressure on the disk,
while relieving pressure on caches.

We, therefore, felt the need for the design of the RAFIKI middle-
ware that can be utilized by NoSQL datastores for tuning their con-
figuration parameters at runtime. Our solution RAFIKI, as shown in
Figure 1, utilizes supervised learning to select optimal configuration
parameters, when faced with dynamic workloads. In the first phase,
the configuration files are analyzed for parameters-of-interest selec-
tion. Of the 50+ configurations in Cassandra, for example, we find
that only 5 significantly impact performance for MG-RAST. To dis-
cover this, workload-configuration sets are applied via benchmark
utilities, and the resulting performance measures collected from
a representative server. We determine significant configuration
parameters by applying ANOVA analysis to identify performance-
parameter sensitivities. Even with this restricted set of sensitive
parameters, the search space is large and an exhaustive search for
optimal configuration settings is infeasible. For example, for our
selected set of 5 parameter settings, the search space conservatively
has 25,000 points. Doing this exhaustive search means running
the server for a given workload-configuration combination for a
reasonable amount of time (such as, 5 minutes), thus giving a search
time of 2,080 hours—clearly infeasible for online parameter tuning.

In the second phase, we train a deep neural network (DNN) to pre-
dict performance as a function of workload and configuration. For
data collection, we collect benchmark data for a random subset of
the possible configurations. Each configuration is run against mul-
tiple workloads so that experimentally, a workload+configuration
map to a performance metric. We collect a relatively sparse set of
samples and utilize regularization techniques to prevent over-fitting
of a DNN-based regression model. From this model, we create a
surrogate for performance—given a new configuration and a new
workload, the DNN will predict the performance of the database
system. In the final phase, we use the surrogate model, in con-
junction with a genetic algorithm (GA), to search for the optimal
configuration. By the domain-specific choice of the fitness function,

http://metagenomics.anl.gov

RaAFIKE: A Middleware for Parameter Tuning

we are able to get close-to-maximum throughput for any given
workload characteristic.

RAFIKI is evaluated against synthetic benchmarks that have been
tailored to match the query distribution of the sample MG-RAST
application. Trace information from MG-RAST, measured over a
representative 4 day period, was analyzed to generate accurate
representations in the benchmarking tool. Additionally, some sub-
sampling of the trace was used to measure performance in a case
study. A second datastore, ScyllaDB, which is based on Cassandra, is
used to show the generality of the performance tuning middleware
for NoSQL datastores. RAFIKI’s ability to outperform the ScyllaDB’s
internal optimizer demonstrates its improvement over the state-of-
the-practice.

RAFIKI is able to increase Cassandra’s throughput compared to
the default configurations settings, by 41.4% for read-heavy work-
loads, 14.2% for write-heavy workloads, and 35% for mixed work-
loads. The DNN-based predictor can predict the performance with
only 5.6% error, on average, when confronted with hitherto unseen
workloads and with only 7.5% error for unseen configurations. The
improvements for ScyllaDB are more modest because of its internal
self-tuning feature—averaging 9% for read-heavy and read-only
workloads. Finally, by comparing with an exhaustive grid search,
we show that the performances achieved by our technique, using
only 1/10,000-th of the searching time of exhaustive search, is within
15% and 9.5% of the theoretically best achievable performances for
Cassandra and ScyllaDB, respectively.

The primary claims to novelty of our work can be summarized
as follows:

1. We demonstrate that the performance of the NoSQL en-
gines can change significantly with respect to the applied
workload characteristics (e.g., read-to-write proportions),
due to workload-dependent procedures, such as compaction.
Specifically, we identify that for metagenomics workloads,
it is important to dynamically and quickly vary a set of con-
figuration parameters to achieve reasonable performance.

2. We create a novel technique to predict the performance of
a NoSQL engine for unseen workload characteristics and
unseen configurations. This is challenging due to the non-
linear nature of the dependence of performance on these and
due to the inter-dependent nature of various configuration
parameters. This serves as a surrogate model for us to do a
search through the large space of configuration parameter
settings.

3. Our middleware, called RAFIKI, can search efficiently, using
genetic algorithms, through the parameter space to derive
close-to-optimal parameter settings, while using only 0.28%
of the time of an exhaustive search. Our search is agile
enough that it can be quickly re-done when the workload
characteristics change.

4. We identify that the chief configuration parameters are re-
lated to compaction, such as, when to combine multiple
data tables on disk into one and how many levels of tables
to maintain. The relation between compaction-related con-
figuration parameters and performance is non-monotonic,
while the parameter space is infinite with both continuous
and integer control variables. Our ANOVA analysis backs
up these claims.

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

The rest of the paper is organized as follows. In Section 2, we
cover the fundamental pieces of the optimization problem along
with MG-RAST. In Section 3, we describe the pieces of our solution
(Figure 1). Section 4 contains the implementation and analysis of
our approach. Section 5 covers related work and separates our
approach from existing art and Section 6 provides the conclusion.

2 Background

This section covers background material useful to understanding
the method by which we improve database performance.

2.1 NoSQL datastores

NoSQL datastores are key value stores that have begun to replace
traditional, transactional database systems (MSSQL/MySQL/Post-
greSQL) due to performance gains from the relaxation of transaction
requirements, i.e., the ACID properties [9], promising scalability
beyond what is possible in transaction-based SQL systems. Since
metagenomics and many other big data applications can tolerate a
certain degree of lack of consistency, we can instead prioritize avail-
ability and partition-tolerance [23]. For example, having a slightly
outdated copy of a genome may result in less pattern matches, but
the matches that are found are still valid results.

In this paper, we focus on Cassandra, an Apache Foundation®
project, which is one of the leading NoSQL and distributed DBMS
driving many of today’s modern business applications, including
such popular users as Twitter, Netflix, and Cisco WebEx.

2.2 Cassandra Overview: Key Features

This section describes the key features of Cassandra that become
prime focus areas for performance optimization.

2.2.1 Write Workflow

Write (or update) requests, a key performance bottleneck in bioin-
formatics, are handled efficiently in Cassandra using some key
in-memory data structures and efficiently arranged secondary stor-
age data structures [10]. We describe them next. As shown in

MEMORY
—1—> (g?ia_{;/\' __, | Memtable
o il B
e P
I\&Epeﬂé}l IL\.____F_lust'__/l
1 T
DISK l Bloom l
Commit Filter,
L S5Table
°9 Index

t (Cleanup — 1

Figure 2. Write workflow overview

figure 2, when a write request arrives, it is appended to Cassandra’s
CommitLog, a disk-based file where uncommitted queries are saved

3Cassandra V3.7 http://cassandra.apache.org

http://cassandra.apache.org

Middleware 17, December 11-15, 2017, Las Vegas, NV, USA

for recovery/replay. Then the result of the query is processed into
to an in-memory data structure called the Memtable. A Memtable
functions as a write-back cache of data rows that can be looked up
by key — that is, unlike a write-through cache, writes are batched
up in the Memtable until it is full, when it is flushed (the trigger
and manner of flushing are controlled by a set of configuration
parameters, which form part of our target for optimization). Each
flush operation transfers these contents to the secondary storage
representation, called SSTables. SSTables are immutable and every
flush task produces a new SSTable.

The data for a given key value may be spread over multiple
SSTables. Consequently, if a read request for a row arrives, all
SSTables (in addition to the Memtable) have to be searched for
portions of that row, and then the partial results combined. This is
an expensive process in terms of execution time, especially since
SSTables are resident in secondary storage. Over time, Cassandra
may write many versions of a row in different SSTables and each
version may have a unique set of columns stored with a different
timestamp. Cassandra periodically merges SSTables and discards
old data in a process called compaction to keep the read operation
efficient. The compaction process merges keys, combines columns,
evicts tombstones, consolidates SSTables, and creates a new index
in the merged SSTable.

2.2.2 Compaction

Cassandra provides two compaction strategies, that can be config-
ured on the table level. The default compaction strategy “Size-Tiered
Compaction” triggers a new compaction process whenever a num-
ber of similar sized SSTables exist, while “Leveled Compaction”
divides the SSTables into hierarchical levels. Size-Tiered Com-
paction: This compaction strategy activates whenever a set num-
ber of SSTables exist on the disk. Cassandra uses a default number
of 4 similarly sized SSTables as the compaction trigger, whereas
ScyllaDB triggers a compaction process with respect to each flush
operation. At read time, overlapping SSTables might exist and thus
the maximum number of SSTables searches for a given row can be
equal to the total number of existing SSTables. While this strategy
works well with a write-intensive workload, it makes reads slower
because the merge-by-size process does not group data by rows.
This makes it more likely that versions of a particular row may be
spread over many SSTables. Also, it does not evict deleted data until
a compaction is triggered. Leveled Compaction: The second com-
paction strategy divides the SSTables into hierarchical levels, say L0,
L1, and so on, where L0 is the one where flushes go first. Each level
contains a number of equal-sized SSTables that are guaranteed to
be non overlapping, and each level contains a number of keys equal
to 10X the number of keys at the previous level, thus L1 has 10X
the number of keys as in L0. While the keys are non-overlapping
within one level, the data corresponding to the same key may be
present in multiple levels. Hence, the maximum number of SSTable
searches for a given key (equivalently, row to be read) is limited to
the number of levels, which is significantly lower than the number
of possible searches using the size-tiered compaction strategy. One
drawback of the leveled compaction strategy is that the compaction
is triggered each time a MEMTable flush occurs, which requires
more processing and disk I/O operations to guarantee that the
SSTables in each level are non overlapping. Moreover, flushing
and compaction at any one level may cause the maximum number
of SSTables allowed at that level (say Li) to be reached, leading

31

A. Mahgoub et al.

to a spillover to Level L(i+1). Qualitatively it is known [35] that
size-tiered compaction is a better fit for write-heavy workloads,
where searching many SSTables for a read request is not a frequent
operation.

2.3 Performance metrics: Throughput and Latency

In this paper, we use mean throughput to measure the performance
of the datastore. Mean throughput represents the average number
of operations the system can perform per second and this is meant
to demonstrate the capacity of the database system to support MG-
RAST workflow. Some database systems focus on latency metrics
that represent the system’s response time as observed to the client,
but our workload is not latency sensitive, but rather is throughput
sensitive. Therefore, our methodology will consider the optimum
mean throughput.

2.4 Genomics Workloads

MG-RAST is the world’s leading metagenomics sequence data anal-
ysis platform developed and maintained at Argonne National Labo-
ratory [43]. Since its inception, MG-RAST has seen growing num-
bers of datasets and users, with the current version hosting 40,696
public and 279,663 total metagenomes, containing over a trillion
sequences amounting to 131.28 Tbp. The derived data products, i.e.,
results of running the MG-RAST pipeline, are about 10 times the
size of the submitted original data, leading to a total of 1.5 PB in
a specialized object store and a 250 TB subset in an actively used
datastore.

2.4.1 Workload Dynamism

Figure 3 shows the relative ratio of read to write (and update)
queries for 4 days of MG-RAST workload. Qualitatively, we ob-
serve that there are periods of read heavy, write heavy, and a few
mixed during the observed period. More importantly, the transition
between these periods is not smooth and often occurs abruptly and
lasts for 15 minutes or less. These frequent oscillations make it
difficult for online systems to adapt because the transients are very
sharp and clearly, static schemes, such as staying with the default
configuration settings, will lead to poor performance.

1N

- NSy w <
o N ®m S 0

100%

80%

60%

40%

Workload Percentage

20%

0%
N o o
©~N®

100
111
122
133

<
<
-

155
166
177
188
199
210
221
232
243
265
276

Quarter Hours
Reads m Writes

Figure 3. Patterns of workload for MG-RAST. The workload read-
/write ratios are shown for 15 minutes intervals.

2.4.2 Processing Pipeline

MG-RAST accepts raw sequence data submission from freely-regis-
tered users and pipelines a series of bioinformatics tools to process,
analyze, and interpret the data before returning analysis results

RaAFIKE: A Middleware for Parameter Tuning

to users. Bioinformatics tools in MG-RAST are categorized into:
filtering and quality control, data transformation and reduction
(such as, gene prediction and RNA detection), and data analysis
and interpretation (such as, protein identification and annotation).
Many independent users load, process, and store data through these
steps, and each user’s task may run concurrently with others in
the system. Each step accesses elements of a common (genetic)
community dataset.

Some pipeline stages break DNA sequences into many overlap-
ping subsequences that are re-inserted into the datastore, increasing
processed outputs by a factor of 10 over initial datasets. Moreover,
metagenomics often involves decisions that cannot be made un-
til late-stage pipeline passes, creating persistently large working
sets. Thus, in this analysis of NoSQL systems, we are driven by the
pressing needs of metagenomics platforms, such as MG-RAST.

3 Methodology

This section describes our proposed methodology for creating the
middleware for configuration tuning of NoSQL datastores. We start
off with the end-to-end workflow, which incorporates both the
offline training and the online optimal configuration parameter
choice in response to workload changes. Then, we describe the
details of each step of the workflow.

Rarikr Workflow

The Rarik1 middleware has the following workflow:

3.1

1. Workload Characterization: The database workloads are
parametrized and expected workloads are injected into the
system during data collection. The output metrics, in re-
sponse to these injected workloads, are measured. In our
domain, throughput is the metric of interest.

2. Important Parameter Identification: All of the perfor-
mance related control parameters are identified, and each
control parameter is independently varied, measured, and
ranked in order of importance using the ANOVA technique.
The top ranking parameters are designated as “key parame-
ters” and used for subsequent stages of the workflow.

3. Data Collection: Now targeted training runs are carried
out by varying the values of only the key parameters so
that their interdependent impact on the output metric can
be collected for further analysis.

4. Surrogate Modeling: The effect of the configuration pa-
rameters on the output metrics of interest for any given
workload characteristic, is modeled using a Deep Neural
Network (DNN).

5. Configuration Optimization (Online stage): This occurs
while the NoSQL system is operational. In this stage, the
optimal configuration parameters for the actual observed
workload is identified via a Genetic Algorithm (GA). The GA,
to explore a particular point in the search space, does not
need to execute the application but queries the surrogate
model, which is much faster.

Using this entire workflow, RAFIKI generates optimal configuration
for a specific server architecture (CPU speed, IO bandwidth, IO
capacity, memory capacity, etc.). RAFIKI can be used by a NoSQL
datastore engine and it is agile enough to converge to new optimal
settings in the face of changing workloads.

32

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

3.2 Notation

Here, we introduce some notation that we will use for the rest of the
section. Each database has a set of parameters P = {p1,p2,--- ,py},
where] is the number of “key parameters”, i.e., those that im-
pact performance to a given statistically significant level. Each
parameter p has constraints on its values, either programmatically
via software-defined limits, or pragmatically, via hardware or ap-
plication feasibility. It also has a default value that is specified
by the database software at distribution. The configuration is a
set of parameter values C = {v1,vs, ...y}, where value v; corre-
sponds to parameter p;. In shorthand, we define a configuration
by the set of values that have changed from the default settings,
e.g., C = {vg = 5,v3 = 9} implies that vy has its default value. Each
parameter p; has a number of possible distinct values n;, which
may be infinite if the domain of the parameter is in the set of real
numbers R. In these cases, the value may be quantized into a finite
space. The total number of possible configurations is then [—[{:1 nj.

3.3 Workload Characterization

In the first step of RAFIKI, we characterize the application workload
in order to apply synthetic benchmarking utilities to drive our
system. We use two key parameters to characterize the workload:

e Read Ratio (RR): the ratio between the number of read
queries and the total number of queries.

o Key Reuse Distance (KRD): the number of queries that pass
before the same key is re-accessed in a query.

The RR is crucial because the read and write workflows inside of
the database take different paths with different tuning parameters
that influence performance. The KRD is crucial when measuring
the importance of various levels of cache since if keys are rarely
reused, then caching is of limited value.

The granularity of time window over which the RR will be mea-
sured is dependent on the application. Conceptually, this time
interval should be such that the RR statistic is stationary, in an
information-theoretic sense [15]. For the MG-RAST workload, we
find that a 15 minute interval satisfies this property. A visual repre-
sentation can be seen in Figure 3. For the KRD, we define a very
long window of time over which the key reuse is studied. We then
fit an exponential distribution to summarize this metric and use
that for driving the benchmarking for the subsequent stages of the
workflow. For the MG-RAST case, we use the entire 4-day period
over which we have the detailed information about the queries to
calculate the KRD statistic. Operationally, it is challenging to get
the very detailed information about queries that is required for
calculating KRD. This is because of two factors. First, the logging
of the exact queries puts a strain on the operational infrastructure,
especially in a production environment (MG-RAST in our case), and
second, there are privacy concerns with this information, especially
in the genomics domain. Hence, for practical purposes, the window
of time over which the KRD is calculated, is bounded.

3.4 Important Parameter Identification

Cassandra® has over 25 performance-related configuration parame-
ters, and in this piece of our solution approach, we identify which
of these are the “key parameters”. We will then include these as

*http://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/
configCassandra_yaml.html

http://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/configCassandra_yaml.html
http://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/configCassandra_yaml.html

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

features in RAFIKI’s surrogate model of the performance of the
NoSQL datastore.

3.4.1 Key Parameters

Both Cassandra and ScyllaDB have over 50 configuration parame-
ters, around half of which are related to performance tuning [21]. It
is not feasible to search the space of all these parameters in order to
identify the optimal parameter settings and instead some pruning
is needed. For this, we seek to identify the “key parameters” i.e.,
the ones that affect performance of the application in a statistically
significant manner. For this, we apply an Analysis of Variance test
(Anova [28]) to each parameter individually, while fixing the rest
of the parameters to their default values. For example, C; = {v; =
5,09 = def,v3 = def}, Cy = {v1 = 10,v9 = def,v3 = def}, and
C3 = {v1 = 15,vy = def,v3 = def} will be used to collect three
sample points S1, Sz, S3. This parameter p; will be scored with the
var(S1, S2, S3), and the other two parameters will also be scored in
a similar way. Afterward, we select the top parameters with respect
to variance in average throughput. We find empirically that there is
a distinct drop in the variance when going from top-k to top-(k + 1)
and we use this as a signal to select the top-k parameters as the key
parameters. For Cassandra, RAFIKI identifies the following list of
parameters as the key parameters:

1. Compaction Method (CM): This takes a categorical value
between the available compaction strategies: Size-Tiered
or Leveled®. Size-Tiered is recommended for write-heavy
workloads, while Leveled is recommended for read-heavy
ones.

2. Concurrent Writes (CW): This parameter gives the number of
independent threads that will perform writes concurrently.
The recommended value is 8 X number of CPU cores.

3. file_cache_size_in_mb (FCZ): This parameter controls how
much memory is allocated for the buffer in memory that
will hold the data read in from SSTables on disk. The recom-
mended value for this parameter is the minimum between
1/4 of the heap size and 512 MB.

4. Memory table cleanup threshold (MT): This parameter is
used to calculate the threshold upon reaching which the
MEMTable will be flushed to form an SSTable on secondary
storage. Thus, this controls the flushing frequency, and
consequently the SSTables creation frequency. The recom-
mended setting for this is based on a somewhat complex
criteria of memory capacity and IO bandwidth and even
then, it depends on the intensity of writes in the application.

5. Concurrent Compactors (CC): This determines the number
of concurrent compaction processes allowed to run simul-
taneously on a server. The recommended setting is for
the smaller of number of disks or number of cores, with a
minimum of 2 and a maximum of 8 per CPU core. Simul-
taneous compactions help preserve read performance in a
mixed read-write workload by limiting the number of small
SSTables that accumulate during a single long-running com-
paction.

The third supported option "Time Window Compaction Strategy” is not relevant
for our workload and is thus not explored. That is only relevant for time series and
expiring time-to-live (TTL) workloads.

33

A. Mahgoub et al.

These five parameters, combined, control most of the trades
between read and write performance, but there is to date no indis-
putable recommendation for manually setting these configuration
parameters nor is there any automated tool for doing this. Poring
through discussion forums and advice columns for the two relevant
software packages [4, 20, 34], we come away convinced that there
is significant domain expertise that is needed to tune a server for a
specific workload characteristic and a specific server architecture.
Furthermore, these tunings change, and sometime quite drastically,
when the workload characteristics change. These lead us to inves-
tigate an automatic and generalizable method for achieving the
optimal configuration parameter values.

3.5 Data Collection for Training Models

In our goal to optimize the server performance, we encounter a
very practical problem: there are too many search points to cover
them all in building a statistical model. The five key configuration
parameters, as described in the previous section, even if discretized
at broad levels, represent 2-4-8-10-4 = 2, 560 configurations. If this
is combined with 10 potential workloads, then, there are over 25,000
combinations for sampling. With each benchmark run executing
for 5 minutes, this would require almost 3 months of compute time
to calculate for a single hardware architecture. The benchmark
execution time cannot be reduced much below 5 minutes so as
to capture the temporal variations in the application queries and
remove the startup costs.

The surrogate model in the next step is trained on only a small
subset of the potential search space, from which it predicts the
performance in any region of the exploration space. This eliminates
the need for exhaustively collecting the performance data and al-
lows for a much faster process through the large exploration space
of configuration parameters than a typical exhaustive, grid-based
search. Empirically we find that training with approximately 5%
of the training space (Figure 7) produces accurate enough model,
which corresponds to the model results presented in the evaluation
results.

We capture the dynamic elements of a NoSQL system with the
input feature set: workloads and server configurations. For work-
loads, we represent the workload feature as read ratio (RR) (write
ratio is 1-RR). The KRD is used to configure the data collection,
but it is not provided as an input to our model as it is found to
be stationary in our target metagenomics domain. Second, the
configuration file is represented by the five key parameters, de-
scribed in Section 3.4. We select the configuration set C so that,
for each parameter p;, the minimum v; and maximum v; value
occurs at least once in the set. The default value is also included
in at least one experiment, and additional experiments are added
by randomly selecting other values for the parameters, but not in a
fully combinatorial way.

Performance data is collected by applying the particular work-
load W; and configuration to a specific server and database engine
and observing the resultant performance P;. The space of all work-
loads exists as [0, 1], representing RR, and it is quantized into n,,
discrete values, {Wy, Wa, ..., Wy, }. The particular sample is defined
as S; = {W;, Ci, P;}. A set of such samples defines the training data
for our model.

RaAFIKE: A Middleware for Parameter Tuning

3.6 Performance Prediction Model
3.6.1 Surrogate Performance Model

Server performance is a function of workloads, configuration pa-
rameters, and the hardware specifications on which the software
is executed. The relationship between these pieces is sufficiently
complex so that no simple guideline can optimize them. This is
well known in the performance prediction domain [40, 44] and
we show this empirically for MG-RAST in Section 4.6. Although
we qualitatively understand the impact of most of these configu-
ration parameters on the output metric, the quantitative relation
is of interest in guiding the search toward the optimal settings. It
is to be reasonably expected that such a quantitative relation is
not analytically tractable. We therefore turn to a statistical model
of the relationship of workloads and configurations on the end-
performance, for a given hardware specification. We call this the
surrogate performance model—surrogate because its prediction acts
as an efficient stand-in for the actual performance that will be
observed.

3.6.2 Creation of the Performance Model

We assume that the relationship between performance, workload,
and the database configuration is non-linear and potentially very
complex. For this reason, we rely on a sophisticated deep neural net-
work (DNN)-based machine learning model, with multiple hidden
layers, to capture the mapping. Our choice of a DNN was driven by
the fact that it does not have any assumptions of linearity for either
single configuration parameters, or jointly, for multiple parameters,
while being able to handle complex interdependencies in the input
feature space. The control parameters include the number of layers
and the degree of connectivity between the layers. In fact, our
experiments validate our hypothesis that the input parameter space
displays significant interdependence (Figure 6).

One potential drawback of DNN is the peril of overfitting to
the training data. However, in our case, the amount of training
data can be made large, "simply” by running the benchmarks with
more combinations of input features (a very large space) and work-
loads (a large space). Therefore, by using different, and large-sized,
training datasets and the technique of Bayesian regularization, we
can minimize the likelihood of overfitting. Bayesian regularization
helps with reducing the chance of overfitting and providing general-
ization of the learned model. On the flip side, we have to make sure
that the network is trained till completion, i.e., till the convergence
criterion is met, and we cannot relax the criterion or take recourse
to early stopping. Additionally, to improve generalizability, we
initialize the same neural network using different edge weights
and utilize the average across multiple (20) networks. Further, we
utilize simple ensemble pruning by removing the top 30% of the
networks that produce the highest reported training error. The final
performance value would be an average of 14 networks in this case.

The output of the model is a function that maps {W, C} (work-
loads and configurations) to the average database operations per
second:

AOPSgeneml = fnet(W,C) (1)

@)

Where: AOPS is the average operations per second that the server
achieves, RR is the read ratio describing the workload, and the
configuration parameters are CM/CW/FCZ/MT/CC.

AOPS cassandra = fnet (RR, CM,CW,FCZ,MT, CC)

34

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

In this paper, we utilize Bayesian regularization with back-prop-
agation for training a feed forward neural network to serve as fyet.
The network size itself can be selected based upon the complexity
of the underlying database engine and server and increased with
the size of the input dataset to better characterize the configuration-
workload space. Section 4.3 further covers our approach for the
MG-RAST/Cassandra case.

3.7 Configuration Optimization
3.7.1 Optimal Configuration Search

An exhaustive search could take three months or more of com-
pute time to complete for a single architecture. To reduce this
search time, we collect only hundreds of samples (compute hours
vs. months) to train fnet and use this to predict performance. In
doing so, we lose some precision in the configuration space, but
we gain the ability to use less efficient but more robust search tech-
niques (e.g. genetic algorithms) without an explosion in compute
time. For example, in our experiments RAFIKI utilizes 3,500 calls to
the surrogate model for a single workload data point, so that a few
seconds of searching represents 12 days of sampling. Using this
approach, we find optimal configurations in RAFIKI.

The goal of the database administrator is to maximize server
throughput for a given workload:

Copt = arg mcax AOPS(W, C) (3)
Where C represents the configuration parameters (CM, CW, FCZ,
MT, CC) and AOPS is the performance. Using the surrogate model,
AOQPS can be replaced by fnet to create an approximate optimization
problem:

Copt = arg mCaX fnet(W, C) (4)

Where fpet is from Equation (2). This substitution allows for rapid
objective function evaluation.

3.7.2 Optimization using Genetic Algorithms

Since we hypothesize the relationship between the configuration
parameters is non-linear and non-continuous (integer parameters
CM, CW, and CC), finding optima in this space will require at least
some searching. For a general and powerful approach, we use a
Genetic Algorithm (GA) to search this space.

We formulate the GA as follows. The fitness function values is
the result of fnet with the workload parameter W fixed and the
C parameters as the input, with higher value denoting a better
configuration. The parameters are constrained by the practical
limits of the configuration values and as integers where neces-
sary. The initial population is selected to be uniformly random
within these bounds. The crossover function calculates interme-
diate configurations within the bounds of the existing population
(to enforce interpolation rather than extrapolation) by taking a
random-weighted average between two points in the population.

For example, if C; = 3,5,7,C2 = 2,4, 6, then the crossover output
Ca= (1 3+(1=r1)-2 ry-5+(1-rp)-7 r3:7+(1-r3)-6
3 = { 2 P P 2 1

, where rq,ry, r3 are
chosen uniformly random between 0 and 1. The fitness function
is modified to ensure constraints are met, as described in [16, 17],
where infeasible configuration files are scored with a penalty, and
feasible ones are scored as the original fitness function (perfor-
mance). For example, from above, if 1 = 0.3 and p; is an integer
parameter, then C3’s v1 = 1.15. The performance of this point will

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

be penalized by adding a penalty factor because vy is not an integer
for Cs.

Solving our system using a GA creates a blackbox model, rather
than the more desired interpretable model. It may be argued that
an interpretable model is particularly important to a system admin-
istrator whereby she can estimate what some parameter change
will likely do to the performance of the NoSQL datastore. With this
goal we experimented with an interpretable model, the decision
tree, with the node at each level having a single decision variable,
one configuration parameter. We found that this was woefully
inadequate in modeling the search space, giving poor performance.
When each node was allowed to have a linear combination of the
parameters, the performance improved and this is beginning to
move toward a less interpretable model. So it appears that for this
particular problem, we have to sacrifice interpretability to gain
higher expressivity and therefore higher prediction accuracy from
the model.

3.8 DBA level of intervention

Although our proposed system provides automatic tuning for the
underlying data store, some limited DBA intervention is still needed
to support Rarik1 with the following items:

1. Performance metrics: What application-specific performance
metric should be considered for tuning (throughput, latency,
etc.).

2. Performance parameters: List of performance influencing
parameters with valid ranges. Excluding security, network-
ing, and consistency related parameters.

3. Representative application trace: A workload for RAFIKI to
use for characterization as described in Section 3.3.

4 Experiments and Results

In this experimental section we seek to answer the following ques-
tions:

1. How effective are the selected parameters in capturing the
performance (Average Throughput), and what are the inter-
dependencies among them?

2. What is the sensitivity of the datastore to workload pattern,
with the default configurations?

3. Can we accurately predict the performance of the NoSQL
datastore for unknown workloads and configurations, i.e.,
how good is our surrogate model?

4. Finally, the overall goal of RAFIKI, can we efficiently search
for optimal configuration parameters and improve the per-
formance of the NoSQL datastore? Does this improvement
scale to multiple servers?

4.1 Workload Driver and Hardware

We used a Dell PowerEdge R430 as the server machine in the single-
server and single-client setup. This server has 2x Intel Xeon E5-2623
v3 3.0 GHz 4-core, 32GB RAM (2x 16GB), and 2x 1TB magnetic
disk drives (PERC H330 Mini) mirrored, each drive supporting
6 Gbps. The client machine is Opteron 4386, 8 cores at 3.1 GHz
each, 16 GB DDR3 ECC memory. The client and the server are
directly connected through a 1 Gbps switch, ensuring that the
network is never a bottleneck for our experimental setup. We use a
single-server single-client setup for all of the following experiments,
except for the multi-server experiment where multiple clients were

35

A. Mahgoub et al.

used to benchmark the multiple servers that were connected in a
peer-to-peer cluster.

For all the following experiments, we modified the Yahoo Cloud
Serving Benchmark (YCSB [14]) tool for emulating MG-RAST sim-
ulated workloads to Cassandra. We use YCSB only as a harness to
drive the experiments and collect metrics, while all the workload-
specific details (query patterns, payload size, key reuse distance,
etc.) are derived from actual MG-RAST queries. The simulated
queries are based on the most frequent queries submitted to MG-
RAST, selected from the MG-RAST query logs, with keys selected
from used data-shards. The output is the average throughput mea-
sured in operations per second (Section 2.3).

4.2 Data Collection

We orchestrated Cassandra and ScyllaDB inside of Docker contain-
ers so that the statefulness of the database is easily maintained.
Between data collection events, the server is reset to prevent any
caching or persistent information from influencing subsequent
benchmarks. For each data point, a fresh Docker container with
Cassandra is started and a corresponding YCSB “shooter” then loads
the Cassandra server. Multiple shooters are used for a particular
server to ensure that it is adequately loaded.

In our experiments, we use 11 different workloads spanning
10% increments between 0% and 100% reads. The number of con-
figurations |C| = 20, resulting in 11 - 20 = 220 total data points.
Each performance point was measured as the average throughput
over a 5-minute long benchmarking period. In some cases, if an
experiment fails prematurely or other activities add noise to the
data collection, then the impacted samples can be removed—20
noisy/faulted samples were removed in our dataset, due to faults in
the load-generating clients, thus leaving 200 total samples.

4.3 Surrogate Model and Training

As described in section 3.6.2, the surrogate model (DNN) was trained
and tuned with a hidden layer size of [14, 4] based on trial and error,
and the ensemble size for the model was selected at 20 networks
during all our experiments. For the final experiment where RAFIKI
selects the optimal parameter settings using GA, we use 100 neural
nets since it is still fast enough and gives a moderate improvement.
The final DNN architecture has 6 input parameters into the first
hidden layer with 14 neurons, a second hidden layer with 4 neurons,
and a single output layer and 1 output value. The neurons are con-
nected in a feed-forward setup so that the output of one layer is the
input to the next. All experiments utilize 75% training and 25% test
unless otherwise mentioned. When we evaluate our model with
unseen configurations, we group the data points by configuration,
i.e., for each configuration C;, there exists 11 W workloads, and
similarly for unseen workloads. This division is along the configu-
ration or workload dimension—unseen configuration means that
no entries for C; seen in the test set exists in the training set.

We rely on MATLAB’s Neural Network Toolbox [1] to construct
and train such networks. To train the model, we utilize Bayesian
Regularization (trainbr in MATLAB). We prevent overfitting by
training until convergence or 200 epochs, whichever comes first,
and averaging the output of the ensemble of networks, each with
different initial conditions, for each validation set. This regular-
ization technique automatically reduces the effective number of
parameters in the model at the expense of increasing the training
time.

RaAFIKE: A Middleware for Parameter Tuning

4.4 Cassandra’s Sensitivity to Dynamic Workloads

In this experiment, we wish to see how Cassandra’s baseline per-
formance is affected by changing nature of the workloads. Figure 4
shows how Cassandra’s default performance is highly sensitive to
its workload, demonstrating that the average throughput decreases
with respect to the increase in workload’s read proportion—the
swing going from R=0/W=100 to R=100/W=0 is above 40%. This
observed behavior is consistent with Cassandra’s write path and
compaction technique described in Sections 2.2.1 and 2.2.2. Specifi-
cally, Cassandra uses a size-tiered compaction strategy, which is
triggered whenever a number of similar sized SSTables are created
(4 by default). These are not consolidated to ensure that keys are
non-overlapping among them. Hence search for a specific key
through a read query causes Cassandra to search in all the SSTables
causing the lowered read performance. Therefore, tuning Cassan-
dra’s performance under read-heavy workloads is essential, espe-
cially because we frequently observe read-heavy metagenomics
workloads as shown in Figure 3.

=0 Default

-@-Rafiki ~@-Exhaustive+Cassandra

110000

100000

90000

80000

70000

60000

Average Throughput

50000

40000
0 20 40 60 80
Workload Read Proportion

100

Figure 4. Performance of Cassandra with optimal configuration
selected by RaFIKI vs. Default configuration. Also three points are
shown for the theoretically optimal performance using exhaustive
searching.

4.5 Key Parameters Selection

As described in Section 3.4, tuning all configuration parameters for
Cassandra is impractical because of the combinatorial explosion of
the number of possible configuration sets. Therefore, we apply the
ANOVA statistical technique to identify the most significant set
of configuration parameters that affect Cassandra’s performance,
which we call the “key parameters”. We vary the value of each pa-
rameter individually, while fixing the values of the rest of the param-
eters to their default. For categorical parameters (e.g., Compaction
Strategy) all possible values are tested. Whereas for numerical pa-
rameters (e.g., memtable_cleanup_threshold, and concurrent_reads),
a number of values (4) are tested as described in Section 3.4. Figure
5 shows the standard deviation in throughput for the top 20 config-
uration parameters. The most significant parameter, Compaction
Strategy has standard deviation 11X that of concurrent writes, and
thus removed from the figure for better visualization. From Cas-
sandra’s configuration description, we observed that the fifth con-
figuration parameter —memtable_cleanup_threshold- controls the

36

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

flushing frequency. Cassandra uses this parameter to calculate the
amount of space in MB allowed for all MEMtables to grow. This
amount is computed using the values of memtable_flush_writers,
memtable_oftheap_space_in_mb, and memtable_cleanup_threshold.
Thus we skip the second and third configuration parameters and
only include memtable_cleanup_threshold to control the frequency
of MEMtables flushing, having 5 different parameters in total as
shown in Equation 1.

1600

1400
1200
1000
800
400
200
0o
o

Standard deviation in average thughput
@
2
8

& & O N O 2 ® ¥ S o %" » Y
& FOF EEFHSEE EE T FES
& E o7 & $7 RO oF (TN Y NPT S
S E T S F ST TS S S
7 & g & S I Y & &
SRR N el T FEY S e S o R & &7
& AP S > & 2’ ¥ & o7 &
@’ 2 o S o . S &
S R F P @S e L F eSS LR o
& J s & SN & T oar &S S
S e’ ¥ &S L S ‘g,* S &S & & & <
& P & {(\@& N & & & O X e &
& & & 2 & N 40 &
<« € N ¥ e & & S
2° &’ & S &€
& « s <

Figure 5. ANOVA analysis for Cassandra to identify the key param-
eters, i.e., the ones that most significantly control its performance.

4.6 Effectiveness of Selected Configuration Parameters

In this experiment, we assess the effectiveness of the key configu-
ration parameters selected by our statistical analysis. We start by
collecting the average throughput for the 220 configuration sets.
From the collected data, we examine how impactful the change in
performance is compared to the default configuration setting. Table
1 shows the maximum, minimum, and default performance for three
different workloads. Which shows that the selected parameters
have a significant effect on performance.

One obvious way to tune such parameters is by sweeping greed-
ily through each of them individually while fixing the values of
the rest of the parameters. However, we infer that this obvious
technique is suboptimal, because it ignores the interdependencies
among the selected parameters. Figure 6 shows the effect of chang-
ing two parameters from this set: Compaction Method (CM) and
Concurrent Writes (CW). Changing one parameter’s value results
in changing the optimal values for the other parameter. For exam-
ple, doubling the value of CW from 16 to 32 has a positive effect
on performance when CM is set to Size-Tiered Compaction, i.e.,
throughput increases by 30%, but the same change has very little
effect when CM is set to Leveled Compaction. However, doubling
the value of CW from 32 to 64 has a negative effect on perfor-
mance when CM is set to Leveled Compaction, i.e., throughput
decreases by 12.7%, but this time it has very little effect when CM
is set to Size-Tiered Compaction. This suggests that using a greedy
optimization technique, i.e., tuning each configuration parameter
individually, cannot find the optimal solution, and motivates us
to look for a more sophisticated search strategy for finding the
optimal configuration.

Middleware 17, December 11-15, 2017, Las Vegas, NV, USA

Table 1. Cassandra maximum, minimum, and default throughputs
as the key-configuration parameters are varied

Maximum | Default | Minimum
Average Throughput | /o .. 53,461 | 38,785
(read=90%)
% over Minimum 102.5% 27.4% -
Average Throughput
981 2 2
(read=50%) 89,98 63,66 53,37
% over Minimum 68.5% 16.16% | -
Average Throughput | |\, oco | 55771 | 78221
(read=10%)
% over Minimum 30.7% 11.8% -
Concurrent Writers (CW)
=64 |
Concurrent Writers (CW)
=32 |
Concurrent Writers (CW)
=16 |
0 20000 40000 60000 80000

Compaction Method (CM) = Leveled
W Compaction Method (CM) = SizeTiered

Figure 6. Interdependency among selected parameters necessitat-
ing use of non-greedy search strategy.

4.7 Performance Prediction

In this section, we create a surrogate model that can predict the
performance of the NoSQL datastore for hitherto unseen workloads
and unseen combinations of configuration parameters.

4.7.1 Training the Prediction Model

Figure 7 shows the change in error for predicting performance
under unseen workloads and configurations with respect to the
number of training samples. We notice that training the model with
more data samples enhances the performance but the performance
improvement begins to level off at 180 collected training samples.
The collected samples were sufficient for getting a prediction error
of 7.5% for unseen configurations and 5.6% for unseen workloads
using an ensemble of 20 neural nets, compared to 10.1% and 5.95%
using a single net (Table 2). Going beyond 20 neural nets again
gives diminishing improvements.

4.7.2 Validating Model Performance

We validate the prediction model separately for two dimensions:
workloads and server configurations. To validate server configura-
tions, we randomly withhold 25% of the configurations and predict
on these. The network is then trained with the remaining 75% of
the data, until convergence, and performance statistics are taken
for the network (shown in Table 2). We perform 10 randomized
trials where we vary which 25% items we withhold and present the
average results.

37

A. Mahgoub et al.

Table 2. Prediction Model Performance for Cassandra

20 Nets 1 Net
Config. Workload | Config. Workload
Prediction |, 5,/ 5.6% 10.1% 5.95%
Error
R? Value 0.74 0.75 0.51 0.73
Avg. RMSE | 6859 op/s | 6157 op/s | 9338 op/s | 6378 op/s

The same procedure was used to validate workload prediction
performance, and Figures 8 and 9 show the histogram for the valida-
tion cases. The model maintains slightly better prediction accuracy
across workloads, suggesting that the single feature that represents
the workload’s Read-proportion can capture the system dynamics
well. The histogram also shows little bias, since the mean is close to
zero, and this indicates that our DNN model is expressive enough
for the task.

4.8 Performance Improvement through Optimal
Configuration

For this experiment, RAFIKI searches for better configuration set-
tings for improving the performance of Cassandra. Since we make
no assumptions about the relationships between configuration pa-
rameters (e.g., their linearity), we utilize a Genetic Algorithm to
optimize the set of configuration parameters. We train the network
using all available 200 samples, unlike in the previous validation
experiments (wWhere we held out some samples). Thus, here while
predicting, RAFIKI has already seen that particular workload, but in
all likelihood has not seen the optimal configuration parameter for
that workload considering the large search space. We compare the
performance of optimal configurations selected by RAFIKI against
the default performance, and and exhaustive search for three work-
loads (90% reads, 50% reads, and 10% reads). This exhaustive search
is performed by testing 80 configuration sets for each workload. Fig-
ure 4 shows the performance gain when applying RAFIKI's selected
configuration compared to the default configuration for various
workloads. On average, RAFIKI shows 30% improvement over the
default configuration across the range of workloads. We notice that
higher gains are achieved for read-heavy workloads, with 41% im-
provement on average (range = 39-45%) for read-heavy workloads,
i.e,, having read-proportion > 70%. Lower gains are achieved with
respect to write-heavy workloads, i.e., with read-proportion < 30%,
average of 14% with a range of 6-24%. This reveals that Cassandra’s
default configuration is more suited for write-heavy workloads,
while our metagenomics workload is read-heavy most of the time.

It should be noted that the RAFIkI selected configuration comes
within 15% with respect to the exhaustive grid search. However,
the surrogate model is able to generate a new performance sample
in 45 ps, thus allowing the GA to investigate approximately 3000
samples in the search space every 0.17 seconds, whereas around 14
days are needed to collect the equivalent number of samples with
grid searching. The combined GA+surrogate takes 1.8 seconds to
find the optimal configuration utilizing 3,350 surrogate evaluations
on average. A single sample with grid searching takes around 2
minutes for loading data and another 5 minutes for collecting stable
performance metrics experimentally. Thus, training the surrogate
models and searching using GA is four orders of magnitude faster
than exhaustive grid search, suggesting that RAFIKI could be used to

RaAFIKE: A Middleware for Parameter Tuning

-+ Unseen_Configs
25 ConT

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

——Unseen_workloads

N
[S]

@

g

=)
3

10

Prediction Error

Number of Validations
I
g

36 72 108 144 180

S @
38 oS

Number of Validations
o
]

Number of training samples

- 0
Error (Pct)

-20 -15 -10 -5 5 10 15 20

0
Error (Pct)

Figure 7. Prediction error for Cassandra Figure 8. Cassandra: Distribution of perfor- Figure 9. Cassandra: Distribution of perfor-
using the surrogate performance model mance prediction errors for unseen configura- mance prediction errors for unseen workloads.
with Neural Network, as a function of the tions. The average absolute error is 7.5% with The average absolute error is 5.6% with most

number of training samples

Table 3. Cassandra: Performance improvement of optimal config-
uration selected by RaFIKI vs. Default configuration performance
for single-server and two-server setups.

RR=10% | RR=50% | RR=100%
41.34% 48.35%
67.37% 514 %

workload
Single Server Improve | 15.2%
Two Servers Improve | 3.2 %

tune the compaction-related and concurrency-related parameters,
and possibly others, at runtime as workload characteristics change.

4.9 Performance Improvement for Multiple Cassandra
Instances

In this experiment, we measure the improvement in performance
for multiple Cassandra instances using RAFIKI's selected configu-
rations over the default configurations performance. For the two-
servers experiment, we add one more shooter to utilize the in-
creased performance of the created cluster. We also increase the
replication factor by one, so that each instance stores an equivalent
number of keys as the single-server case. From Table 3, we see sim-
ilar improvements, on average, using the configuration set given by
RAFIKI over the default configuration (34% for single-server case,
and 40% for two-servers case). Again, the improvement due to
RAFIKI increases with increasing RR, but it reaches an inflection
point at RR=70% and then decreases a little.

4.10 ScyllaDB performance tuning

In this section, we investigate the effect of applying our perfor-
mance tuning for ScyllaDB®. First, we wish to select the key per-
formance tuning parameters. ScyllaDB provides a user-transparent
auto-tuning system internal to its operation, and this system makes
parameter selection especially difficult because user settings for
many configuration parameters are ignored by ScyllaDB, giving
preference to its internal auto-tuning [38]. Consequently, even in
an otherwise stationary system, without any change to the work-
load or to the configuration parameters, the throughput of ScyllaDB
varies significantly. Figure 10 demonstrates this tuning-induced
variance.

We find through experiments that the tuner acts like a hidden
parameter—changing a parameter causes variance due to interde-
pendence with the auto-tuning system that we cannot control. Due

®https://github.com/scylladb/scylla/blob/master/conf/scylla.yaml

most projections lying in the | 5 |% range.

projections lying in the | 5 |% range

Table 4. ScyllaDB: Performance of RAFIKI selected configurations
vs. Grid search

WL1(R=70%) WL2(R=100%)
Opt. Technique Rarik1 | Grid Rarik1 | Grid

Avg Throughput 69,411 | 75,351 | 66,503 | 63,595
12.29% | 21.8% | 9% 4.57%

Gain over Default

to these internal interactions, the ANOVA analysis yields signifi-
cance to configuration settings that have high interaction with the
auto-tuning system rather than sustained net-positive impacts on
performance. For this reason, despite the ANOVA analysis, poor
prediction performance will be obtained. For ScyllaDB, we rectify
this by taking the ANOVA analysis for Cassandra, stripping out
any parameters that are ignored by ScyllaDB, and adding in new
parameters (sorted by variance) until 5 parameters are in the set,
matching Cassandra in count. As shown in Table 4, using the se-
lected parameters, RAFIKI was able to achieve a performance gain
of 12% for workload with 70% reads, and a gain of 9% for workload
with 100% reads.

4+ 70000
>

a 8._.g-08
Rty B.g” '®

_ng-n 60000 Y g g -

3 50000 !

e

i 40000

&, 30000 -o-Cassandra

o

@ 20000 -a-ScyllaDB

>
<C 10000

0 T — T
1234567 8 910111213141516171819202122232425

Time(Sec)

Figure 10. Average throughput for Cassandra and ScyllaDB under
a 70% reads workload (collected every 10 seconds). Since Cassandra
has a more stable performance compared to ScyllaDB, throughput
prediction for Cassandra is more accurate.

5 Related Work

NoSQL Benchmarking: Benchmarking and comparing the perfor-
mance of NoSQL datastores has been studied recently from several
different angles. Authors in [31] show a performance comparison
between Cassandra and ScyllaDB. Also Work in [2, 12, 27, 36, 41]
has compared and benchmarked Cassandra and various other SQL
systems for the purpose of engine selection. These approaches,

https://github.com/scylladb/scylla/blob/master/conf/scylla.yaml

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

however, do not account for the dynamic workloads seen in MG-
RAST and do not predict the performance for unseen workloads.
DBMS Auto-tunning: iTuned [19] and Ottertune [42], recent DBMS
tuning systems, rely on nearest-neighbor interpolation for optimiz-
ing configurations for unseen workloads. Rafiki’s surrogate model
provides algorithm-independent predictive capabilities in contrast
to interpolation in Ottertune, enabling quick, accurate responses
to new workloads. In comparison with Ottertune’s data collection
time,Ottertune reports collecting data over 30k trial runs and stor-
ing them in its knowledge base ([40] sec 7.2) to be compared with
the target workload at run time. In our setup, after required DBA
intervention (Section 3.8), a single data-point is collected in 5 min
with Rafiki requiring only 200 data points to train a surrogate model
which is able to predict unseen workloads and configurations very
efficiently, removing the need for collecting any extra data points.
In run time, Ottertune starts by comparing the target workload to
all previously seen workloads. Because of the lack of a surrogate
model, this step takes 30-45 min to identify the nearest workload
previously seen and to start suggesting a better configuration (in
[42] sec 7.4). On the other hand, Rafiki’s online training takes few
seconds (10-20s) to apply the GA searching algorithm to the surro-
gate model (trained offline). This allows the GA to test thousands
of configurations datapoints per second and suggest the optimal
configurations much faster (sec 4.8), which is essential for rapidly
changing workloads as seen in MG-RAST.

Distributed Application Parameter Tuning: A subset of the
authors have been involved in building scalable cyberinfrastructure
previously, for the domain of earthquake and structural engineering
[26]. That also involved dealing with large volumes of data with a
large set of users on shared computational infrastructure. We are
deriving some lessons from this prior work in building the metage-
nomics cyberinfrastructure. Several middleware tunning systems
have been proposed for web-servers such as in [32, 33]. Moreover,
A plethora of prior works [6, 7, 29, 30, 40] have attempted to solve
parameter tuning problems for MapReduce and other distributed
applications [3, 5, 25]. RarIkI differs from and improves upon these
works in three key ways. First, the workloads for the database
server are inputs to the optimizer. Second, the parameters of in-
terest are mathematically selected using variant analysis. Third, in
contrast with some searching methods [5, 25, 30], RAFIKI is able
to use a less efficient but more generic searching algorithm that
avoids local maxima.

Surrogate-Based Tuning: Algorithm complexity has reached a
point where searching for optimal parameters requires very large,
high dimensional space characterizations, and running software-
in-the-loop based tuning is impractical. This has led many tuning
papers to rely on surrogate models [6, 22, 37] trained from observed
system behavior. Such models are used in the optimization phase
in place of the actual software to reduce the time complexity for
finding optimal tuning parameters. RAFIKI also utilizes surrogate
models, but it also includes characteristics for the inputs to the
system directly in the model. We hypothesize that different inputs
or workloads require different tuning parameters to be optimal,
this allows the surrogate to quickly find new parameters for new
workloads.

Performance Prediction: Work in [18] closely resembles the per-
formance prediction piece of our solution. In this work, the authors
targeted combined analytical modeling with machine learning tech-
niques to predict the performance of two casestudies: Total Order

39

A. Mahgoub et al.

Broadcast service and a NoSQL datastore (Red Hat’s Innispan v.5.2).
Their case of NoSQL datastore (performed on synthetic data) shows
a good performance of prediction with respect to the number of
nodes in the system and the proportion of write transactions. Rafiki
provides similar accuracy, but it is based on configuration and work-
load parameters rather than hardware data (such as CPU, network,
etc.). We also utilize real-world workloads (MG-RAST) rather than
purely synthetic ones for prediction. In this paper, we combine the
prediction element with several supporting elements to improve
configuration rather than only predicting performance.

6 Conclusion

In this paper, we have highlighted the problem of tuning NoSQL
datastores for dynamic workloads, as is typical for metagenomics
workloads, seen in platforms such as MG-RAST. The application
performance is particularly sensitive to changes to the workloads
and datastore configuration parameters. We design and develop a
middleware called RaFiki for automatically configuring the datas-
tore parameters, using traces from the multi-tenant metagenomics
system, MG-RAST. We demonstrate the power of RAFIKI to achieve
tuned performance in throughput for a leading NoSQL datastore,
Cassandra, and a latest generation reimplementation of it, Scyl-
laDB, with the additional distinguishing feature that ScyllaDB has
an auto-tuning feature. We apply ANOVA-based analysis to iden-
tify the key parameters that are the most impactiful to performance.
We find, unsurprisingly, that the relation between the identified
configuration parameters and performance is non-monotonic and
non-linear, while the parameter space is infinite with both con-
tinuous and integer control variables. We therefore create a DNN
framework to predict the performance for unseen configurations
and workloads. It achieves a performance prediction with an error
in the range of 5-7% for Cassandra and 7-8% for ScyllaDB. Using
a root-cause investigation indicates that ScyllaDB’s native perfor-
mance tends to fluctuate, sometime to a large degree (60% for 40
seconds), making prediction more challenging. We then create a
Genetic Algorithm-based search process through the configuration
parameter space, which improves the throughput for Cassandra
by 41.4% for read-heavy workloads, and 30% on average. Further,
to get an estimate of the upper bound of improvement, we com-
pare RAFIKI to an exhaustive search process and see that RAFIKI,
using 4 orders of magnitude lower searching time than exhaustive
grid search, reaches within 15% and 9.5% of the theoretically best
achievable performances for Cassandra and ScyllaDB, respectively.
In future work, we are developing algorithms for the actual online
reconfiguration process keeping the downtime to a minimum. We
are also developing a prediction model for the workloads, which
will allow us to develop an algorithm to cluster reads and writes
for higher throughput.

7 Acknowledgements

We thank all the reviewers for their insightful comments, which
improved the quality of this paper. This work is supported in part by
NSF grant 1527262, NIH Grant 1R01AT1123037, and a gift from Adobe
Research. Argonne National Laboratory’s work was supported by
the U.S. Department of Energy, Office of Science under contract
DE-AC02-06CH11357. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding agencies.

RaAFIKE: A Middleware for Parameter Tuning

References

(1]
(2]

(3]

=

(71

(8]
(9]

[10

[11

[12]

[13]

[14

[15]

[16

[17]

(18]

[19]

[20]

[21]

2017. MATLAB Neural Network Toolbox. https://www.mathworks.com/
products/neural-network.html. (2017). [Online; accessed 19-May-2017].
Veronika Abramova and Jorge Bernardino. 2013. NoSQL databases: MongoDB vs
Cassandra. In Proceedings of the International C* Conference on Computer Science
and Software Engineering. ACM, 14-22.

Omid Alipourfard, Honggiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. 2017. CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association.
Alteroot. 2017. How to change Cassandra compaction strategy on
a production cluster. https://blog.alteroot.org/articles/2015-04-20/
change-cassandra-compaction-strategy-on-production-cluster.html. (2017).
[Online; accessed 19-May-2017].

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. Opentuner:
An extensible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation. ACM, 303-316.
Zhendong Bei, Zhibin Yu, Qixiao Liu, Chengzhong Xu, Shengzhong Feng, and
Shuang Song. 2017. MEST: A Model-Driven Efficient Searching Approach for
MapReduce Self-Tuning. IEEE Access 5 (2017), 3580-3593.

Zhendong Bei, Zhibin Yu, Huiling Zhang, Wen Xiong, Chengzhong Xu, Lieven
Eeckhout, and Shengzhong Feng. 2016. Rfhoc: A random-forest approach to
auto-tuning hadoop’s configuration. IEEE Transactions on Parallel and Distributed
Systems 27, 5 (2016), 1470-1483.

Nathan Blow. 2008. Metagenomics: exploring unseen communities. Nature 453,
7195 (2008), 687-690.

Rick Cattell. 2011. Scalable SQL and NoSQL data stores. ACM Sigmod Record 39,
4 (2011), 12-27.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 4.

Surajit Chaudhuri and Vivek Narasayya. 2007. Self-tuning database systems: a
decade of progress. In Proceedings of the 33rd international conference on Very
large data bases. VLDB Endowment, 3-14.

Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, and Ronan
Tournier. 2015. Benchmark for OLAP on nosql technologies comparing nosql
multidimensional data warehousing solutions. In IEEE International Conference
on Research Challenges in Information Science (RCIS). 480-485.

Charles E Cook, Mary Todd Bergman, Robert D Finn, Guy Cochrane, Ewan
Birney, and Rolf Apweiler. 2016. The European Bioinformatics Institute in 2016:
data growth and integration. Nucleic acids research 44, D1 (2016), D20-D26.
Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. ACM, 143-154.

Imre Csiszar and Janos Korner. 2011. Information theory: coding theorems for
discrete memoryless systems. Cambridge University Press.

Kalyanmoy Deb. 2000. An efficient constraint handling method for genetic
algorithms. Computer methods in applied mechanics and engineering 186, 2 (2000),
311-338.

Kusum Deep, Krishna Pratap Singh, Mitthan Lal Kansal, and C Mohan. 2009. A
real coded genetic algorithm for solving integer and mixed integer optimization
problems. Appl. Math. Comput. 212, 2 (2009), 505-518.

Diego Didona, Francesco Quaglia, Paolo Romano, and Ennio Torre. 2015. Enhanc-
ing performance prediction robustness by combining analytical modeling and
machine learning. In Proceedings of the 6th ACM/SPEC international conference
on performance engineering. ACM, 145-156.

Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning database
configuration parameters with iTuned. Proceedings of the VLDB Endowment 2, 1
(2009), 1246-1257.

DataStax Enterprise. 2017. Apache Cassandra: Configuring com-
paction. http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/
opsConfigureCompaction.html. (2017). [Online; accessed 19-May-2017].
DataStax Enterprise. 2017. The cassandra.yaml configuration file.
http://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/
configCassandra_yaml.html. (2017). [Online; accessed 19-May-2017].

40

[23

[24

[25]

(30]

[31

(32]

[34

[35

[36

(37]

@
&,

[39

[40

[41]

[42]

[43

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

Adem Efe Gencer, David Bindel, Emin Giin Sirer, and Robbert van Renesse. 2015.
Configuring Distributed Computations Using Response Surfaces. In Proceedings
of the 16th Annual Middleware Conference. ACM, 235-246.

Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT News 33, 2
(2002), 51-59.

Margaret E Glasner. 2017. Finding enzymes in the gut metagenome. Science 355,
6325 (2017), 577-578.

Yanfei Guo, Palden Lama, Changjun Jiang, and Xiaobo Zhou. 2014. Automated
and agile server parametertuning by coordinated learning and control. IEEE
Transactions on Parallel and Distributed Systems 25, 4 (2014), 876-886.

Thomas J Hacker, Rudi Eigenmann, Saurabh Bagchi, Ayhan Irfanoglu, Santiago

Pujol, Ann Catlin, and Ellen Rathje. 2011. The NEEShub cyberinfrastructure for
earthquake engineering. Computing in Science & Engineering 13, 4 (2011), 67-78.

Jing Han, E Haihong, Guan Le, and Jian Du. 2011. Survey on NoSQL database. In
Pervasive computing and applications (ICPCA), 2011 6th international conference
on. IEEE, 363-366.

Gudmund R Iversen and Helmut Norpoth. 1987. Analysis of variance. Number 1.
Sage.

Min Li, Liangzhao Zeng, Shicong Meng, Jian Tan, Li Zhang, Ali R Butt, and
Nicholas Fuller. 2014. Mronline: Mapreduce online performance tuning. In
Proceedings of the 23rd international symposium on High-performance parallel
and distributed computing. ACM, 165-176.

Guangdeng Liao, Kushal Datta, and Theodore L Willke. 2013. Gunther: Search-
based auto-tuning of mapreduce. In European Conference on Parallel Processing.
Springer, 406-419.

Ashraf Mahgoub, Sachandhan Ganesh, Folker Meyer, Ananth Grama, and Somali
Chaterji. 2017. Suitability of NoSQL systems—Cassandra and ScyllaDB—for IoT
workloads. (2017).

Amiya K Maji, Subrata Mitra, and Saurabh Bagchi. 2015. Ice: An integrated
configuration engine for interference mitigation in cloud services. In Autonomic
Computing (ICAC), 2015 IEEE International Conference on. IEEE, 91-100.

Amiya K Maji, Subrata Mitra, Bowen Zhou, Saurabh Bagchi, and Akshat Verma.
2014. Mitigating interference in cloud services by middleware reconfiguration.
In Proceedings of the 15th International Middleware Conference. ACM, 277-288.
Stack Overflow. 2017. Can Cassandra compaction strategy be changed dy-
namically? http://stackoverflow.com/questions/26640385/can/-cassandra/
-compaction/-strategy/-be/-changed/-dynamically. (2017). [Online; accessed
19-May-2017].

End Point. 2017. The Write Path to Compaction. http://docs.datastax.com/en/
archived/cassandra/2.0/cassandra/dml/dml_write_path_c.html. (2017).

Jaroslav Pokorny. 2013. NoSQL databases: a step to database scalability in web
environment. International Journal of Web Information Systems 9, 1 (2013), 69-82.
Mike Preuss, Giinter Rudolph, and Simon Wessing. 2010. Tuning optimization
algorithms for real-world problems by means of surrogate modeling. In Proceed-
ings of the 12th annual conference on Genetic and evolutionary computation. ACM,
401-408.

ScyllaDB. 2017. Scylla release: version 1.6. http://www.scylladb.com/2017/02/06/
scylla-release-version-1-6/. (February 2017).

Dennis Shasha and Philippe Bonnet. 2002. Database tuning: principles, experi-
ments, and troubleshooting techniques. Morgan Kaufmann.

Lizhen Shi, Zhong Wang, Weikuan Yu, and Xiandong Meng. 2017. A case study
of tuning MapReduce for efficient Bioinformatics in the cloud. Parallel Comput.
61 (2017), 83-95.

Bogdan George Tudorica and Cristian Bucur. 2011. A comparison between several
NoSQL databases with comments and notes. In 10th International Conference on
Networking in Education and Research. IEEE, 1-5.

Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data. ACM, 1009-1024.

Andreas Wilke, Jared Bischof, Wolfgang Gerlach, Elizabeth Glass, Travis Harri-
son, Kevin P Keegan, Tobias Paczian, William L Trimble, Saurabh Bagchi, Ananth
Grama, and others. 2016. The MG-RAST metagenomics database and portal in
2015. Nucleic acids research 44, D1 (2016), D590-D594.

Yunquan Zhang, Ting Cao, Shigang Li, Xinhui Tian, Liang Yuan, Haipeng Jia,
and Athanasios V Vasilakos. 2016. Parallel processing systems for big data: a
survey. Proc. IEEE 104, 11 (2016), 2114-2136.

https://www.mathworks.com/products/neural-network.html
https://www.mathworks.com/products/neural-network.html
https://blog.alteroot.org/articles/2015-04-20/change-cassandra-compaction-strategy-on-production-cluster.html
https://blog.alteroot.org/articles/2015-04-20/change-cassandra-compaction-strategy-on-production-cluster.html
http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsConfigureCompaction.html
http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsConfigureCompaction.html
http://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/configCassandra_yaml.html
http://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/configCassandra_yaml.html
http://stackoverflow.com/questions/26640385/can/-cassandra/-compaction/-strategy/-be/-changed/-dynamically
http://stackoverflow.com/questions/26640385/can/-cassandra/-compaction/-strategy/-be/-changed/-dynamically
http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/dml/dml_write_path_c.html
http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/dml/dml_write_path_c.html
http://www.scylladb.com/2017/02/06/scylla-release-version-1-6/
http://www.scylladb.com/2017/02/06/scylla-release-version-1-6/

	Abstract
	1 Introduction
	2 Background
	2.1 NoSQL datastores
	2.2 Cassandra Overview: Key Features
	2.3 Performance metrics: Throughput and Latency
	2.4 Genomics Workloads

	3 Methodology
	3.1 Rafiki Workflow
	3.2 Notation
	3.3 Workload Characterization
	3.4 Important Parameter Identification
	3.5 Data Collection for Training Models
	3.6 Performance Prediction Model
	3.7 Configuration Optimization
	3.8 DBA level of intervention

	4 Experiments and Results
	4.1 Workload Driver and Hardware
	4.2 Data Collection
	4.3 Surrogate Model and Training
	4.4 Cassandra's Sensitivity to Dynamic Workloads
	4.5 Key Parameters Selection
	4.6 Effectiveness of Selected Configuration Parameters
	4.7 Performance Prediction
	4.8 Performance Improvement through Optimal Configuration
	4.9 Performance Improvement for Multiple Cassandra Instances
	4.10 ScyllaDB performance tuning

	5 Related Work
	6 Conclusion
	7 Acknowledgements
	References

