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Abstract—Dynamic pricing markets in smart grids contain
competitive environments in which strategic adversaries can
launch cyber-attacks to extract profits from the system. When
multiple actors are competing, the disruption of key assets can
create large swings in the profitability of each actor by changing
the supply and demand dynamics of the underlying system. These
swings in profits can be leveraged by an attacker to extract profits
from the system. In this paper, we explore the implications of
attacks and defenses on market resilience when faced with a
strategic profit-seeking adversary. Changes in the market may
mitigate or exacerbate the likelihood of cyber-attacks on system
assets, and we present a strategy for optimizing defenses to
minimize attacks. We also explore the impact of information
sharing on system behavior and the potential for collaboration by
the system owners to improve resilience. These design principles
are exercised on a model of an interconnected electric power
grid to show the potential security improvements provided by
architectural changes.

I. INTRODUCTION

Dynamic pricing markets in the smart grid (SG) [1], [2] en-
able the optimization of physical resource allocation. NYISO,
the power system operator for the state of New York, could
realize as much as $400 million [3] in annual efficiency gains
by leveraging wide-area real-time dynamic pricing systems.
These gains, however, depend on consistent, reliable commu-
nication networks to facilitate control signal and measurement
exchanges. The control signals comprise the price signals
that the utility sends to the consumers and the measurement
signals comprise the readings of the electricity usage at the
consumers. Consumer-grade networks are often unreliable or
congested at times, and they are highly susceptible to denial-
of-service (DoS) attacks that disrupt communications entirely.
As researchers pursue SG and other incentive-driven network
control systems, they need tools to first understand what will
be impact of outages of the network infrastructure on the
demand-driven pricing mechanism on the SG and then how
to mitigate the impact of this increasing attack surface and
improve system resilience.

Electric power markets suffer from volatility because elec-
tricity is not easily stored. This volatility is expected to become
much more acute with the increasing use of renewable energy
sources, such as, solar and wind, that depend on the weather

patterns. This creates a constant need to match supply with
demand, but presently demand is inelastic and unaware of real-
time market conditions. Supply and demand has historically
been predictable which has limited this mismatch of supply
and demand to a tolerable level. New renewable energy
resources (RER) such as solar and wind driven supplies,
however, have reduced this predictability to the point that
technologies like roof-top residential solar are becoming cost-
prohibitive [4] to integrate into the grid. The future smart grid
is designed to bring elasticity to demand via techniques such
as demand response (DR)[2] and transactive control (TC) [5]
so that RER’s can be better integrated and system effi-
ciency improved. These techniques, however, rely on extensive
communication infrastructures to coordinate wide-area energy
consumption.

Transactive control enables distributed, independent control
systems, operated by independent actors or market players, to
coordinate via incentive-driven signals (prices). For example,
the set point on an air conditioner may be sensitive to the
cost of electricity in an automated way. This incentive can be
set a priori via time-of-use pricing, but it is not sensitive to
unpredictable changes in market conditions. Alternatively, a
central market coordinator can negotiate with these automated
loads by exchanging price and load information in real time
with all of the actors. This negotiation process enables actors to
rapidly respond to fluctuations in grid supply and by adjusting
their energy usage based on price signals and their current
exogenous needs. It is possible to disrupt the price signal nego-
tiation, however, via attacks on the wide-area communication
network. Since network attacks can influence the market price
of energy directly, via control signal disruption, a strategic
adversary (SA) can potentially launch attacks to manipulate
prices in her favor.

When communications between market players are dis-
rupted, the transactive control system becomes unable to
influence consumption or production at those market players.
For example if there is a spike in demand, the price signal
should rise to curtail consumption and promote production.
Producers who are aware of this signal increase their output
and collect additional profits. An attack could disrupt the



market signal at the producer, however, and as a result, power
output would remain stagnant. Consequently, the market price
may rise higher than it otherwise would have to sustain
equivalent demand curtailment, and this may benefit the other
producers in the market. It could also lead to blackouts if the
disruption is severe enough. If the SA is a producer, then direct
financial benefit in the power market can be gained from such
an attack. The SA can also benefit from the profits of multiple
actors through various means such as investing in these actors.
The ability for a network attack to benefit the SA is called the
attacker’s incentive, and this paper focus on measuring and
reducing that incentive via defensive maneuvers.

Prior work in [6], [7] has shown that network attacks
in smart grid control systems can disrupt price signals and
provide benefits to subsets of consumers. These techniques,
however, do not consider defensive maneuvers that the market
players can use to protect themselves. Additionally, they rely
on a strong adversary that compromises the entire market
communication infrastructure. In this paper, we only assume
the attacker can disrupt network links. Additional work in
[8], [9], [10], [11], [12] has created a game-theoretic structure
around attack and defense in control systems. These works do
not consider the financial incentives of the attacker, however.
Instead they focus on overall system performance or lower
level dynamics and model the attacker as benefiting from
system disruption rather than profiteering. In our work, we
combine game theoretic strategies for smart grids into an
attacker/defender game, with multiple defenders, that relies
on financial incentives to motivate attack and defense.

Our solution encompasses a method for estimating the
attacker’s incentive through attack strategies, mapping them to
a game, and playing the game from a defender’s perspective to
minimize the attacker’s incentive. First, we create a model for
translating attacks and impacts on a smart grid to a strategy
space for the attacker. A dynamic market is implemented with
communication links that can be disrupted via denial of service
attacks to capture the attacker/defender strategies. From this
space, we optimize the attacks to maximize the attacker’s in-
centive (profits) by attacking communication links that distort
the market to benefit the adversary. This is done via mixed
integer linear programming (MILP). We then model a defender
that attempts to minimize the attacker’s incentive by blocking
certain attack strategies via defensive investments (i.e. DDoS
protection). Since we model multiple defenders (actors), we
also explore the impact of information sharing among the
defenders on the reduction in the attacker’s incentive.

We test our solution with a smart-grid based transactive
control system. The baseline system optimizes power con-
sumption by controlling the market price signal. A sim-
ulated communication network facilitates the exchange of
price and load information. The attacker can choose which
communication links to disrupt with a DoS attack, and the
defender can choose some links to protect. We show that the
baseline attacker incentives can be as high as 51% of overall
operating profits. When the defender and adversary’s budget
are equal, the attacker’s incentive is reduced by up to 70%.

These results validate the utility of this paper’s technique in
optimizing defensive investments. It points the way forward
for practitioners (such as, utilities) looking to deploy demand-
driven pricing for electricity by showing how much resilience
in the networking infrastructure is needed to assure a certain
level of economic profit from the system.

The rest of the paper is organized as follows. Section II
covers the background in dynamic pricing markets and how
they can be manipulated. Section III outlines the basic at-
tack/defense strategy, and Section IV expands the strategy to
include information sharing among market players. Section V
evaluates the strategies against an example dynamic pricing
market, and the related work is discussed in Section VI. The
paper is concluded in Section VII.

II. PRELIMINARIES

A. Electric Power Grids

Power grids are complex, interconnected systems composed
of generators (sources) and loads (sinks). Each generator and
load is connected to a series of transmission links (edges).
A simple approximation of the energy system is a DC-load
flow model which can be represented as a flow graph [13]
where each asset (load, generator, edge) in the physical system
is an edge or node in the graph. Profit-seeking actors sell
energy above cost (generators) or transform that energy into
something more useful (loads). The system is most efficient
when supply and demand are equalized since a surplus of
power is dissipated as waste heat and a shortage of power
causes brownouts, blackouts, and other grid stability issues.
The imbalance of supply and demand is known as residual
power (RP), and power grid operators strive to minimize this
value. Dynamic market mechanisms [14] and demand response
(DR) [2] minimize RP by either direct load control (DLC) or
dynamic real-time markets. The work in this paper focuses
on power markets rather than DLC since the markets have a
direct impact to profitability and thus attacker’s incentive.

B. Power Markets

Power markets utilize a variety of economic strategies to
minimize RP (1) and maximize the system’s social welfare
(SW). The SW defines the global system benefit from energy
transactions as shown in (2), where ωi is the value (consumers)
or cost (producer) of power at each actor or market player i,
and Pi is the amount of power consumed or produced by
that market player. The parameter C penalizes the system for
residual power with C � ωi. While somewhat simple on the
surface, the problem of maximizing SW is complicated by
time-varying changes in ω and the constraints on P that arise
from power grid topologies and physical power constraints.
To address these challenges, new smart grid models [14], [15]
allow real-time power markets to evolve with changing system
conditions such as outages or unpredictable RERs.

The power market utilizes (3) to minimize RP, effectively
maximizing SW. Each actor is exposed to the price λ, and they
adjust their power output/input to optimize their individual
economic situations. For consumers, their individual profit is
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Fig. 1. The residual power (RP) and market price (λ) are shown for an
example grid scenario based on prior market solution work, later described in
Section V-A. The market experiences a demand surge in Pi for consumers at
t=100 s followed by a reduction at t=250 s. During the surge, residual power
spikes until the market price is corrected.

SWa = Pi · (ωi−λ). If λ > ω for a consumer, then f(λ) = 0
since the consumer would experience a net loss by consuming
energy. Changes in energy needs or production are captured
by (4). For example, a wind power producer has a very low
ω since wind is free and are thus driven by constraints in P .

RP =
∑
∀i

Pi(t) (1)

SW(t) =
∑
∀i

ωi(t)Pi(t)− C · |RP(t)| (2)

Pi(t) = fi(λ(t)) (3)

Pi(t) < Pi(t) < Pi(t) (4)

Online power markets optimize (2) by repetitively sampling
Pi and updating λ. Each consumer receives a message contain-
ing λ and replies with Pi = f(λ). Fig. 1 shows how a market
evolves during a step transient in (4). The implementation of
these systems, however, exposes security vulnerabilities that
can be utilized by strategic adversaries to extract profit from
the system. For example, the value of f(λ) may be based on
an outdated λ during a communication outage thus reducing
the SW. The defensive strategies presented in this work curtail
impacts to SW in a cost-effective manner.

C. Profit Manipulation

Network disruptions have a direct impact on market price
(λ). Whenever a disruption occurs, the market player enters
a zero-order hold mode. For market players, the price λ is
fixed while P may change based on time-varying constraints.
Consequently, the market loses its influence on power usage
for a subset of market players whenever the network is
disrupted. Fig. 2 demonstrates how the profits of a generator
can be influenced by attacks on its communication link during
the scenario shown in Fig. 1 and detailed in Section V-A.
The generator loses money if its own link is disrupted and
can gain additional profits when some competitors’ links are
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Fig. 2. The profitability for a generator is shown for two attack scenarios.
At t=50 s a DoS attack is launched on the communication link connecting
the generator to the market (self-attacked) or another market player (others
attacked), and it lasts until t=200 s.

disrupted. Market players are retroactively charged the actual λ
market price to promote market participation—otherwise self-
disconnection would be a valid strategy.

III. ATTACK AND DEFENSE STRATEGY

Definitions:
A set of market players
I set of target network links
SW social welfare or profitability of the system
SWa profitability of market player a
IM[a, i] impact or change in profit realized by market
player a when network link i is attacked
P atki probability of network link i being attacked
P [a, i] probability of network link i being attacked,
as estimated by market player a
Di boolean indicating if network link i is defended
Ci cost to defend asset i
Ai boolean indicating if network link i is attacked
by the SA
A[i, n] two dimensional Ai for n iterations in a game
with imperfect information at the various actors
Oa, Oi set of network links owned by market player
a, owner of asset i
σa knowledge level of market player a

A. Players and Definitions

The set of market players A in the power market wish
to maximize their profit SWa, as defined in Section II-B.
The power system is comprised of a set of assets and their
communication links in I . The term asset refers to both
the physical system consuming or producing energy and it’s
associated target, the network link. There is a one-to-one
mapping of assets (and thus targets) to market players defined
as ownership such that one market player may own multiple
assets. Each actor has a defensive decision to make for each
asset that it owns– whether or not to invest in its defense
Di ∈ 0, 1. This decision has a cost of defense Ci. If the asset
is attacked, Ai ∈ 0, 1, then the system experiences the impact
IM from the attack, unless Di = 1 in which case the attack is
assumed to fail via perfect defense.



B. Attacker’s Incentive
The strategic adversary (SA) attempts to profit from the

manipulations described in Section II-C by launching network
attacks on the links that interconnect the market players with
the market mechanism and the price signal λ. Each attack
results in a change in the profitability of each market player,
and this is captured in the impact matrix IM[a, i] [13]. In this
paper, IM[a, i] is estimated via dynamic market simulations
(Section V-A) by approximating the market conditions for each
player and evaluating the resulting changes in profit in the
market. For example, the impact of attacking each network
link on the generator in Fig. 2 is summarized by IM. The SA
wishes to maximize the gain in profit for some market players
with whom she has a financial interest, shown in (5). A, I is
the set of actors A and network links I to attack and profit
from as the attacker’s strategy.

argmaxA,I
∑

a∈A,i∈I
IM[a, i] (5)

The probability of an attack on target i is proportional to
the attacker’s incentive gained from that attack. Abstractly,
the target i could be any perturbation in the system–network
outages, power plant disruptions, transmission line faults, etc.
In this paper, however, we are focusing on a dynamic pricing
system for the smart grid, and the targets are limited to
network link disruptions. Similarly, the actors that benefit from
the attack A are collections of consumers and/or generators
participating in the dynamic market.

C. Defensive Maneuvers
The market players in the system can estimate the IM via

their own impact analysis. Using their individual IM, they can
also estimate the attacker’s strategy and use it to construct
a corresponding defensive strategy. Without any budgetary
constraints, the defenders will protect all the targets in I by
investing in high capacity, secured network links. Budgets are
limited, however, so defenders must optimally select targets
to defend. Section IV describes how the defenders can have
different views on the system parameters and still coordinate
a defense.

1) Underlying Game: The impact matrix IM is computed
by assessing the underlying game, i.e. the power market, with
successful attacks, as described in Section II-C. Two versions
of the system are compared–in one version, the attack was
successful and in the other no attack is present. The resulting
change in profitability for each actor is summarised by IM as
the difference between the profits for each market player in
the two scenarios.

Each attack on the system causes an overall net-negative
impact on profitability. The system operates at a global-
optimal whenever communications are uninterrupted. Any
perturbations that disrupt communications result in decreased
efficiency because of suboptimal responses to market prices
(λ). Therefore, the sum across all actors for any given target
is always zero or negative. Some actors, however, may ben-
efit from competitor elimination, which is the basis for the

TABLE I
EXAMPLE IMPACT MATRIX (IM)

T1 T2 T3
A1 -2 -2 3
A2 4 -4 -2
A3 -4 2 -4

Fig. 3. In the overall system flow, set of defenders and a strategic adversary
each have a view of the system and its market. The system is exposed to
a physical scenario and analyzed for a set of potential targets via a market
mechanism simulation. From this simulation, the profitability of each market
player is captured in a set of impact matrices (IM). Each market player has
an independently calculated IM and thus a different defense strategy that can
be rectified via collaboration.

strategic adversary’s profit model. Table I shows an example
impact matrix for three market players and three targets. Ai
owns target Ti.

D. Defensive System Overview

The defensive investment optimization problem is designed
to minimize the attacker’s incentive thus reducing the proba-
bility of attack and denying profits to the adversary (resource
exhaustion). An impact model is analyzed for each target
and assessed as an impact to the profitability of each market
player (IM). Once the matrix is calculated, it can be analyzed
strategically to determine the best defensive action for each
market player as in [13]. Fig. 3 shows the system layout.

1) Defensive Investments: Each market player in the system
has a choice to defend self-owned targets from attacks at a cost
Ci. If this cost is less than the expected reduction in profits,
then it is in the actor’s best interest to invest in defensive
measures. The expected impact is IM[a, i]P [a, i] where P [a, i]
is actor a’s expectation that asset i will be attacked, based on
the SA’s optimal strategy. In game theory terms, we follow
the Stackelberg model where the different parties move one
after the other. In our case, the attacker’s move is estimated
and the defenders decide to defend the assets appropriately.
The attacker does not have the ability to come up with a
repeat attack after observing the defensive actions, so the Nash
equilibrium point is not analyzed in this model. Due to the
slow-moving nature of defensive investments, the defender’s
strategy is not immediately observable by the adversary.



IV. MULTIPLE KNOWLEDGE LEVELS

A. Multiple Underlying Games

Each actor a and the strategic adversary have their own
underlying game Ga, GSA, respectively, from which IM is
calculated. This arises because the parameters ωi, fi, Pi, Pi
from Section II-B must be estimated by actors who do not
own those assets, including the strategic adversary. Each actor
assesses the impacts from their independent viewpoints of
the system. The game Ga is derived from the ground truth
game GA by adding noise to the above parameters. In the
perfect knowledge model, all of the games are identical,
Ga1 = Ga2∀a1, a2. Imperfect information is modeled by
allowing the underlying games to diverge by sampling i.e.
fictitious play.

The game G itself contains a set of dynamic parameters
x (ωi, fi, Pi, Pi) that are used to determine optimal market
price. Fixed components of the game are the ownership and
the network structure of the system. Each market player wants
to keep its parameters secret to maintain a competitive edge
in the marketplace. The dynamic parameters, however, can
be estimated by observing market conditions and surveying
physical equipment infrastructures. Each market player there-
fore can establish a ”noisy” view of the underlying game, as
defined by (6). The dynamic parameters are sampled from a
normal distribution of the ground truth game. Sign changes
are not allowed because it is assumed that each market player
knows if an asset is a producer or consumer. The parameter σa
defines the knowledge level of the actor a, and it is applied
to all parameters except parameters for assets that the actor
itself owns Oa. Intuitively, this parameter models the amount
of information shared among each other. Greater is σa, less is
the information that actor a has.

x′ = N (x, σ2
a) ∀x ∈ GA, x /∈ Oa,

x′ = x ∀x ∈GA, x ∈ Oa
x′ ∈ (−∞, 0] if x′ <0, else x′ ∈ [0,∞)

(6)

B. Perfect Information Game

In the perfect information game, the strategic adversary and
all actors have a perfect view of the system, GSA = GA,
Ga = GA ∀ a ∈ A. In this form of the model, there is a
single, optimal outcome for the defenders. Since P [a1, i] =
P [a2, i]∀a1, a2 ∈ A, the defensive decision is the same for
each actor, and if the costs are correctly distributed among
the defenders, then there is a single globally optimal defense
strategy. The maximization problem (7) is solved by the
defenders via mixed integer linear programming (MILP). The
maximum value of this equation is zero because if no target is
attacked, then no defense is necessary. Practically, protecting
a network link (e.g. via DDoS protection) has some cost Ci
for establishing a more reliable communication channel. The
defender that owns each link, must decide to invest in its
protection or not based on the likelihood of attack and the
financial impact of the link outage.

max
∑
∀a∈A

∑
i∈I

AiIM[a, i](1−Di)−DiCi (7)

The strategic adversary, the driving force behind Ai, is
playing a similar game in (5). Since everyone shares the same
knowledge, the perceived impact at each market player is
the same, and all actors agree on which targets should be
defended. Both the attacker and defender may have constraints
on

∑
Ai and

∑
DiCi due to budget constraints on how many

assets can be attacked and defended, respectively.

C. Imperfect Attack Strategies

The adversary is assumed to be perfectly rational (no
anarchy) but may not have perfect knowledge of the system
and subsequently makes suboptimal decisions. To capture this,
Ai is evolved into a mixed probability-based strategy across
several underlying games for the adversary. The SA has a
single, optimal (pure) strategy per (5), and a mixed strategy
is created by combining multiple pure strategies into a single
mixed strategy. Multiple IM′ are calculated for the strategic
adversary’s underlying game GSA that are derived from GA
as define in (6), with the caveat that the SA owns no assets.
Equation (5) is optimized for each IM′ across N fictitious
games, each with a knowledge level σ, as a noise ratio. This
results in N strategies for each asset i as A[i, n]. Equation (8)
is the calculation for the probability of attack on target i given
the N fictitious games for the adversary. The outcome P ai
is an average of the boolean strategies for each of the SA’s
hypothetical games.

P ai =

∑
n∈N A[i, n]

N
(8)

Defense with Mixed Attack Strategies: The defenders strat-
egy, as captured in (7), is modified below in (9) to account
for the fact that the SA may have a non-boolean attack plan.
Previously, Ai was binary and now P ai is a rational number
so that the defender is operating on a mixed strategy.

max
∑
∀a∈A

∑
i∈I

P ai IM[a, i](1−Di)−DiCi (9)

D. Multiple Defender Optimization

The maximization problems presented earlier for optimizing
defensive investments do not consider the scenario where
multiple defenders do not have the same information level
and are optimizing around different underlying games. Each
defender’s underlying game, Ga, is used in place of GA to
calculate a mixed attacker strategy using (8). Each actor then
has a different threat model P [a, i] based on Ga instead of GA.
(10) is performed by each actor to complete the optimization
of Di. Only the owner of asset i can determine the value of
Di. This approach enables no single actor to have a global
view of the system which accurately models how a large
interdependent system would operate.



max
∑
∀a∈A

∑
∀i∈Oa

P [a, i]IM[a, i](1−Di)−DiCi (10)

Cost Collaboration: This problem is supplemented with
a collaboration method. The cost of defense of target i is
proportionally shared among benefiting actors. Since defensive
decisions are segmented by asset owner, and attacks against
owned-assets are always damaging, there is no Price of Anar-
chy (PoA) in this defensive model.

V. EXPERIMENTATION

A. Experimental Setup

The underlying game, as described in Section II-B, is solved
via an online Nelder-Meade (NM) [16] optimization technique.
Each iteration of NM is assumed to take one second and
requires one round-trip communication of λ and Pi. The model
for fi is given in (12). In the case of a consumer, ωi = Pi.
For a producer, ωi = Pi. The source code and corresponding
market model details are available at [17].

λs = 6 ∗
λ− λi
λi − λi

− 3 (11)

fi(λ) =
Pi − Pi
1 + eλs

+ Pi (12)

The model has 20 generators with an average Pi = 0, Pi =
5, λi = 30, λi = 80, and there are 100 consumers with Pi =
1.5, Pi = 0.3, λi = 0, λi = 100 for a total of 120 market
players. The consumers Pi is modified as Pi′(t) = Pi+0.30 ·
sin( π·t

3600 ), and all the other parameters are agnostic to time.
At t=50s, the targeted network links are disrupted such that
the λ term is fixed for those assets. At t=200s, the links are
restored and communication is resumed. At t=100s a step load
is introduced by setting Pi = 2, Pi = 0.4 for all consumers.
The parameters are restored to the default values at t=250s.
The simulation is executed for 400 seconds. This scenario can
be seen in Figs. 1 and 2.

1) Communication Topology: In the experimental model,
the communication paths between the market organizer (NM
algorithm) and the individual market players are indepen-
dent. In practice [18], however, there will be interdependence
between communication failures across the different market
players as many of them will share common links at some
point in the communication path. For this reason, we have
distributed the 120 market players on a tree topology with 4
top tier network links, 12 mid-tier links (3 for each top tier
link), and 120 leaf links to better capture the interdependent
networking impacts on smart grid topologies as shown in
Fig. 4. Since future communication topologies have not yet
been determined, and because dynamic markets may not
operate on the same infrastructure as existing smart metering
technologies, the topology used is purely speculative. As
concrete topologies evolve, they can be substituted into this
experimentation framework to identify changes in strategy and
crucial network links.

Fig. 4. The simulated network has four top-tier links, twelve mid-tier links,
and one hundred twenty leaf links.

B. Experiment 1: The Attacker’s Incentive

In this experiment, the strategic adversary attempts to maxi-
mize her incentive, as described in Section III-B. The strategy
space I is the selection of links in the communication topology
to disrupt. Each disruption results in a particular IM that is
used to calculate the maximum attacker’s incentive. Fig. 5
shows the attacker’s incentive as a function of the number
of links that she can attack simultaneously. As the number
of simultaneously disrupt-able links increases, the attacker’s
incentive also increases. The attacker’s incentive plateaus,
however, when the overall system performance degradation
becomes the dominating factor due to large numbers of link
outages. The AI plateaus because the system as a whole
becomes less profitable whenever most network links are
disrupted (e.g. the top-level link attacks).

C. Experiment 2: Collaborating Defenders

In this experiment, the defense strategy presented in Sec-
tion IV is evaluated. The defenders attempt to reduce the
attacker’s incentive shown in Fig. 5 by securing particular
network links, thus eliminating them from the attacker’s profit
pool. The market players at each mid-tier communication hub
are joined together so that there are 12 owners with 10 assets
each. Collaboration is then possible on the mid-tier and top-
tier network links, and they are the focus of this experiment.

Fig. 6 shows the reduction in attacker’s incentive for differ-
ent target budgets and a fixed σ = 0.1 for each owner. The
defensive budget is progressively reduced relative to the num-
ber of attacked links. The defenders are able to significantly
reduce the attacker’s incentive in most large-attack cases at
the leaf links.

Fig. 7 shows the reduction in AI for a range of knowledge
levels across the defenders. In this case, 75 links are attacked
and 75 links can be defended. The AI is maximally reduced
when the owners knowledge levels are maximized (σ → 0)
indicating that collaboration can improve overall defense ef-
fectiveness.

VI. RELATED WORK

Game theory applications for the smart grid [8] have be-
come an increasingly important component of power system
optimization. The core goals of these games, along with other



Fig. 5. The strategic adversary attempts to maximize her incentive by disrupting network links. In the graph on the left, the adversary is disrupting leaf-links
in the communication topology. In the middle graph, the adversary is disrupting mid-tier links, and in the graph on the right, the top tier links are disrupted.
In each case, the attacker’s incentive is maximized for the given targets attacked. The strategy shown is maximized from (5) and compared to the mean of a
random target selection.
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Fig. 6. The attacker’s incentive is reduced by defensive investments in
communication links. As the number of links attacked increases, the number
of links defended also increases. The effectiveness of the defense, however,
is reduced by imperfect knowledge levels among the defenders (σ = 0.1).
Each line represents a different amount of aggregate defense budget, relative
to the number of links attacked.
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for different defender knowledge levels when 75 targets are attacked and
defended. Decreased knowledge levels (high σ values) results in ineffective
defense. As defenders are unwilling and unable to collaborate on defensive
investments, the system suffers overall from poor defensive strategies.

approaches such as dynamic market mechanisms [14], are to
improve the social welfare of the smart grid by utilizing market
forces to balance demand with supply. The usefulness of these
games, however, has not been well studied in the context of
a strategic adversary that seeks to maliciously profit from the
system by launching attacks.

A separate but related set of game theories optimize the
security of information systems [19], [20] by playing attack-
er/defender games designed to create a defensive strategy
that is optimal for a given adversarial model. Most of these
approaches, however, utilize qualitative metrics for target
valuation, costs, and attack success since it is difficult to
value computer system breaches. The work presented in this
paper applies attacker/defender concepts to a concrete smart
grid cyber-physical system in which the utilities of attack and
defense are derived from their actual operational influences.
This also allows information exchanges to have quantitative
impacts on success metrics.

Several attacker/defender games or security games have
been constructed around Stackelberg games [21] for solving
defensive investment optimization problems and scheduling
patrols [22]. These games solve an attacker/defender model
where the defender moves first in response to a perceived
adversary and have been extended to support multiple human-
modeled adversaries [23] in a computationally efficient way.
These models, however, do not address defenders who exist in
a competitive environment. The work presented in this paper
analyzes attacker/defender games in a competitive environ-
ment.

The long-term financial impacts of attacks have been studied
in [24]. Adversaries are modeled in [24] as has having
budgets that deteriorate with unsuccessful attacks, resulting
in reduced attack viability. The model captures some of the
economic factors we have in this paper, but it does not make
a connection between the physical system’s behavior and
the resulting financial outcome of attacks. Similarly, game
theoretic techniques in [8], [9], [10], [11], [12] have proposed



methods for determine how adversaries might manipulate the
physical control systems via attacks, but they do not draw
the financial connection between physical perturbations and
adversarial profits. The work presented in this paper focuses on
the financial motivations of attackers and defenders, resultant
from system perturbations, as an attack and defense planning
tool.

VII. CONCLUSION

In this paper, we presented a modeling technique to connect
the networking components of a dynamic pricing market
with a security strategy to defend against a profit-motivated
adversary. This model allows the economics of cyberattacks
on power markets to be captured and used to assess the
risk to assets in the system. The amount of information that
competing market players share about assets in the system is
also modeled and used to analyze the benefits of collaboration
in a defensive context. We then apply techniques to mitigate
the attacker’s incentive thus improving system resilience. We
show that the baseline attacker incentives can be as high
as 51% of baseline operating profits. When the defender
and adversary’s budget are equal, the attacker’s incentive is
reduced by up to 70%. These results validate the utility of
this paper’s technique in optimizing defensive investments.
The model presented in the paper and the simulation results
show promising approaches to countering the growing threat
of cyberattacks in smart grids.

In future work, we are looking to model online learning
aspects of dynamic pricing markets. In such a model, the
attacker seeks to learn through iterative attacks, which also
reveal more information about the system and the defensive
strategies. Conversely, the defender also seeks to learn of the
attack strategy through a multi-round strategy.
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