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Diagnosis of Performance Faults in Large
Scale Parallel Applications via Probabilistic

Progress-Dependence Inference
Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Saurabh Bagchi, Todd Gamblin

Abstract—Debugging large-scale parallel applications is challenging. Most existing techniques provide little information about

failure root causes. Further, most debuggers significantly slow down program execution, and run sluggishly with massively

parallel applications. This paper presents a novel technique that scalably infers the tasks in a parallel program on which a

failure occurred, as well as the code in which it originated. Our technique combines scalable runtime analysis with static analysis

to determine the least-progressed task(s) and to identify the code lines at which the failure arose. We present a novel algorithm

that infers probabilistically progress dependence among MPI tasks using a globally constructed Markov model that represents

tasks’ control-flow behavior. In comparison to previous work, our algorithm infers more precisely the least-progressed task. We

combine this technique with static backward slicing analysis, further isolating the code responsible for the current state. A blind

study demonstrates that our technique isolates the root cause of a concurrency bug in a molecular dynamics simulation, which

only manifests itself at 7,996 tasks or more. We extensively evaluate fault coverage of our technique via fault injections in ten

HPC benchmarks and show that our analysis takes less than a few seconds on thousands of parallel tasks.

Index Terms—Distributed debugging, diagnostics, parallel systems

✦

1 INTRODUCTION

Debugging errors and abnormal conditions in large-
scale parallel applications is difficult. While high per-
formance computing (HPC) applications have grown
in complexity and scale, debugging tools have not
kept up. Most debugging tools do not run efficiently
on the largest systems. More importantly, they pro-
vide little insight into the causes of failures. Tra-
ditional debugging techniques allow programmers
to inspect the state of parallel tasks over time, for
example, registers and program variables, but the
process of identifying the root cause of problems often
requires substantial manual effort.

The question of identifying root cause is particu-
larly challenging for performance faults (e.g., slow
code regions) and correctness problems (e.g., dead-
locks), which may manifest in different a code region
or on a different process from their original cause.
Often, when a parallel MPI application suffers from
a performance fault, the manifestation of the fault
may occur in separate tasks from its root cause. For
example, consider a faulty task that deadlocks in
computation code in an early phase of the application.
As a consequence, non-faulty tasks may block later—
and cannot make further progress—if they execute
collective or blocking point-to-point communication
operations that involve the faulty task. To provide

• I. Laguna, D. H. Ahn, B. R. de Supinski and T. Gamblin are with
the Lawrence Livermore National Laboratory, Livermore, California,
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insight into these problems, previous work [1], [2]
identifies the least-progressed (LP) task (or tasks) in
parallel execution. The LP task often corresponds to
the faulty task, which helps programmers to narrow
down their debugging efforts from inspecting the
state of multiple (possibly thousands) of tasks to one
(or a few) task(s).

In contrast to STAT [1], which identifies the LP
task via temporal ordering using static and dynamic
analysis, the AutomaDeD (Automata-based debugging
for dissimilar parallel tasks) tool identifies it via low-
cost dynamic analysis [2]. AutomaDeD probabilisti-
cally identifies the LP task (or tasks) by using a
Markov Model (MM) as a lightweight, statistical sum-
mary of each task’s control-flow history. States in the
Markov model represent MPI calls and regions of
computation in application code, and edges represent
state transitions. The models are created online with
little runtime overhead and provide rich information
that allows AutomaDeD to trace performance and
correctness problems to their origin.

AutomaDeD introduced the concept of progress de-
pendence to probabilistically pinpoint the LP task given
a faulty execution of the application [2]. It creates a
progress dependence graph (PDG) to capture wait chains
of non-faulty tasks that depend on the faulty task to
progress. We use these chains to find the LP task. Once
we find the LP task, AutomaDeD applies source-code
analysis on this task’s state to identify code that may
have caused it to fail. We use static program slicing [3]
as an example of the code-analysis techniques that can
be applied scalably in our framework.
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The original algorithm to create a PDG computes
progress dependencies in a fully distributed manner
by using per-task Markov models [2]. This algorithm
incurs imprecision when calculating dependencies
since only a partial view of the MM is seen by each
task. MM may be different among tasks (i.e., they may
have different states and edges) due to control flow
differences. For example, a task may reach a state in
which an MPI message is sent, whereas another tasks
may reach a (different) state, in which that message
is received. Dissimilarities among MM could cause
impression when computing progress dependencies
since dependencies could conflict to each other (e.g.,
in one task the dependence is one direction, whereas
in another task, the dependence is in the opposite
direction), and could be null locally but non-null
globally (i.e., a dependence may not be inferred only
from local information, but it can be inferred from
globally aggregated information).

In this paper, we present a novel algorithm to
compute the PDG—and subsequently to find the LP
task(s)—that uses a global MM as input, instead of
local MMs. We compare this semi-distributed algo-
rithm (named SEMI-DIST) with the original fully
distributed algorithm (named DIST). SEMI-DIST is
more precise than DIST for some applications at the
expense of extra overhead. On the other hand, since
DIST is fully distributed, it ensures scalability—it can
be used to find the LP task in a fraction of a sec-
ond among thousands of MPI tasks. Both algorithms
use minimal per-task information and they incur
only slight runtime overhead. Our implementation is
transparent—it uses the MPI profiling interface to in-
tercept communication calls—and it does not require
separate daemons to trace the application as other
debugging tools do (e.g., TotalView [4] and STAT [1]).

The previous fault coverage evaluation of DIST
(i.e., measurements of accuracy and precision) only
included two of the Sequoia benchmarks: AMG2006
and LAMMPS [5]. This paper presents a fault cov-
erage evaluation of DIST and SEMI-DIST with the
NAS Parallel Benchmarks [6] in addition to AMG2006
and LAMMPS—a total of ten benchmarks. This allows
us to measure and understand the efficiency of our
techniques with a larger variety of HPC codes.

We show, through fault injection, that AutomaDeD
constructs a PDG and finds a faulty task in a fraction
of a second on each program running with up to
32,768 tasks. AutomaDeD accurately identifies the LP
task in 95% of the cases (using DIST), averaged across
the tested benchmarks. Its precision (i.e., the inverse
of false-positive rate) is 90% on average using SEMI-
DIST. In a blind study, we also show that AutomaDeD
can diagnose a difficult-to-catch bug in a molecular
dynamics code [7] that manifested only at large scale,
with 7,996 or more tasks. AutomaDeD quickly found
the origin of the fault—a complex deadlock condition.

This paper makes the following contributions:

Fig. 1: Progress dependence graph example. Task a blocks
in computation code which leads to groups of tasks B, C,
D and E to block in other code regions, i.e., collective MPI
calls. Task groups cannot progress due to task a.

• A novel scalable semi-distributed algorithm to
create a progress-dependence graph and the LP
task(s) to quickly diagnose the origin of perfor-
mance faults;

• A comparison of accuracy and precision of the
new algorithm (SEMI-DIST) with respect to the
original one (DIST) in identifying the LP task(s)
under fault injections in ten HPC benchmarks;

• A study of scalability DIST and SEMI-DIST with
up to 32,768 MPI tasks;

• A detailed description of a blind study, which
demonstrates the effectiveness of AutomaDeD in
pinpointing the root cause of an elusive concur-
rency bug in a molecular dynamics application.

The rest of the paper is organized as follows. Sec-
tion 2 presents the overview of our approach and Sec-
tions 3 and 4 detail our design and implementation.
Section 5 presents our case study and fault injection
experiments. In Sections 6 and 7, we survey related
work and state our conclusions.

2 OVERVIEW OF THE APPROACH

2.1 Progress Dependence Graph

A progress-dependence graph (PDG) represents depen-
dencies that prevent tasks from making execution
progress. A dependence is any relationship among two
or more tasks that prevents the execution of one of the
tasks from advancing. For example, a task might block
while waiting for a message from another task. We use
these relationships to find the causes of failures, such
as program stalls, deadlocks, and slow code regions,
which can subsequently aid in performance tuning the
application (e.g., by highlighting tasks with the least
progress).

A PDG starts with the observation that all tasks may
need to enter an MPI collective call before some tasks
can exit the call. For example, MPI_Reduce is often
implemented in MPI using a binomial tree [8]. Since
the MPI standard does not require collectives to be
synchronized, some tasks could enter and leave this
state—the MPI_Reduce function call—while others
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Fig. 2: Diagnosis work flow (gray blocks execute in a distributed fashion—a single task performs the others).

remain in it. Tasks that only send messages in the
binomial tree enter and leave this state, while tasks
that receive and later send messages block in this state
until the corresponding sender arrives. These blocked
tasks are progress-dependent on the other delayed tasks.

Definition 1 (Progress Dependence). Let the set of tasks
that participate in a collective operation be X . If a task
subset Y ⊆ X has reached the collective operation while
another task subset Z ⊆ X , where X = Y ∪ Z, has not
yet reached it at time t, such that the tasks in Y blocked
at t waiting for tasks in Z, then Y is progress-dependent

on Z, which we denote as Y
pd
−→ Z.

Figure 1 shows a sample PDG in which task a

blocks in computation code on line 10. Task a could
block for many reasons, such as a deadlock due to
incorrect thread-level synchronization. As a conse-
quence, a group of tasks B block in MPI_Bcast in line
11 while other tasks proceed to other code regions.
Task groups C, D and E block in code lines 15, 17,
and 20, respectively. No progress dependence exists
between groups C and E, and between groups D and
E, because they are in different branches of execution.

2.1.1 Point-to-Point Operations

In blocking point-to-point operations such as
MPI_Send and MPI_Recv, the dependence is only on
the peer task. We formalize the progress-dependence
for point-to-point operations as follows:

Definition 2 (Point-to-Point Progress Dependence). If
task x blocks when sending (receiving) a message to (from)

task y at time t, then x
pd
−→ y.

This definition also applies to nonblocking opera-
tions such as MPI_Isend and MPI_Irecv. The main
difference is that the dependence does not apply
directly to the send (or receive) operation, but to the
associated completion (e.g., a wait-loop or test oper-
ation). If a task x blocks on MPI_Wait, for example,
we infer the task y, on which x is progress-dependent,
from the request on which x waits. Similarly, if x spins
on a test, e.g., by calling MPI_Test within a loop, we
infer the peer task on which x is progress-dependent
from the associated request. On the receiving end, we
can also infer the dependence from other test oper-
ations such as MPI_Probe or MPI_Iprobe. In any

case, we denote the progress dependence as x
pd
−→ y.

2.1.2 PDG-Based Diagnosis

A PDG can intuitively pinpoint the task (or task
group) that initiates a performance failure. In Figure 1,
task a can be blamed for causing the stall since it has
no progress dependence on any other task (or group
of tasks) in the PDG. It is also the least-progressed
(LP) task. From the programmer’s perspective, the
PDG provides useful information for debugging and
performance tuning. First, given a performance failure
such as that in Figure 1, the PDG shows where to
focus attention, i.e., the LP task(s). Thus, debugging
time is substantially reduced, as the programmer
focuses on the execution contexts of a few tasks,
instead of potentially thousands of tasks in a large-
scale run. Second, we can efficiently apply static or
dynamic bug-detection methods based on the state of
LP task(s). AutomaDeD applies slicing [3] starting from
the state of the LP task, which substantially reduces
the search space of slicing when compared to slicing
the execution context of each task (or representative
task group) separately and then combining this infor-
mation to find the origin of the fault.

2.1.3 PDG Versus Other Dependency Graphs

A PDG is different from the dependency graph used
in prior work on MPI deadlock detection [9], [10],
[11]. A PDG hierarchically describes the execution
progress of MPI tasks. It addresses questions such as:
Which task has made the least progress? Which tasks
does the LP task prevent from making progress? In
contrast, knots in traditional dependency graphs can
detect real and potential deadlocks. We do not detect
deadlocks by checking for knots in a PDG. However,
since a PDG combines dependencies arising from MPI
operations, it can indicate that a deadlock caused a
hang. Performance problems are a superset of hangs;
deadlocks or other causes can lead to hangs. Our case
study with a real-world bug in Section 5.1 shows an
example in which we use a PDG to identify a deadlock
as the root-cause of a hang.

2.2 Workflow of Our Approach

We have developed a tool called AutomaDeD to diag-
nose failures using a PDG. Figure 2 shows the steps of
this diagnosis. Steps 1–2 are distributed in DIST and
semi-distributed in SEMI-DIST, whereas steps 3–5 are
performed in a single task (in both algorithms).
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1) Markov-model creation: AutomaDeD captures
per-MPI-task control-flow behavior in a Markov
model (MM). MM states correspond to two code
region types: communication regions, i.e., code
executed within an MPI function; and compu-
tation regions, i.e., code executed between two
MPI functions. Our previous work uses simi-
lar Markov-like models (semi-Markov models)
to find similarities between tasks to detect er-
rors [12], [13]. Our novel framework uses MMs
to summarize control-flow execution history as
Section 3.1 details. No prior work, to our knowl-
edge, uses MMs to infer progress dependencies.

2) Inferring dependencies and PDG creation:
When a system (either AutomaDeD or a third-
party system) detects a performance fault, Au-
tomaDeD creates a PDG. We provide two algo-
rithms to create a PDG. The first algorithm is
distributed (which we have referred to earlier
as DIST): it computes a local PDG in each task
(using task local information) and then performs
a global reduction to create the final PDG. This
algorithm uses an all-reduce over the MM state
of each task, which provides each task with the
state of all other tasks. Formally, if a task’s local
state is slocal, this operation provides each task
with the set Sothers = s1, . . . , sj , . . . , sN , where
sj 6= slocal. Next, each task probabilistically infers
its own local PDG based on slocal and Sothers.
Finally, it reduces these PDGs to a single PDG.
The second algorithm is semi-distributed (which
we have referred to earlier as SEMI-DIST): it first
performs a reduction to compute a global MM
in a single task—a distributed operation—and
then computes the final PDG based on this MM
in a single task. It has better precision than the
the first algorithm, and it has almost the same
accuracy; SEMI-DIST can eliminate conflicting
dependencies that DIST cannot since it uses a
global MM as input. However, creating a global
MM to compute a PDG incurs extra overhead as
a global reduction is performed to merge all the
MM in one.

3) LP-task detection: Based on the reduced PDG,
we determine the LP task and its state (i.e., call
stack and program counter), which we use in
the next step (i.e., source-code analysis). The
LP task(s) are a group of tasks without any
progress dependence. From the perspective of
a PDG, AutomaDeD only has to find nodes with
no outgoing edges. Since this is not an expensive
operation—most of the PDGs in our experiments
had between 5 to 10 nodes—it can be executed
sequentially without substantial overhead.

4) Source-code analysis: The state of the LP task
allows us to apply a variety of static or dynamic
source-code analysis techniques to backtrack to
the fault’s origin. Examples of applicable source-

code analysis are data-flow analysis, points-
to analysis, and program slicing. We perform
(backward) program slicing since it allows Au-
tomaDeD to identify code that could have led the
LP task to reach its current (faulty) state. We per-
form slicing in AutomaDeD using Dyninst [14].

5) Visualization: Finally, AutomaDeD presents the
program slice, the reduced PDG and its associ-
ated information. The user can attach a serial or
parallel debugger to the LP task identified in the
PDG. The PDG also provides other task groups
and their dependencies. The slice brings the
programmer’s attention to the code that affected
the LP task, and allows them to find the fault.

3 DESIGN

In this section, we describe a statistical technique to
model the control-flow of parallel tasks as a Markov
model. We then present the inference of progress
dependence based on this model.

3.1 Summarizing Execution History

A simple, direct approach to save the control-flow ex-
ecution history is to build a control-flow graph (CFG)
based on executed statements [15]. This approach
typically requires heavy-weight (binary or source-
code) instrumentation and it is only feasible for small
applications. Since large-scale MPI applications can
have very large CFGs, AutomaDeD instead captures a
compressed version of the control-flow behavior using
our MM with communication and computation states.
The edge weights capture the frequency of transitions
between two states. Figure 3 shows how AutomaDeD
creates MMs at runtime in each task. We use the MPI
profiling interface to intercept MPI routines. Before
and after calling the corresponding PMPI routine, Au-
tomaDeD captures stateful information, such as a call
stack trace, offset address within each active function,
and return address. We assume that the MPI program
is compiled using debugging information so that we
can resolve addresses to line numbers in source files.

Note that each task computes its own version of
a Markov model, which is based only on the states
that it has seen. MMs across different tasks may be
different—they may have different states and edges,
and similar edges between two tasks could have dif-
ferent transition probabilities. This reflects the SPMD
(single program, multiple data) nature of MPI pro-
grams and our distributed approach to build MMs—
tasks do not synchronize when creating MMs.

3.2 Progress Dependence Inference

We now discuss how we infer progress dependen-
cies probabilistically from our MMs. We restrict the
discussion to dependencies that arise from collective
operations, since dependencies from point-to-point
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Fig. 3: Markov model creation. States represent code re-
gions within or between MPI calls. Edge annotations rep-
resents the frequency of transitioning from one state to
another state.

operations do not require our probabilistic analysis.
For example, if task ti is waiting for another task
in MPI_Recv, AutomaDeD uses the parameters of the
MPI call to determine the task on which ti’s progress
depends. In cases when a task blocks in MPI_Wait,
for example, when using non-blocking operations,
AutomaDeD uses MPI request handles to identify the
matching progress-dependent task. We cannot infer
progress dependence for MPI_ANY_SOURCE, and in
this case, AutomaDeD simply omits this progress-
dependence edge.

AutomaDeD probabilistically infers progress depen-
dence between a task’s local state and the states of
other tasks. Intuitively, our MM models the probabil-
ity of going from state x to state y via some path x y.
If a task tx in x must eventually reach y with high
probability then we can determine that a task ty in
state y could be waiting for tx, in which case we infer

that y
pd
−→ x. For simplicity, we represent progress

dependencies in terms of task states (rather than in
terms of task IDs) in the rest of the discussion—we
assume that a task tx can only be in one state at the
same time, i.e., state x.

To illustrate how progress dependence is calculated,
we introduce the concept of path probability:

Definition 3 (Path probability). The path probability of
two states is the sum of the probabilities of moving from
one state, the source, to another state, the destination, via
all possible paths in a given MM. A path probability, p,
can be either forward or backward, and 0.0 ≤ p ≤ 1.0.

Definition 4 (Forward and backward path probabil-
ity). A forward path probability between states x and y

is the path probability where x is the source and y is
the destination, i.e., P (x, y). A backward path probability

Fig. 4: Sample Markov model with five tasks that blocked
in different states

between states x and y is the path probability where y is
the source and x is the destination, i.e., P (y, x).

Figure 4 illustrates how we infer progress depen-
dence from the MMs. Note that this figure shows a
global view of the MM and the current states of all
the tasks. However, locally each task only has a partial
view of this graph. For example, task e, which is in
state 10, only sees the right branch of the graph, which
begins from state 2 and continues to state 9.

In Figure 4, five tasks (a, b, c, d and e) are blocked
in different states (1, 3, 5, 8, and 10 respectively). To
estimate the progress dependence between task b and
task c, we calculate that the path probability P (3, 5),
the probability of going from state 3 to state 5 over all
possible paths, which is 1.0. Thus, task c is likely to be
waiting for task b, since the observed execution dictates that
a task is in state 3 must always reach state 5. To estimate
progress dependence more accurately, we consider the
possibility of loops and evaluate the backward path
probability P (5, 3), which in this case is zero. Thus,
task c cannot reach task b, so we can consider it to
have progressed further than task b. We can now infer

that c
pd
−→ b.

3.2.1 Resolving conflicting probability values

When a forward path probability P (i, j) is 1.0 and
a backward path probability P (j, i) is zero, a task in
state j has made more progress than a task in state i.
However, if the forward path probability P (i, j) is 1.0
and the backward path probability is nonzero then the
task in state j might return to i. For example, for tasks
d and c in Figure 4, P (8, 5) = 1.0 but P (5, 8) = 0.9.
In this case, task d must eventually reach state 5 to

exit the loop, so we estimate that c
pd
−→ d; our results

demonstrate that this heuristic works well in practice
most of the time.

The dependence between task b and task e is null:
no progress dependence exists between them. They
are in different execution branches so the forward and
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TABLE 1: Dependence based on path probabilities. Unde-
fined dependencies are denoted as “?.”

P (i, j) P (j, i)
0 0 < P < 1 1 0 0 < P < 1 1 Dependence? Type
X X No

X X Yes ti
pd
−−→ tj

X X Yes ti
pd
−−→ tj

X X Yes ti
pd
←−− tj

X X ?

X X Yes ti
pd
−−→ tj

X X Yes ti
pd
←−− tj

X X Yes ti
pd
←−− tj

X X ?

backward path probabilities between their states, i.e.,
P (3, 10) and P (10, 3), are both zero. The same is true
for the dependencies between task e and task c or d.

3.2.2 General progress dependence estimation

To estimate the progress dependence between tasks
ti and tj in states i and j, we calculate two path
probabilities: (i) a forward path probability P (i, j);
and (ii) a backward path probability P (j, i). We use
Table 1 to estimate progress dependencies. If both
probabilities are zero (i.e., the tasks are in different ex-
ecution branches), no dependence exists between the
tasks. When one probability is 1.0 and the other is less
than 1.0, the first predominates the second. Therefore,
the second probability determines the dependence.

For example, if the second is P (j, i) = 0, then tj
pd
−→ ti

since execution goes from i to j. Similarly, if one
probability is zero and the second is nonzero, then
the second predominates the first. Therefore, the first
probability determines the dependence. For example,

if the first is P (i, j) = 0, then ti
pd
−→ tj because

execution could go from j to i but not from i to j.
We cannot determine progress dependence for two

cases: (1) when both probabilities are 1.0, and (2) when
both probabilities are in the range 0.0 < p < 1.0. The
first case could happen when two tasks are inside
a loop and, due to an error, they do not leave the
loop and block inside it. In this case both backward
and forward path probabilities are 1.0, so it is an
undefined situation. The probabilities in the second
case simply do not provide enough information to
make a decision. For these cases, AutomaDeD marks
the edges in the PDG as undefined so the user knows
that the relationship could not be determined. These
cases occurred infrequently in our experimental eval-
uation. When they do, the user can usually determine
the LP task by looking at tasks that are in one group
or cluster. Section 5 gives examples of how the user
can resolve these cases visually.

3.2.3 Procedure to construct PDG locally

Algorithm 1 shows our local PDG construction pro-
cedure. It is a local procedure since it is performed
by a single task after global information is gathered.

Algorithm 1 Computes PDG (locally for a task)

Input: mm: Markov model

closure: transitive closure of the Markov model

statesSet: set of current states of all tasks

Output: matrix: adjacency-matrix representation of PDG

1: procedure LOCALPDG
2: currState← current state of the task (in mm)
3: for all state in statesSet do
4: if state 6= currState then
5: f ← PathProbability(currState, state)
6: b← PathProbability(state, currState)
7: dep← dependence based on f , b
8: matrix[currState, state]← dep

9: end if
10: end for
11: end procedure
12:

13: function PATHPROBABILITY(src, dst)
14: p← 0
15: if src can reach dst in closure then
16: for all path between src and dst do
17: p← p+ probability(path, src, dst)
18: end for
19: end if
20: return p

21: end function

Section 4 describes two algorithms (named, DIST and
SEMI-DIST) to collect the input global-information for
this procedure. Algorithm 1 requires as input an MM,
a transitive closure of the MM, and statesSet, the
states of all other tasks. We compute the dependen-
cies between the current state and all the states of
statesSet. We represent dependencies as integers (0:
no dependence; 1: forward dependence; 2: backward
dependence; 3: undefined). We save the PDG in an ad-
jacency matrix. Line 7 determines dependencies based
on all-path probabilities and Table 1. The overall
complexity of this algorithm is O(s×(|V |+|E|)), where
s is the number of states in statesSet, and |V | and |E|
are the numbers of states and edges of the MM. In
practice, MMs are sparse graphs in which |E| ≈ |V |,
so time complexity is approximately O(s× |E|).

3.2.4 Comparison to postdominance.

Our definition of progress dependence is similar to
the concept of postdominance [16] in which a node
j of a CFG postdominates a node i if every path
from i to the exit node includes j. However, our
definition does not require the exit node to be in the
MM—postdominance algorithms require it to create
a postdominator tree. Since a fault could cause the
program to stop in any state, we are not guaranteed
to have an exit node within a loop. Techniques such as
assigning a dummy exit node to a loop do not work in

Page 6 of 25Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 201X 7

general for fault diagnosis because a faulty execution
makes it difficult (or impossible) to determine the
right exit node. To use the postdominance theory, we
could use static analysis to find the exit node and
map it to a state in the MM. However, our dynamic
analysis approach is more robust and should provide
greater scalability and performance.

4 SCALABLE MECHANISMS

This section details our PDG analysis implementation
that ensures scalability with increasing numbers of
MPI tasks. In particular, we focus on two algorithms
that can build a PDG. The first algorithm (DIST)
is fully distributed—i.e., all tasks create their own
PDGs that are subsequently reduced down to a single
PDG at the root task. The second algorithm (SEMI-
DIST) first designates a task to create a global Markov
model (by globally reducing all edges and transition
probabilities) and then builds the global PDG. We
will examine the performance and precision trade-offs
of these schemes in Section 5. AutomaDeD is imple-
mented in C++ and uses the Boost Graph Library [17]
for graph-related algorithms such as depth-first search
and for the construction of transitive closures in the
Markov Model.

4.1 Monitoring Mechanisms

4.1.1 Error Detection

Before triggering the PDG-based analysis, we assume
that a performance problem has been detected: e.g.,
the application is not producing its output within
an expected time frame. The user can then use Au-
tomaDeD to find the tasks and the associated code
region that caused the problem. AutomaDeD includes
a timeout detection mechanism that can trigger the
diagnosis analysis, and it can infer a reasonable
timeout threshold, i.e., based on the mean time and
standard deviation of state transitions). The user can
also supply the timeout as an input parameter. Our
experiments with large-scale HPC applications found
that a 60-second threshold is sufficient.

4.1.2 Helper thread

AutomaDeD uses a helper thread to analyze the MM
and performs the core of the dependence inference:
Step 2 in Figure 2. Unlike other Steps in which only
one task (MPI rank 0 by default) performs inexpensive
operations, step 2 is required to be distributed (or
semi-distributed) and scalable. Thus, AutomaDeD uses
MPI_THREAD_MULTIPLE to initialize MPI and enable
the helper threads to use MPI. On machines that do
not support threads, such as Blue Gene/L, we save
all MMs to the parallel file system when we detect an
error. AutomaDeD then reads these MMs for analysis
in a separate MPI program.

Fig. 5: Workflow of the algorithms build the PDG

TABLE 2: Examples of dependence unions

No Task x Task y Union Reasoning OR operation
1 i→ j null i→ j first dependence dominates 1 + 0 = 1
2 i→ j i→ j i→ j same dependence 1 + 1 = 1
3 i← j i← j i← j same dependence 2 + 2 = 2
4 i→ j i← j i?j undefined 1 + 2 = 3
5 null null null no dependence 0 + 0 = 0

4.2 Inference of the PDG

4.2.1 Distributed algorithm

Algorithm 2 provides more detail of Step 2 in our
workflow. We first perform a reduction over the cur-
rent state of all tasks to compute the statesSet of all
tasks. We next broadcast statesSet to all tasks. Each
task uses algorithm 1 to compute its local version of
the PDG from its local state and statesSet. Finally,
we use a parallel reduction of the local PDGs to
calculate the union of the edges (forward or backward
dependencies). Figure 5 illustrates this algorithm.

When reducing a PDG, the associative operation
applied is the union of progress dependencies. Table 2
shows examples of some union results given two
progress dependencies from two different tasks. In
case 1, a dependency is present in only one task so
the dependency predominates. In cases 2 and 3, the
dependencies are similar so we retain it. In case 4, they
conflict so the resulting dependency is undefined. We
efficiently implement this operator using bitwise OR
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Algorithm 2 Distributed PDG computation

Input: currState: current state of the task

Output: matrix: adjacency-matrix representation of PDG

1: procedure DIST
2: statesSet← Reduce currState to rank 0
3: statesSet← Broadcast statesSet from rank 0
4: matrix← call LocalPDG to build PDG
5: matrix← Reduce matrix to rank 0
6: end procedure

since we represent dependencies as integers.
We cannot use MPI_Reduce for our reduction steps

since tasks can contribute states of different sizes
so we implement custom reductions that use bino-
mial trees. These operations have O(log p) complexity
where p is the number of tasks. Assuming a scalable
broadcast implementation, the overall complexity is
also O(log p). Our algorithm can therefore scale to the
task counts found on even the largest HPC systems.

4.2.2 Semi-distributed algorithm

A shortcoming of the previous algorithm (DIST) is
that progress dependencies are found based on a
single task’s view of the Markov model—different
tasks could have different MMs so this could lead
to inaccuracies when building the PDG (e.g, case 4
in Table 2). We present a second algorithm in which
a global MM is created first and then the PDG is
computed based on it. The algorithm is named SEMI-
DIST since it is partially distributed—the local MM is
still created in a distributed manner (i.e., locally on
each task). Figure 5 illustrates the workflow of this
algorithm.

Algorithm 3 Semi-distributed PDG computation

Input: mm: Markov model

currState: current state of the task

Output: matrix: adjacency-matrix representation of PDG

1: procedure SEMI-DIST
2: globalMM ← Reduce mm to rank 0
3: statesSet← Reduce currState to rank 0
4: if rank is 0 then
5: matrix← call LocalPDG to build PDG
6: end if
7: end procedure

The complexity of SEMI-DIST is also O(log p). How-
ever, this algorithm generally incurs higher overall
overhead than DIST. The most expensive step of DIST
is the reduction of the PDGs while that in SEMI-
DIST is the reduction of the MMs. In general, PDGs
tend to have much fewer numbers of edges than
MMs and hence reducing MMs is more expensive
than PDGs. The reduction of states is common in

both of them and this is relatively inexpensive. In our
experiments, the size of PDGs is in the range of 5–10
edges while the size of MMs varies between 200–1,000
edges. Thus, SEMI-DIST is a trade-off that exchanges
the performance with better precision, as we show in
our experimental evaluation in Section 5.

4.3 Determination of LP Task

We compute the LP task from the reduced PDG.
AutomaDeD first finds nodes with no outgoing edges
based on dependencies from collectives and marked
them as LP. If more than one node is found, Au-
tomaDeD discards nodes that have point-to-point
dependencies on other non-LP tasks in different
branches. Since AutomaDeD operates on a probabilistic
framework (rather than on deterministic methods [1]),
it can incorrectly pinpoint the LP task (e.g., when
forward and backward probabilities are both zero),
although such errors are rare according to our evalu-
ation. However, in most of these cases, the user can
still determine the LP task by visually examining the
PDG (by looking for nodes with only one task).

4.4 Guided Application of Program Slicing

4.4.1 Background

Program slicing transforms a large program into a
smaller one that contains only statements that are
relevant to a particular variable or statement. For
debugging, we only care about statements that could
have led to the failure. However, message-passing
programs complicate program slicing since we must
reflect dependencies related to message operations.

We can compute a program slice statically or dy-
namically. We can use static data and control flow
analysis to compute a static slice [3], which is valid
for all possible executions. Dynamic slicing [18] only
considers a particular execution so it produces smaller
and more accurate slices for debugging.

Most slicing techniques that have been proposed for
debugging message-passing programs are based on
dynamic slicing [19], [20], [21]. However, dynamically
slicing a message-passing program usually does not
scale well. Most proposed techniques have complexity
at least O(p). Further, the dynamic approach incurs
high costs by tracing each task (typically by code
instrumentation) and by aggregating traces centrally
to construct the slice. Some approaches reduce the size
of dynamic slices by using a global predicate rather
than a variable [20], [21]. However, the violation of the
global predicate may not provide sufficient informa-
tion to diagnose failures in complex MPI programs.

We can use static slicing if we allow some inac-
curacy. However, we cannot naively apply data-flow
analysis (which slicing uses) in message-passing pro-
grams [22]. For example, consider this code fragment:
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1 program ( ) {
2 . . .
3 i f ( rank == 0) {
4 x = 1 0 ;
5 MPI Send ( . . . , & x , . . . ) ;
6 } else {
7 MPI Recv ( . . . , & y , . . . ) ;
8 r e s u l t = y ∗ z ;
9 p r i n t f ( r e s u l t ) ;

10 . . .

Applying traditional slicing on the result state-
ment in line 9 identifies statements 7, 8, and 9 as the
only statements in the slice, however, statements 3–9
should be in the slice. Statements 4–5 should be in
the slice because the value x sent is received as y,
which obviously influences result. Thus, we must
consider the SPMD nature of the program in order
to capture communication dependencies. The major
problem with this communication-aware slicing is the
high cost of analyzing a large dependence graph [22]
to construct a slice based on a particular statement
or variable. Further, the MPI developer must decide
on which tasks to apply communication-aware static
slicing since applying it to every task is infeasible at
large scales.

4.4.2 Using Slicing in AutomaDeD

AutomaDeD progressively applies slicing to the execu-
tion context of tasks that are representative of behav-
ioral groups, starting with the groups that are most
relevant to the failure based on the PDG. AutomaDeD
uses the following procedure:

1) Initialize an empty slice S.
2) Iterate over PDG nodes from the node corre-

sponding to the LP task to nodes that depend
on it, and so on to the leaf nodes (i.e., the most
progressed tasks).

3) In each iteration i, S = S
⋃
si where si is the

statement set produced from the state of a task
in node i.

This slicing method reduces the complexity of man-
ually applying static slicing to diagnose a failure.
The user can simply start with the most important
slice (i.e., the one associated with the LP task) and
progressively augment it by clicking the “next” button
in a graphical interface, until the fault is found.

5 EVALUATION

We demonstrate how AutomaDeD diagnoses a difficult
bug in a molecular dynamics program that manifested
only at large scales. We also evaluate AutomaDeD
extensively in a controlled setting by performing fault
injection in ten MPI benchmarks. We also measure
the memory consumption and performance overhead
(including scalability) of the tool.

5.1 Case Study

An application scientist challenged us to locate an elu-
sive error in ddcMD, a parallel molecular dynamics
code [7]. The bug manifested as a hang that emerged
intermittently only when run on Blue Gene/L with
7,996 MPI tasks. Although the developer had already
identified and fixed the error with significant time and
effort, he hoped that we could provide a technique
that would not require tens of hours. In this section,
we present a blind case study, in which we were
supplied no details of the error, that demonstrates
AutomaDeD can efficiently locate the origin of faults.

Figure 6 shows the result of our analysis. Our tool
first detects the hang condition when the code stops
making progress, which triggers the PDG analysis to
identify MPI task 3,136 as the LP task—AutomaDeD
first detects tasks 3,136 and 6,840 as LP tasks and then
eliminates 6,840 since it is point-to-point dependent
on task 0, a non-LP task, in the left branch. The
LP task in the a state, causes tasks in the b state
that immediately depend on its progress to block,
ultimately leading to a global stall through the chain
of progress dependencies. This analysis step reveals
that task 3,136 stops progressing as it waits on an
MPI_Recv within the Pclose_forWrite function.
Once it identifies the LP task, AutomaDeD applies
backward slicing starting from the a state, which
identifies dataWritten as the data variable that
most immediately pertains to the current point of
execution. Slicing then highlights all statements that
could directly or indirectly have affected its state.

The application scientist verified that our analysis
precisely identified the location of the fault. ddcMD
implements a user-level, buffered file I/O layer called
pio. MPI tasks call various pio functions to move
their output to local per-task buffers and later call
Pclose_forWrite to flush them out to the parallel
file system. Further, in order to avoid an I/O storm
at large scales, pio organizes tasks into I/O groups.
Within each group, one writer task performs the
actual file I/O on behalf of all other group mem-
bers. A race condition in the complex writer nomina-
tion algorithm—optimized for a platform-specific I/O
forwarding constraint—and overlapping consecutive
I/O operations causes the intermittent hang. The ap-
plication scientist stated that the LP task identification
and highlighted statements would have provided him
with critical insight about the error. He further veri-
fied that a highlighted statement was the bug site.

More specifically, on Blue Gene/L, a number of
compute nodes perform their file I/O through a ded-
icated I/O node (ION) so pio nominates only one
writer task per ION. Thus, depending on how MPI
tasks map to the underlying IONs, an I/O group does
not always contain its writer task. In this case, pio
nominates a non-member task that belongs to a dif-
ferent I/O group. This mechanism led to a condition
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Fig. 6: Output for ddcMD bug.

in which a task plays dual roles: a non-writer for its
own I/O group and the writer for a different group.

Figure 6 shows the main loop of a writer. To receive
the file buffer from a non-writer, the group writer first
sends a request to each of its group members to send
the file buffer via the MPI_Send at line 317. The group
member receives that request via the MPI_Recv at
line 341 and sends back the buffer size and the buffer.
As shown in the loop, a dual-purpose task has an
extra logic: it uses MPI_Iprobe to test whether it
must reply to its non-writer duty while it performs its
writer duty. The logic is introduced in part to improve
performance. However, completing that non-writer
duty frees its associated writer task to move on from
MPI blocking communications. The hang arises when
two independent instances of pio are simultaneously
processing two separate sets of buffers. This pattern
occurs in the application when a small data set is
written immediately after a large data set. Some tasks
can still be performing communication for a large
data set while others work on a small set. Because
the MPI send/recv operations use tags that are fixed
at compile time, messages from a small set could be
confused for those for a large set of pio and vice-
versa, leading to a condition in which a task could
hang waiting for a message that was intercepted by a
wrong instance.

This error only arose on this particular platform
because the dual-purpose condition only occurs under
Blue Gene’s unique I/O forwarding structure. We also
theorize that the error emerges only at large scales be-
cause this scale increases the probability that the dual-
purpose assignments and simultaneous pio instances
occur. The application scientist had corrected the error
through unique MPI tags in order to isolate one pio

instance from another.

5.2 Fault Injection

In this section, we evaluate the code coverage of
AutomaDeD’s LP task detection. We inject a local
application hang by suspending the execution of a
randomly selected process for a long period, which
activates our timeout error detection mechanism. We
use PIN [23] to inject the fault as a sleep call at the
beginning of randomly selected function calls. Our
injector first profiles a run of the application so that we
randomly choose from functions that are used during
the run. This ensures that all injections result in errors.
We only inject in user-level function calls. We do not
inject in MPI function calls to reduce the number of
experiments—the MPI library has a large number of
unique functions and it is often tested better than user
applications so it has fewer bugs. We perform all fault-
injection experiments on a Linux cluster with nodes
that have six 2.8 GHz Intel Xeon processors and 24
GB of RAM. We use 128 tasks in each experiment.

5.2.1 Applications

We inject faults into the NAS Parallel Benchmarks
(NPB) [6] (eight benchmarks) and two Sequoia bench-
marks: AMG2006 and LAMMPS [5]. The Sequoia
benchmarks codes are representative of large-scale
HPC production workloads. AMG2006 is a scalable
iterative solver for large structured sparse linear sys-
tems. LAMMPS is a classical molecular dynamics
code. For AMG-2006, we use the default 3D prob-
lem (test 1) with the same size in each dimension.
For LAMMPS, we use “crack”, a crack propagation
example in a 2D solid. For the NPBs, we use the class
A problem. We limit the number of functions in which
faults are injected to 50. NPBs execute fewer than 50
functions so we inject into all functions in the NPBs.

5.2.2 Metrics

Due to its probabilistic nature, AutomaDeD may iden-
tify LP tasks incorrectly. Also it may identify more
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(a) (b) (c)

Fig. 7: Examples of PDGs indicating LP tasks (in gray color) for AMG2006. Errors are injected in task 3.

Fig. 8: Accuracy of AutomaDeD in detecting the LP task.

than one LP task, which could be correct or incorrect.
Multiple LP tasks could be correct when multiple
tasks block independently in computation code. In
our experiments, since we only inject a fault in one
task, we should always have a single LP task.

We use two metrics to evaluate AutomaDeD: accu-
racy and precision. Accuracy is the fraction of cases
in which the set of LP tasks that AutomaDeD finds
includes the faulty task. Precision is the fraction of
cases in which the set of LP tasks that AutomaDeD
finds includes other (non-faulty) tasks. Accuracy mea-
sures the rate of true positives, whereas precision
measures the rate of false positives. A false positive
impacts users as they could spend time in debugging
a task that is not necessarily the LP task. Figure 7
shows examples of PDGs and LP tasks where a fault
is injected in task 3. In case (a), AutomaDeD is accurate
and precise. In case (b), it is accurate but not precise
(since other non-faulty tasks are detected as LP tasks).
In case (c), it is neither accurate nor precise; task
3 is actually dependent on other tasks according to
AutomaDeD. Notice that in case (c), task 3 is the only
task in a PDG node (i.e., a singleton task)—we call
this isolation. A singleton task appears suspicious to a
user so we consider isolation as semi-successful.

5.2.3 Results

Figures 8 and 9 show the results of the experiments.
Overall, AutomaDeD has a high accuracy and preci-
sion for most of the benchmarks. Algorithms DIST
and SEMI-DIST have comparable accuracy. However,
SEMI-DIST has higher or equal precision than DIST

Fig. 9: Precision of AutomaDeD in detecting the LP task.

TABLE 3: Number of edges of the Markov model for all
the programs.

Program BT SP FT MG CG LU IS EP AMG2006 LAMMPS
MM size 303 263 32 456 136 149 26 17 761 269

in nine out of the ten benchmarks. The reason SEMI-
DIST outperforms DIST is due to its improved view
of the Markov model—a global MM view—when
creating the PDGs which reduces its tendency to infer
LP tasks incorrectly. We also notice that, in all the
cases when the LP task is inaccurately detected, e.g.,
case (c) in Figure 7, the LP task is isolated.

5.3 Performance Evaluation

5.3.1 Scalability

To measure scalability, we select the benchmark that
most stresses AutomaDeD’s PDG analysis. The two
variables that affect DIST and SEMI-DIST are the
number of tasks—which we vary in the experiments—
and the size of the Markov model. We measure the
MM sizes for all the benchmarks and select the bench-
mark that produces the largest MM. Table 3 shows
the MM sizes for all the benchmarks. We run all of
them with 1,024 parallel task (except for AMG2006
which is run with 1,000 tasks). We select AMG2006,
as it produces the largest MM, with 761 edges.

We run AMG2006 with up to 32,768 MPI tasks
on an IBM BlueGene/Q machine and measure the
time for AutomaDeD to perform the distributed part
of its analysis using both DIST and SEMI-DIST. We
inject a fault close to its final execution phase in
order to have the largest possible MM. Figure 10
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Fig. 10: Time to find LP task in AMG2006.

shows the results of the experiments. The analysis
time grows logarithmically with respect to the number
of tasks as expected. Notice that SEMI-DIST takes
more time than DIST—also as expected—because of
the large overhead of reducing the Markov model
from all tasks. Our results demonstrate the scalability
of AutomaDeD. The DIST takes less than a second on
up to 32,768 MPI tasks. The low cost of this analysis
suggests that we can trigger it at multiple execution
points with minimal impact on the application run.
SEMI-DIST is suggested to be used at moderate scales
or when waiting a few minutes is not an inconve-
nience for users.

5.3.2 Slowdown and Memory Usage

Figures 11 and 12 show application slowdown and
AutomaDeD memory usage for AMG2006, LAMMPS,
and the NPBs. Slowdown is the ratio of the appli-
cation run time with AutomaDeD to the run time
without it. Memory usage shows the proportional
increase in maximum resident set size (RSS) when
we use AutomaDeD (i.e., increase = (memory-use-with-
tool)/(memory-use-without-tool)). Since AutomaDeD op-
erates as a library, its memory usage increases the
memory usage of the tasks themselves. Since tasks
can have different memory usage (depending on their
behavior), we used the task with the highest memory
usage to calculate the increase.

AutomaDeD incurs little slowdown—the worst is
1.67 for SP—because the overhead is primarily the
cost of intercepting MPI calls and updating the MM,
steps that we have highly optimized. For example,
to optimize MM creation, we use efficient C++ data
structures and algorithms such as associative contain-
ers and use pointer comparisons (rather than string-
based comparisons) to compare states. Memory us-
age is moderate for most benchmarks; the largest is
AMG2006 (7.02), which has many (unique) states in
its execution. The factor that most affects slowdown is
the number of MPI calls from different contexts since
this increases the number of states that AutomaDeD

Fig. 11: Application slowdown.

Fig. 12: Increase in maximum memory usage.

creates. Benchmarks with slowdown of 1.3 (or more)
call MPI routines from different contexts more often
than the others. Applications with higher slowdown
(AMG2006, LAMMPS, SP and LU) also exhibit higher
memory usage due to the number of states.

6 RELATED WORK

The traditional debugging paradigm [24], [25], [4]
of interactively tracking execution of code lines and
inspecting program state does not scale to existing
high-end systems. Recent efforts have focused on the
scalability of tools that realize this paradigm [24], [26].
Ladebug [27] and the PTP debugger [28] also share
the same goal. While these efforts enhanced debug-
gers to handle increased MPI concurrency, root cause
identification is still time consuming and manual.

Parallel profiling tools such as Slack [29] and PG-
PROF [30] identify performance bottlenecks in parallel
programs so that runtime can be reduced. These tools
provide the time spent in each procedure within
(critical) paths while AutomaDeD automates the anal-
ysis to find the task(s) and code regions in which a
performance fault or a correctness problem manifests
itself. Unlike AutomaDeD, the profilers do not address
scalability issues such as the cost of aggregating pro-
filing traces from a large number of MPI tasks.

AutomaDeD is an extension of our previous
work [2]. In this paper we present a new algorithm
for computing progress dependencies and we eval-
uate the tool extensively with ten benchmarks. Au-
tomaDeD’s root-cause analysis target general coding
errors in large-scale scientific codes. Related research
work includes probabilistic tools [12], [31], [13], [32]
that detect errors through deviations of application
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behavior from a model. AutomaDeD [13] and Mir-
gorodskiy et al. [32] monitor the application’s timing
behaviors and focus the developer on tasks and code
regions that are unusual. Other tools target specific
error types, such as memory leaks [33] or MPI coding
errors [31], [34], [9], [10], [11]. These tools are compli-
mentary to AutomaDeD as they can detect a problem
and trigger AutomaDeD’s diagnosis.

Assertion-based debugging also targets reduced
manual effort. Recent work addresses scalability of
parallel assertion-based debugging [35] but does not
suit localization of performance faults. Differential
debugging [36] provides a semi-automated approach
to understand programming errors; it dynamically
compares correct and incorrect runs. While these tech-
niques have been applied at small scales [37], the time
and scale expenses are prohibitive at large scales.

The closest prior work to AutomaDeD is STAT [1],
which provides scalable detection of task behavioral
equivalence classes based on call stack traces. Its tem-
poral ordering relates tasks by their logical execution
order so a developer can identify the least- or most-
progressed tasks. However, STAT primarily assists
developers in the use of traditional debuggers while
AutomaDeD detects abnormal conditions and locates
the fault automatically.

Others have explored program slicing in MPI pro-
grams to locate code sites that may lead to errors.
To provide higher accuracy, most techniques use dy-
namic slicing [19], [20], [21]. These tools tend to
incur large runtime overheads and do not scale. Also,
techniques must include communication dependen-
cies into data-flow analysis, which is also expensive,
to avoid misleading results. AutomaDeD uses other
information to limit the overhead of slicing.

7 CONCLUSION

Our novel debugging approach can diagnose faults
in large-scale parallel applications. By compressing
historic control-flow behavior of MPI tasks using
Markov models, our technique can identify the least
progressed task of a parallel program by inferring
probabilistically a progress-dependence graph. We
use backward slicing to pinpoint code that could have
led to the unsafe state. We design and implement Au-
tomaDeD, which diagnoses the most significant root-
cause of a problem. Our analysis of a hard-to-diagnose
bug and fault injections in three representative large-
scale HPC applications demonstrate that AutomaDeD
identifies these problems with high accuracy, where
manual analysis and traditional debugging tools have
been unsuccessful. The distributed part of the analysis
can be performed in a fraction of a second with over
32 thousand tasks. The low analysis cost allows its
use multiple times during program execution.

ACKNOWLEDGMENTS

The authors thank David Richards of the Lawrence
Livermore National Laboratory for helping us to con-
duct the blind study on ddcMD and to validate the re-
sults. This work was partly supported by the National
Science Foundation under Grant No. CNS-0916337,
and it was performed partly under the auspices of
the U.S. Department of Energy by Lawrence Liver-
more National Laboratory under Contract DEAC52-
07NA27344 (LLNL-JRNL-643939).

REFERENCES

[1] D. H. Ahn, B. R. D. Supinski, I. Laguna, G. L. Lee, B. Liblit,
B. P. Miller, and M. Schulz, “Scalable Temporal Order Analysis
for Large Scale Debugging,” in SC ’09, 2009.

[2] I. Laguna, D. H. Ahn, B. R. de Supinski, S. Bagchi, and
T. Gamblin, “Probabilistic diagnosis of performance faults in
large-scale parallel applications,” in Proceedings of the 21st
international conference on Parallel architectures and compilation
techniques, ser. PACT ’12, 2012, pp. 213–222.

[3] M. Weiser, “Program slicing,” in Proceedings of the 5th Interna-
tional Conference on Software Engineering, 1981, pp. 439–449.

[4] Rogue Wave Software, “TotalView Debugger,” http://www.
roguewave.com/products/totalview.aspx.

[5] “ASC Sequoia Benchmark Codes,” https://asc.llnl.gov/
sequoia/benchmarks/.

[6] D. Bailey, J. Barton, T. Lasinski, and H. Simon, “The NAS
Parallel Benchmarks,” NASA Ames Research Center, RNR-91-
002, Aug. 1991.

[7] F. H. Streitz, J. N. Glosli, M. V. Patel, B. Chan, R. K. Yates,
B. R. de Supinski, J. Sexton, and J. A. Gunnels, “Simulating
solidification in metals at high pressure: The drive to petascale
computing,” Journal of Physics: Conference Series, vol. 46, no. 1,
p. 254, 2006.

[8] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of
collective communication operations in mpich,” International
Journal of High Performance Computing Applications, vol. 19, pp.
49–66, 2005.

[9] W. Haque, “Concurrent deadlock detection in parallel pro-
grams,” International Journal of Computers and Applications,
vol. 28, pp. 19–25, January 2006.

[10] T. Hilbrich, B. R. de Supinski, M. Schulz, and M. S. Müller,
“A graph based approach for mpi deadlock detection,” in
International conference on Supercomputing (ICS), 2009, pp. 296–
305.

[11] J. S. Vetter and B. R. de Supinski, “Dynamic software testing of
mpi applications with umpire,” in ACM/IEEE Supercomputing
Conference (SC), 2000.

[12] G. Bronevetsky, I. Laguna, S. Bagchi, B. de Supinski, D. Ahn,
and M. Schulz, “AutomaDeD: Automata-Based Debugging for
Dissimilar Parallel Tasks,” in IEEE/IFIP Conference on Depend-
able Systems and Networks (DSN), 2010, pp. 231 –240.

[13] I. Laguna, T. Gamblin, B. R. de Supinski, S. Bagchi, G. Bron-
evetsky, D. H. Ahn, M. Schulz, and B. Rountree, “Large scale
debugging of parallel tasks with automaded,” in ACM/IEEE
Supercomputing Conference (SC), 2011, pp. 50:1–50:10.

[14] “DynInst - An Application Program Interface (API) for Run-
time Code Generation,” http://www.dyninst.org/.

[15] M. Kamkar and P. Krajina, “Dynamic slicing of distributed
programs,” in International Conference on Software Maintenance,
oct 1995, pp. 222 –229.

[16] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Trans.
Program. Lang. Syst., vol. 9, no. 3, pp. 319–349, Jul. 1987.

[17] “Boost C++ libraries,” http://www.boost.org/.
[18] B. Korel and J. Laski, “Dynamic slicing of computer pro-

grams,” Journal of Systems and Software, vol. 13, no. 3, pp. 187–
195, Dec. 1990.

[19] M. Kamkar, P. Krajina, and P. Fritzson, “Dynamic slicing
of parallel message-passing programs,” in Proceedings of the
Fourth Euromicro Workshop on Parallel and Distributed Processing,
1996. PDP ’96., jan 1996, pp. 170 –177.

Page 13 of 25 Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 201X 14

[20] J. Rilling, H. Li, and D. Goswami, “Predicate-based dynamic
slicing of message passing programs,” in Second IEEE Interna-
tional Workshop on Source Code Analysis and Manipulation, 2002,
pp. 133 – 142.

[21] G. Shanmuganathan, K. Zhang, E. Wong, and Y. Qi, “Ana-
lyzing message-passing programs through visual slicing,” in
International Conference on Information Technology: Coding and
Computing (ITCC), vol. 2, april 2005, pp. 341 – 346 Vol. 2.

[22] M. Strout, B. Kreaseck, and P. Hovland, “Data-flow analysis for
mpi programs,” in International Conference on Parallel Processing
(ICPP), aug. 2006, pp. 175 –184.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building
customized program analysis tools with dynamic instrumen-
tation,” in ACM SIGPLAN conference on Programming language
design and implementation, ser. PLDI ’05, 2005, pp. 190–200.

[24] Allinea Software Ltd, “Allinea DDT - Debugging tool for par-
allel computing,” http://www.allinea.com/products/ddt/.

[25] GDB Steering Committee, “GDB: The GNU Project Debugger,”
http://www.gnu.org/software/gdb/documentation/.

[26] J. DelSignore, “TotalView on Blue Gene/L,” Presented
at “Blue Gene/L: Applications, Architecture and Software
Workshop”, Oct. 2003. [Online]. Available: https://asc.llnl.
gov/computing resources/bluegenel/papers/delsignore.pdf

[27] S. M. Balle, B. R. Brett, C. Chen, and D. LaFrance-Linden,
“Extending a Traditional Debugger to Debug Massively Paral-
lel Applications,” Journal of Parallel and Distributed Computing,
vol. 64, no. 5, pp. 617–628, 2004.

[28] G. Watson and N. DeBardeleben, “Developing Scientific Ap-
plications Using Eclipse,” Computing in Science & Engineering,
vol. 8, no. 4, pp. 50–61, 2006.

[29] J. Hollingsworth and B. Miller, “Parallel program performance
metrics: a comparison and validation,” in Proceedings of Super-
computing ’92., Nov 1992, pp. 4 –13.

[30] The Portland Group, “PGPROF Graphical Performance Pro-
filer,” http://www.pgroup.com/products/pgprof.htm.

[31] Q. Gao, F. Qin, and D. K. Panda, “DMTracker: Finding Bugs in
Large-scale Parallel Programs by Detecting Anomaly in Data
Movements,” in ACM/IEEE Supercomputing Conference (SC),
2007.

[32] A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller, “Prob-
lem Diagnosis in Large-Scale Computing Environments,” in
ACM/IEEE Supercomputing Conference (SC). New York, NY,
USA: ACM, 2006.

[33] S. C. Gupta and G. Sreenivasamurthy, “Navigating C̈ı̈n a
L̈eakyB̈oat? Try Purify,” IBM developerWorks, 2006. [Online].
Available: www.ibm.com/developerworks/rational/library/
06/0822 satish-giridhar/

[34] Q. Gao, W. Zhang, and F. Qin, “FlowChecker: Detecting Bugs
in MPI Libraries via Message Flow Checking,” in ACM/IEEE
Supercomputing Conference (SC), 2010.

[35] M. N. Dinh, D. Abramson, D. Kurniawan, C. Jin, B. Moench,
and L. DeRose, “Assertion based parallel debugging,” in
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), 2011, pp. 63–72.

[36] D. Abramson, I. Foster, J. Michalakes, and R. Socič, “Relative
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Summary of Differences 
 

New manuscript title: “Diagnosis of Performance Faults in Large Scale Parallel Applications via 
Probabilistic Progress-Dependence Inference” 
 
A portion of the new manuscript appeared previously in the proceedings of the 21st International 
Conference on Parallel Architectures and Compilation Techniques (PACT ’12) on Sep, 2012, 
under the title: “Probabilistic Diagnosis of Performance Faults in Large-Scale Parallel 
Applications”. 
 
The (previous) paper presented an algorithm (distributed) to diagnose performance faults, and a 
fault coverage evaluation on two HPC benchmarks. 
 
In this paper, we present the following novel material: 
 

• A new (semi-distributed) algorithm to diagnose performance faults. This algorithm has a 
higher detection precision compared to the previous (distributed) algorithm at a cost of 
slight higher execution time. 
 

• A fault-coverage comparison (detection accuracy and precision) between the previous 
and the new algorithm—the previous paper only considered one algorithm, thus a 
comparison between alternate approaches was not presented. 

 
• A performance and fault-coverage evaluation of the two algorithms on ten HPC 

benchmarks—the previous paper had a limited evaluation using only two benchmarks. 
Based on the new evaluation benchmarks, we gained insight about the type of 
applications the technique is suitable for. 
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