TCP/IP Timing Channels: Theory to Implementation

Sarah H. Sellke, Chih-Chun Wang, Saurabh Bagchi

School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907
{ssellke,chihw,sbagchi } @ecn.purdue.edu

Abstract—There has been significant recent interest in covert
communication using timing channels. In network timing chan-
nels, information is leaked by controlling the time between trans-
missions of consecutive packets. Our work focuses on network
timing channels and provides two main contributions. The first is
to quantify the threat posed by covert network timing channels.
The other is to use timing channels to communicate at a low
data rate without being detected.

In this paper, we design and implement a covert TCP/IP timing
channel. We are able to quantify the achievable data rate (or
leak rate) of such a covert channel. Moreover, we show that
by sacrificing data rate, the traffic patterns of the covert timing
channel can be made computationally indistinguishable from that
of normal traffic, which makes detecting such communication
virtually impossible. We demonstrate the efficacy of our solution
by showing significant performance gains in terms of both data
rate and covertness over the state-of-the-art.

I. INTRODUCTION

¢

The Orange Book [1] defines a covert channel to be “any
communication channel that can be exploited by a process to
transfer information in a manner that violates the system’s
security policy.” A covert timing channel is a type of covert
channel in which sensitive information is transmitted by the
timing of events. In a multi-level security (MLS) system,
covert timing channels can be used by a HIGH process to
leak classified information to a LOW process. In a networked
environment, it can be used by a program that has access to
sensitive information to leak the information through packet
inter-transmission times.

Designing and implementing timing channels over a shared
network between two distant computers is challenging. Net-
work timing channels are inherently “noisy” due to the delay
and jitter in networks, which distort the timing information
from the sender when it reaches the receiver. In [2], the authors
designed and implemented an IP covert timing channel using
an on-off coding scheme, where the reception or absence of a
packet within a time interval signals bit 1 or bit O, respectively.
This timing channel achieves a data rate of 16.67 bits/sec
between two computers with an average round trip time of
31.5 ms.

In TCP/IP networks, end-to-end delays are much larger
than the jitter. Information theoretic research shows that the
Shannon capacity of timing channels with no jitter is infinite,
assuming infinite precision of the system clock ([3], [4], [5],
[6], [7], [8]), and the capacity can be made very large if the
jitter of the underlying channel is very small [10]. Motivated

Ness Shroff
Departments of ECE and CSE
The Ohio State University
Columbus, OH 43210
shroff @ece.osu.edu

by these theoretical results, we are interested in designing a
TCP/IP covert timing channel that significantly improves the
current state-of-the-art data rate [2]. Additionally, our second
goal is to design a computationally non-detectable timing
channel scheme that mimics legitimate traffic.

In our design, we use packet infer-transmission times (de-
noted as T}) to convey information. Figure 1 shows a high-
level view of our design. A malicious process on the sender
side manipulates the inter-transmission times and another ma-
licious process either at the receiver or en route to the receiver
can decode the privileged information by observing the inter-
reception times. We encode L-bit binary strings in a sequence
of n packet inter-transmission times 717,75, ---,T,. We call
it the “L-bits to n-packets” scheme. These n packets are
transmitted in variable length time intervals. The receiver will
then map the n packet inter-reception times Rj, Ra, -, Ry,
back to an L-bit binary string according to the code book.

Our first contribution is to provide a systematic solution of
selecting the values of L and n for the L-bits to n-packets
scheme, so that the data rate of our scheme is near optimal.
We implement a TCP/IP timing channel with our L-bits fo
n-packets scheme, and conduct extensive experiments on the
PlanetLab environment [9] with five pairs of computers dis-
tributed worldwide to show the effect of differing delays and
jitters. We demonstrate significant performance improvement
(2 to 5 times the covert timing channel data rate) of our scheme
over the state-of-the-art [2].

Another contribution of this work is to systematically de-
sign a computationally non-detectable timing channel scheme.
The design of our scheme is based on the security of the
cryptographically secure pseudo random number generators
(CSPRNG), and it is computationally impossible to detect
our timing channel. The inter-transmission times from the
proposed timing channel are designed to be computation-
ally indistinguishable from any legitimate traffic whose inter-
transmission times are i.i.d. random variables. Such legitimate
traffic does exist. For instance, it has been shown in [20], that
the packet inter-transmissions of telnet traffic can be modeled
by an i.i.d Pareto distribution. This allows two parties to
communicate at a low data rate in a hostile environment such
as in battlefield or law enforcement settings. The proposed
non-detectable scheme is also implemented, and experiments
are conducted on PlanetLab. The similarity of the traffic
patterns of the non-detectable scheme and the legitimate traffic

bit string icodewords
00000000| 50,50,50

00001000| 50,56360 |
1001011({ 50,60,50
01001001, 60,50,50

it string to be transmitted

Packet
Transmission Times?

Shared Code Book

Public Network Packet

Reception Times

r0,r1,r2,r3 @I
7

Decoded Bit String|
10010110

t0,t1,t2,t3
y m— =y
Sender
T1=50 ms T2=60 ms T3=50 ms
4 ¥]

{0=C t1=50 ms 2=110 ms t3=160.ms

1 R1=52 ms R1=56 ms R3=53 ms

T i i]
Receiver 10=20 ms r1=72 ms 2=128 ms r3=181

Fig. 1.

is verified, for a legitimate traffic that follows an i.i.d. Pareto
distribution.

The remainder of our paper is organized as follows: In
Section II, we review related work. In Section III, we present
our system level design and the proposed L-bits to n-packets
scheme, with discussions on the trade-offs between the data
rate and the complexity of our scheme. In Section IV, we
describe our implementation of covert TCP/IP timing channels
and our experimental results. In Section V, we show how to
construct a timing channel scheme that is computationally not
detectable. We conclude with discussion and future research
directions in Section VI.

II. RELATED WORK

The best achievable data rate of a covert timing channel
measures the severity of its threat, and can be obtained by
estimating the information theoretic channel capacity [3], [5],
[10], [11]. To reduce the throughput of covert timing channels,
several methods such as timing channel jammers [6], fuzzy
times [12] and network pump [13], have been proposed.
Another approach to defend against the usage of covert timing
channels is to detect the presence of such usage [2], [15], [16].

In [2], the authors illustrated the threat from IP covert
timing channels using a software implementation of covert
timing channels over TCP/IP networks. They also developed
a detection mechanism for their IP covert timing channels by
identifying the regularity of the inter-transmission times. In
their design, the sender and receiver agree upon an interval
length, say w ms. To signal bit value ‘1°, the sender transmitted
a packet in the middle of the time interval; to signal ‘0,
the sender remained silent during that interval. Their scheme
achieved a rate of 16.67 b/s in an experimental setting where
the average RTT between the two hosts is 31.5 ms. Their
use of a simple coding scheme, basically an on-off scheme,
limits the data rate achievable for the timing channel. Their
scheme requires time synchronization between the sender and
the receiver in order to correctly decode a message. Small
shifts in delay and jitter may have a cascade effect that may
cause subsequent bits to be decoded incorrectly.

High Level Design Diagram of Covert Timing Channel

In [17], the authors built a Keyboard JitterBug, a device
interposed between the keyboard and the computer, that can
leak typed information through a covert network timing chan-
nel when a user runs an interactive application. The authors
utilized the interactive session and added different delays
to the timing sequence of the keystrokes to signal 1 or 0.
Their binary encoding scheme allows one bit of information
to be transmitted per keypress, and the rate of their timing
channel scheme is limited by the user’s typing speed. They
then used a “4-bit to 1-keypress” encoding scheme to improve
the performance. This method uses 16 different delay values to
encode the 16 distinct 4-bit binary strings. The timing channel
rate being tied to human input is very low, and it is detectable
by sophisticated detection algorithms such as [16].

In our proposed scheme, we use packet inter-transmission
time to convey information, not just the presence or absence
of a packet in a fixed time interval. Our method eliminated
the need for time synchronization between the sender and the
receiver, yet it shares some similarities with the sparse time
base used for clock synchronizations in distributed systems
in the [18]. We propose a more general L-bits to n-packets
scheme that maps binary strings of length L to multiple packet
inter-transmission times of size n, which includes both the on-
off scheme [2] and the keyboard jitter bugs as special cases. We
further provide methods for selecting the values of parameters
L and n to get higher data rates. Finally, we describe our
design of a timing channel scheme that mimics a class of
normal traffic to avoid detection.

III. COVERT TIMING CHANNEL DESIGN
A. System Level Model and Design

Our approach can be applied to a wide variety of commu-
nication paradigms to transmit covert information. However,
for the sake of illustration, we describe here a high level
view (illustrated in Figure 1) for communication with TCP/IP.
The sender and receiver reside on two distant computers with
several routers in between. The sender has access to sensitive
information and wants to covertly transmit this information to
the receiver using the timing of packet transmissions.

We use ¢ and r to denote the times that the k" packet is
transmitted and received, respectively. We use Dy to denote
the delay of the kth packet, thus rp = tx + Dy. The delay
Dy, can be expressed as Dy = D + ¢, where D is a constant
that represents the average delay, and ¢y, is a random variable
that represents the jitter. Typically, €, is bounded in TCP/IP
networks (€.2., —€mazr < €x < €maz)-

The packet inter-transmission (denoted as 7},) between the
(k — 1)t packet and the k*" packet can be expressed as
T, = tx — tx—1. Likewise, the packet inter-reception time
(denoted as R},) between the (k—1)*packet and the k" packet

can be expressed as Ry = ry — rx—1. Thus,
Ry =Ty + (er — €x—1) (1)

Equation (1) models the timing channel. T}, is the input to
the channel and Ry is the noisy output of the channel of T}.

Sender Sender
y T1=60ms, y T1=68ms
I 4 I 4
t0=0 t1=60 ms 0=0 t1=68 ms
R1=63ms R1=63ms
] 1 ! 1 1 |
1 I I 1 I I
0 r0=31 ms r1=94 ms 0 10=31 ms r1=94 ms
Receiver Receiver
code #1 maps 00 to T1=60 ms code #2 maps 10 to T1=68 ms

Fig. 2. Identical Ry for two bit strings

Let Tl(l) and T1(2) be any two inter-transmission times
representin% two distinct binary strings. We require that
|T1(1) — T1(2 | be large enough so that the corresponding inter-
reception times Rgl) and Rgz) are always different. Figure 2
illustrates a scenario when |T1(1) - T1(2)| is too small. In this
example, D = 30 ms and |e;| < 5 ms for all k. Suppose we
encode “00” as Tl(l) = 60 ms, and “11” as TI(Q) = 68 ms. As
shown in the figure, the inter-reception times Rgl) and R§2)
for “00” and “11” can be the same, so that it is impossible for
the receiver to decide if “00” or “11” was sent.

In our design, we use the parameter § to denote this
minimum difference, and & > 4¢,,4,. The reason is that when
lex] < €maz, it follows directly from equation (1) that

T — 200 < BRY < TV + 2600
T — 2pmas < R < T + 2600

2)
3)

Let T\ < 7. By (2) and). if TV + 2epma0 <
T1(2) —2€mag, then R and R'? fall into two non-overlapping
intervals. Thus, Rgllj and R}f) are always different when
T M 5 g

Another parameter in our code design is A, the minimum
value for T} (i.e., Ty, > A). The intuition for imposing a
minimum time between the transmission of any two packets is
that if two packets are transmitted too close to each other, they
may be queued at the computers running the timing channel
software or on the intermediate routers, and queueing could
destroy the timing information [3].

Even though a better designed timing channel can achieve
a higher data rate, we must also keep in mind that the data
rate cannot be arbitrarily large since it is upper bounded by
the channel’s Shannon capacity, the maximum possible data
rate for two parties to communicate reliably. In general, the
Shannon capacity of timing channels is not known. However,
we show in [10] that among all bounded jitter distributions in
(—€mazs Emaz)» the Shannon capacity is the smallest when the
jitter distribution is uniform in that interval. In other words, the
uniform jitter distribution represents the worst case scenario
in terms of channel capacity. A special map of the bit-string
to inter-transmission time, termed the geometric code, is a
universal scheme that works with all jitter distributions. We
have shown in [10] that the rate of the geometric code comes
very close to the true capacity of the timing channel with uni-
form jitter distribution. This suggests that the geometric code
provides near-optimal performance when the jitter distribution
is not known a prior.

We next introduce the geometric code, then present a simple
realization of the geometric code by the L-bits to n-packets
scheme. Since the data rate of the geometric codes is shown
to be close to the timing channel capacity [10], we use it to
guide our design and to evaluate the performance of our L-bits
to n-packets scheme.

B. Geometric Codes

The family of geometric codes are those codes with T;
to be i...d geometric random variables with probability mass
function :

PT;=A+k-8=pl—-pF, k=012,

We have shown in [10, Lemma 1] that the data rate of such
a geometric code is

_ H(p)
A= X5 a-p)
where H(p) = —plogy(p) — (1 — p)logy(1 — p), and the

achievable data rate for any geometric code is:

R* = max [H(p)/(A-p+d-(1-p)).

Figure 3 shows the data rate R(p) as a function of p for
two geometric codes with system parameters (A, J) set to
(50,10) ms and (50,5) ms. As shown, when 6 = 5 ms, R(p)
attains its maximum value R* = 52 bits/sec. Likewise, when
d = 10 ms, R(p) attains its maximum value R* = 40.56
bits/sec. It is not surprising that with fixed A, the achievable
rate R* is higher when § is smaller — the smaller ¢ is, the
shorter time it takes to transmit all packets. To achieve higher
throughput over the timing channels, § should be slightly
bigger than 4€,,4,.

C. L-bits to n-packets Scheme

Our design of the L-bits to n-packets scheme is based
on insights from geometric codes. In this scheme, each of
the L-bit binary strings is mapped to a sequence of packet
inter-transmission times (74, Ty, - - -, T},). In our basic scheme,

Data Rate of Geometric Codes(bits/sec),A=50 ms
601

—3=10ms

50- R ---d=5ms

IS
o
7

Data Rate
W
=)

0 0.2 0.4 0.6 0.8 1
P

Fig. 3. R(p) for geometric codes.

T, takes values only from the set £ = {T : A+ k -
5, k = 0,1,---}. Recall that A is the smallest possible
packet inter-transmission time of the system and J is the
resolution of the inter-transmission time to ensure no overlap
at the receiver side. Moreover, the marginal distributions of
T,k =1,2,---,n is approximately geometrically distributed
in order to achieve a data rate similar to that of geometric
codes.

To illustrate our design, we first give examples of a “2-bit
to I-packet” scheme and a “4-bit to I-packet” scheme and
compare their data rates . A “2-bit to I-packet” scheme maps
bit string “10” in one inter-transmission time 77 = 60 ms.
Likewise, it maps bit strings “01”, “11”, and “00” to T7=80
ms, 100 ms, and 120 ms, respectively. On average, it takes
90 ms to transmit 2 bits, assuming each bit string is equally
likely. So, the data rate is 555 ~ 22 bits/sec.

Now consider a “4-bits to 1-packet” encoding scheme. A
total of 16 different values for the inter-transmission times 7}
are needed to represent all the 4-bit binary strings. If the values
for T are also in increments of 20 ms starting from 60 ms as
in the “2-bit to 1-packet” scheme, we can use the following
16 values for the inter-transmission times 77: 60, 80, 100, - - -,
340, and 360 ms. On average, it takes 210 ms to transmit 4
bits, and the data rate is ﬁ ~ 19 bits/sec.

In these examples, the 2-bits to I-packet scheme outper-
forms the 4-bits to 1-packet scheme in terms of data rate. It
may appear from this example that the data rate of the timing
channel monotonically decreases with increasing L. However,
the interesting fact our investigation reveals is that the rate is
not monotonic with L.

One design challenge is to determine the values for L and n,
so that our timing channel achieves a near optimal throughput
— close to the data rate of the corresponding geometric code.
Thus, given a fixed total packets transmission time t,, (t, =
> T;), we would like to transmit the longest bit strings
possible.

! Actually, for the first L bit string, (n+1) packets are needed including the
starting packet. But for subsequent L-bit strings, only n packets are needed.

To aid our analysis, we introduce another n-dimensional
vector k = (kq, ka, ..., ky,) to represent T = (T1,T5,---,T},),
for T; = A + k; - §. We consider a special L-bits to n-packets
scheme, called an (n, K)-code, that satisfies > ., k; < K.
Using an (n, K)-code, t, < n-A + K - 0. We have shown
in [19], that the maximum number of available codewords in
an (n, K)-code is ("’JI}K). Therefore, the maximum length of

a bit strings that can be mapped to an (n, K)-code is

L= |log, (”;K)J.

We have also shown in [19] that, the data rate R(n, K) of an
(n, K)-code with system parameters (A,) is approximately

logy (n;K)

bits/sec. 4)

A plot of R(n, K) as a function of K is shown in Figure 4,
for two values of n. In this figure, (A, §) = (50,10) ms, and
n = 3,5. As shown, for a fixed value of n, the data rate
R(n, K) will initially increase as K increases till it reaches
its peak, and it then decreases as K increases. The intuition
is that with increasing K, the total number of codewords
C(n+ K, K) is increasing. Meanwhile, ¢,,, the time it takes
to transmit all n packets, will also increase with K. Initially,
the gain in the total number of codes outpaces the increase
in t,, and we see an increase of the data rate. After a certain
point, increase in t,, outpaces the gain in the total number of
codes, and we see a decrease of the data rate.

For a fixed value of n, the highest data rate using (n, K)-
codes with system parameters (A,) is approximately

} log, ("%") :
R*(n) =~ max At K5) bits/sec. 3)

Data Rate R(n,K) as a function of K

N
o

-
ooog@éoooo *++++++
0%+ oo gy

W
o
o

+ o,
+ ©00, iy
o, +4
+ 06 +4
o + ©o, AR
o6 +
%o,
00,
o

wW
o

o

o

. 000000
%00

Rate (bits/sec)
nN
)]

n
o
o

151
. ° n=3
+ n=5
10 L L L L Il
0 10 20 30 40 50

K

Fig. 4. R(n, K) for A =50 ms, 6 = 10 ms.

In the n = 3 case, the (3, K)-code achieves its highest
data rate R*(3) = 36.96 bits/sec when K = 13. The total
number of codewords is C(16,13) = 560, and L = 9. Thus,
when n = 3, a 9-bits to 3-packets gives us the best data rate.
Likewise, when n = 5, a 15-bits to 5-packets scheme yields
the highest data rate of 37.73 bits/sec.

Data Rate R*(n) vs Length of Bit String

[}
(=}
T

o
o

95
(=}
T

Data Rate (in bits/sec)
N
o

—
o
T

—data rate R*(n)
- - rate of geometric code

0 20 40 60 80 100
L: Length of Bit String

Fig. 5. R*(n) for A =50 ms, 6 = 10 ms.

Figure 5 shows the optimal data rate R*(n) as a function of
L for the same system parameter (A,) = (50, 10) (ms), along
with the rate of the corresponding geometric code. In general,
R*(n) increase as L increases. When L is large, R*(n) is
very close to the geometric code rate. However, the complexity
of the codes also increases as L increases. As shown in this
figure, in order to gain a small amount of data rate R*(n), we
must increase L drastically. For instance, using a 9-bits to 3-
packets scheme yields a rate of 37 bits/sec, while to achieve a
data rate of 39 bits/sec, we need to use a 66-bits to 32-packets
scheme. The latter is much more expensive in terms of storage
for the code book and processing for encoding and decoding,
since 266 codewords will have to be stored and searched for.
However it only offers very little gain in data rate (2 bits/sec).

IV. EXPERIMENTAL RESULTS

Based on our design, we have developed a covert timing
channel software running over TCP/IP networks. Our software
is implemented in Java, consisting of a server program and a
client program that act as the sender and the receiver, respec-
tively. The sender controls the TCP packet inter-transmission
time by using sleep(T), where T is the desired time (in
milliseconds) between two packets being transmitted. The
receiver passively collects the TCP packet reception times, and
uses the shared code book to decode the message. It is a one-
way channel in that the sender does not receive feedback from
the receiver regarding when the packet is received or whether it
is decoded correctly. This limits the performance of the timing
channel but helps in increasing the difficulty of detection. In
our implementation, we choose an 8-bits to 3-packets scheme
for simplicity and efficiency. Our covert channel software will
be made available to researchers upon request.

As mentioned in our design, our timing channel does not
require time synchronization between the sender and the
receiver, which makes it attractive for an open network like
the Internet. Moreover, the errors occurring earlier will not
affect the decoding capability of messages sent later because of
independent decoding of each L-bit string. This is in contrast
to [2], where a packet delay will cause subsequent bits to be
erroneously decoded.

We conducted our experiments using the PlanetLab environ-
ment. We ran our covert timing channel software on five pairs
of computers. The senders are hosts at Purdue University, and
the receivers are PlanetLab nodes located at Beijing Tsinghua
University, Technical University of Madrid, University of
Zurich, Stanford University and Princeton University. These
five pairs are chosen to represent a wide range of Round Trip
Times between the senders and receivers. At the receiver side,
we use the packets captured by fcpdump to decode the timing
channel message.

In a single experiment, the sender leaks the information
obtained from a text file of 1336 ascii characters to the receiver
via our covert timing channel. A set of experiments consists
of 10 such experiments with system parameters (A, d): A =
10, 20, 30,40, 50 (ms) and § = 5,10 (ms). We ran the set of
10 experiments daily between these five pairs of sender and
receiver during morning hours (EST) for 10 days.

Table I summarizes our results of these experiments. In the
table, we provide the average and the standard deviation of
the character decoding error of our experiments. It counted
as one character decoding error if the decoded character
does not match the transmitted character. In our 8-bits to 3-
packets scheme, if one of the three packet inter-reception times
deviates too much from the corresponding inter-transmission
time, it will result in one character decoding error. Thus, a
1% of packet inter-reception time error could result in a 3%
character decoding error. In addition to the results on error
rates, the actual data rate for all the system parameters (A, d),
and the average RTT time between the pair just before our
experiments are also shown in this Table.

As shown, when A = 40 ms, 6 = 10 ms, the average
decoding error rate between Purdue and Princeton is only
0.82%. The data rate of this timing channel is 42.75 bits/sec,
which is more than twice the rate (16.76 bits/sec) in [2],
while achieving higher accuracy (their error was 2%). When
A =10 ms, § = 10 ms, the average decoding error between
Purdue and Princeton is 4.06% and the standard deviation of
the decoding error is 1.00%. In this case, we can achieve a
rate of 82.21 bits/sec, which is five times the rate of [2].

Figure 6 provides a detailed view of our daily experimental
results between Princeton and Purdue. We notice there is an
error spike (14%) on day 9 when A = 50 ms, § = 5 ms.
This could either be due to large variations in packet delays
or packet losses on the network. We examined our log and
compared the packet inter-transmission times 7; and inter-
reception times R;. We found the error is caused by the jitter
of the network. In order to decode correctly, the combined
jitter |R; — T;| must be less than 2.5 ms for § = 5ms.
In this experiment, 4.26% of packets have a combined jitter
|R; — T;| = 3ms. and the jitter happens in random places.
Since 3 packets map to 1 character, these 4.26% jitter results
in 12.78% overall character decoding error. This also explains
why the error rate is so small when § = 10, as it can tolerate
combined jitters under 5 ms. The histogram of the combined
jitter for day 9 is shown in Figure 8(a).

Our experiments with a receiver located outside the US

TABLE I
SUMMARY OF DECODING ERROR FOR THE TIMING CHANNEL EXPERIMENTS

A [data rate Princeton Stanford Zurich Madrid Tsinghua
(ms) | ms (bits/sec) mean(%) stdev (%) | mean(%) stdev (%) | mean(%) stdev (%) | mean(%) stdev (%) | mean(%) stdev (%)
50 10 36.85 0.82 0.12 4.27 1.70 3.01 0.34 3.74 1.59 5.51 0.70
50 5 42.92 6.15 3.10 12.19 3.73 4.68 0.52 9.94 7.24 5.88 1.37
40 10 42.75 0.82 0.11 3.10 1.02 3.93 0.75 4.41 1.37 5.19 0.99
40 5 51.14 5.12 1.88 11.51 2.88 4.66 1.02 7.03 5.38 5.06 0.76
30 10 50.90 1.46 0.50 4.49 0.51 3.96 0.48 4.27 1.48 5.53 1.18
30 5 63.24 5.00 1.24 10.41 1.86 4.63 0.97 7.06 4.76 4.44 0.69
20 10 62.87 2.59 0.55 5.18 0.92 4.48 0.85 6.18 4.52 5.03 0.54
20 5 84.15 5.72 1.47 9.20 1.65 3.95 0.96 6.78 5.69 4.39 0.73
10 10 82.21 4.06 1.00 5.96 0.85 5.33 0.89 6.52 3.18 5.81 0.93
10 5 124.28 6.16 1.49 9.69 2.45 4.45 0.82 11.58 11.00 5.29 1.05
Average RTT (ms) 39.96 67.17 135.65 155.09 272.81
Princeton and Purdue In addition to the 10 daily experiments we ran between the
Day 1 MDay 2 Day 3 " Day 4 MDay 5 " Day 6 MDay 7 " Day 8 "Day 9 Day 10 five pairs, we also ran the timing channel between Princeton
16.00% and Purdue during various times of the day. We found that
14.00% 1 the network is more congested during the afternoon hours.
2 1500% | The RTT can vary from 63 ms to 108 ms, and the combined
& jitter spreads more widely ranging from -50 ms to 120 ms.
H % . .
g 10-00% The decoding error increases to between 6% to 7%. The
o 8:00% 1 histogram of the combined jitter during this time is shown
£ P . .
T 6.00% | in Figure 8(b). In contrast to Figure 8(a) where the combined
;6 4.00% 1 jitter is concentrated around 0, the combined jitter during busy
2.00% | | | | || | hours spreads much more widely, and can range from -50 ms
0.00% 1 11 1 || I " I I to 120 ms.

(50,10) (50,5) (40,10) (40,5) (30,10) (30,5) (20,10) (20,5) (10,10) (10,5)
(Delta, delta) in milliseconds

Fig. 6. Daily Decoding Errors

also yielded good results. From Zurich and Purdue, all but
one of the average decoding error are less than 5%. When
A =50 ms and § = 10 ms, the average decoding error rates
is only 3.01% and the data rate is nearly 37 bits/sec. Daily
experimental results are illustrated in Figure 7.

Purdue and Zurich

Day 1 MDay 2 Day3 ' Day4 MDay5 | Day 6 MDay7 Day 10

8.00% -

(50,10) (50,5) (40,10) (40,5) (30,10) (30,5) (20,10) (20,5) (10,10) (10,5)
(Delta, delta) in milliseconds

Day 8 ' Day 9

7.00% 4
6.00% -
5.00% A

4.00% -

w
o
3
>
|

2.00% A

Decoding Error Rate

1.00% -

0.00%

Fig. 7. Daily Decoding Errors.

Histogram of the Combined Jitter Histogram of the Combined Jitter

200, 8
7|
150 6|
5
z z
3100 3 4
o (&}
3
50 2
1
n.
9o —10 20 -foo -50 100 150

0 0 50
combined jitter (ms) combined jitter (ms)

(a) Normal (Excluding |R; —T;| < 3) (b) Busy (Excluding |R; — T;| < 5)

Fig. 8. Combined Jitter during Normal and Busy Time

In these experiments, we demonstrated that our L-bits fo
n-packets scheme achieves good data rates with low error
rate under various network conditions. However, this timing
channel can also be easily detected, as the inter-transmission
times 7; for our basic scheme are aligned on a grid of § ms.
To avoid detection, we could add a small random value to the
inter-transmission times so that they are not aligned on grids.
However, even with the randomized inter-transmission times,
the traffic pattern will obey i.i.d. exponential distributions
as our scheme was derived from the geometric code with
randomization. Since the legitimate traffic pattern is generally
not exponentially distributed, a more sophisticated detector
such as [16] can still detect it. In the next section, we will
introduce a new scheme that allows the timing channel traffic
to mimic a given legitimate traffic pattern. The traffic from
such a covert timing channel scheme looks like normal traffic,
and it is impossible to detect it using any efficient algorithm.

V. NON-DETECTABLE TIMING CHANNEL

The design goal of our non-detectable timing channel is
for the timing channel traffic to be computationally indistin-
guishable from a class of legitimate traffic whose packet inter-
transmission times are i.i.d.. Telnet traffic is an example of
such traffic, as its inter-transmission times can be modeled by
a i.i.d. Pareto distribution [20]. For the following, we will use
the i.i.d. Pareto traffic pattern as a running example, while
the proposed technique is applicable for i.i.d. traffic with any
given c.d.f.. By computationally indistinguishable, we mean
there is no efficient (polynomial time) algorithm that can
distinguish between the traffic of the proposed timing channel
and legitimate traffic.

Message: c(2) c(3)
1: Codeword L(;ok Up.
c(1) => (x(1), x(2)) =(4/16,7/16)
c(i) => (x(2i-1), x(2i)) = (15/16, 3/16)

m(3)x(4) x(2n 1)x(2n)

2: Codeword Maskmg using CSPRNG.
J a) CSPRNG —> u(1), u(2), ... u(2n)
J b) r(i) = x(1) ©u(), fori=1,....2n

r(l)r(2) (3)r(4) ... |r(2n- l)r(2n)

3: Inter—Transmlssmn Time Generation:
\

| T() = F~1 (x(1))

‘ F(x): CDF of a normal traffic

T(l)T(2) (3)TA) ... (2n 1)T(2n)

Fig. 9. Non-Detectable Scheme (Sender)

The theory of computational indistinguishability is the
foundation of modern cryptography. It aims at providing a
notion of perfect randomness that allows efficient genera-
tion of perfect random strings from shorter random strings
(seeds). A pseudo-random bit generator is called secure if
an adversary cannot do better than random guessing at the
next bit in the sequence from the prefix of the sequence.
It has been proved that if a generator passes the next bit
test, it will pass all polynomial-time statistical tests (Theorem
3.10 in [21]). Cryptographically secure pseudo random number
generators (CSPRNG) such as Blum-Blum-Shub, Rabin, and
RSA are provably secure PRNG. That is, they are able to
generate pseudo random numbers that are computationally
indistinguishable from true random numbers. On the contrary,
linear feedback shift registers, a classical PRNG, is well
known to be insecure. A thorough discussion on the theory of

computational indistinguishability can be found in [21], [22].

The design of our non-detectable timing channel scheme
relies on the security of the CSPRNG to ensure that there is
no efficient algorithm that can distinguish our timing channel
traffic from a legitimate traffic.

Our non-detectable timing channel scheme is illustrated in
Figure 9. We will use an 8-bits to 2-packets example to explain
this scheme. As before, an 8-bits to 2-packets scheme maps an
8-bit ASCII character into 2 packet inter-transmission times
Ty,T5. In this example, the shared code book contains the
one-to-one mapping of 8-bit binary strings to two-dimensional
vectors (X k2) where k; and ko are integers between 0

167 16
and 15. Thus, there are 256 distinct vectors (%1 %2) (o

)
accommodate all the 8-bit binary strings. Unlike 6oulr6 first
scheme, the vector (’fé, 16) does not directly correspond to
any inter-transmission time. Additional steps are needed to
generate inter-packet transmission times.

Suppose the sender wishes to transmit a message over
our covert timing channel. The message consists of a se-
quence of n characters msg = c¢j,c9,---,c,. The first
step of our scheme is to look up the codeword for each
character in the message. We use (zar—1,T2;) to denote
the codeword for character cj. At the end of the first step,
the message msg is transformed to a sequence of numbers
X =1T1,%2, ", T2n—1,L2n-

In the second step, we use a CSPRNG to generate a
sequence of pseudo uniform (0,1) random numbers u =
UL, U, , Uap—1, U2pn. The seed used by CSPRNG is shared
between the sender and receiver, but not with the detec-
tor of the covert timing traffic. We then mask the se-
quence x with u to obtain a new sequence of numbers
r = ry,7r9, ,Ton—1,T2, DY setting 7, = xi D uk 2
x + up, mod 1. The masking can be thought of as the well-
known one-time pad encryption technique operating on x.

In the last step, we set T, = F~1(ry), where F(z) is the
given c.d.f. of the packet inter-transmission time of legitimate
traffic. We use the sequence 17,75, --,T5, as the packet
inter-transmission times for message m. It can be shown that
without knowing the seed, the sequence T7,7%,---,T5, is
computationally indistinguishable from a sequence of true i.i.d.
random variables with c.d.f. F(x).

This computational indistinguishability can be proved using
the framework of [21], [22]. The basic idea is the use of
proof by contradiction. Suppose the following statement “T
is computationally indistinguishable from a sequence of true
1.1.d. random variables with c.d.f. F(x).” is not true. Then, we
can find a polynomial time algorithm Q that can tell that the
sequence T is not a sequence of true i.i.d. random variables
with c.d.f. F(x). Since 1, = F(T}) and uy = 1, — o mod 1,
we have uy = F(T)) — xx mod 1. Then, we can construct
another polynomial time algorithm Q* based on Q to tell that
Uy, U, -+, Uy 18 NOt from a true i.i.d. uniform (0, 1) random
variables. This means, u is not computationally indistinguish-
able from a sequence of true iid. uniform (0,1) random
variables, which contradicts the construction that wq,uo, - - -
is generated by a CSPRNG. Therefore, the statement the

sequence T is indeed computationally indistinguishable from a
sequence of true i.i.d. random variables with c.d.f. F(x) must
be true.

The indistinguishability result means that there is no polyno-
mial time statistical test that can determine if 17,75, -+, 15,
is generated by our scheme or from a true random source with
c.df. F(x). Therefore, when the packet inter-transmission time
of legitimate traffic is modeled as a sequence of i.i.d. random
variables with distribution F'(x), there is no polynomial time
statistical test that can distinguish our non-detectable timing
channel traffic from legitimate traffic. In practice, when the de-
tector is based on the same i.i.d. traffic model for normal traffic
as the timing channel user, it is computationally impossible
for the detector to detect the timing channel usage without
knowing the shared seed of the sender and the receiver. As a
special case of the non-detectability, when the same character
(or binary string) appears at different positions of the message,
it will be mapped to different inter-packet transmission times
at different locations, due to the masking in the second step.

Another feature of our scheme is that it can mimic different
traffic patterns using the same code book. The c.d.f. F(x) for
the desired traffic pattern is only needed in the last step to
obtain Ty, Ty, -- by setting T; = F~!(r;). This allows the
sender and receiver to adapt to various traffic patterns easily.
For instance, when the normal traffic pattern changes, the
sender only needs to determine the c.d.f. of the distribution of
the normal traffic, and it can use the new c.d.f. to map r to the
desired packet inter-transmission times without changing the
existing code book. Moreover, adaptation does not require any
handshake between the sender and receiver, for the receiver
can independently compute the c.d.f. using the traffic pattern
of the inter-packet reception times.

Recelver R(l)R(2) (3)RA) .. R(2n R(2n)

1: Inter—Reception Tlme Transformation:

/

/
/

r (1)r*(2) H3)F() . r*(2n 1)1 (2n)

2: UnMasking Code
a) Same CSPRNG —> u(1), u(2), ... u(2n)
b) x*@) = r*(l) ®(1 - u(i)), fori=1,...,.2n

x*(1)x*(2) k*(3)x*(4) .| x*(2n—1)x*(2n)

3: Code Look Up.

r¥(i) = FR(1))
F(x): CDF of a normal traffic

(1), x#(2)) —>c*(1)
(x*(2i=1), x*(2i)) ——> c*(i)

Decoded Mcssag c*(2) ¢*(3) ..

Fig. 10. Message Recovery (Receiver)

The procedure for recovering the message at the receiver
is simply the reverse of the sender scheme, and is shown in
Figure 10. Let Ry, Ry, - - -, Ro, be the packet inter-reception
times. We first calculate x7 = F(R;) ® (1 —u;) as depicted in
step 1 and 2. In the last step, we first round z to the nearest
value of 16 denoted as ¢ (z¢ = L16 x}+0.5]/16). We then
decode (:r%,x?k 41) to character ck by looking up the code

book. The entire recovered message is then cf,cd .- cl.

rn:

Recall that R; = T; + ¢;, where ¢; signifies the jitter in the
network. In this example, the receiver can decode correctly
if |e;] < 1/(32-sup|F’'(z)|), where F'(x) is the first order
derivative of F'(x). This is because, F(R;) = F(T; + ¢;) =
F(T,)+ F'(t*) - ¢, =r; + F'(t*) - ¢ , where t* € (T;,T; +
€). Since x; = r; ® (1 — u;), we have zf = F(R;) ® (1 —
u;) = x; + F'(t*) - €. Thus, |zf — x;| < 1/32, if |&| <
1/(32 - sup |F’(z)|). This allows correct decoding (i.e. z¢ =
z;), since z¢ is the value of z} rounded to the nearest k/16.

The example of 8-bit to 2-packet scheme is readily gen-
eralized to an L-bit to n-packet scheme. The code book
contains a one-to-one mapping of L-bit binary strings to
n-dimensional vectors (k—Kl, e %), where K is a positive
integer and ki, ks,---,k, are non-negative integers smaller
than K. The value for K should be small enough to allow
correct decoding, and it is affected by F(x), the c.d.f. of the
traffic we want to mimic, and network jitters €;. The value for
L must be less than nlog, K. We use a procedure similar to
that depicted in Figure 9 to transform a message to a sequence
of packet inter-transmission times.

To demonstrate our non-detectable timing channel, we im-
plemented an 8-bit to 2-packet scheme in which the timing
channel traffic mimics the telnet traffic pattern. The Internet
traffic study by Paxson and Floyd [20] shows that the packet
inter-transmission time of a telnet session can be modeled as a
i.i.d. Pareto distribution. Our timing channel mimics telnet traf-
fic in such a way that the sequence of inter-transmission times
is computationally indistinguishable from a sequence of true
i.i.d. Pareto random variables. We use Java’s SecureRandom
class for the generation of cryptographically secure pseudo
random numbers.

A Pareto distribution has a c.d.f::

Fz)=PX <z]=1-(a/2)’, 2>a,0,6>0

The inverse function of F'(x) needed in the step 3 is:

F(z) = a(—

W o<z <1
1—2

In our experiments, we use parameter @ = 100ms and
the shape parameter 5 = 0.95 as in [20]. The receiver is
a PlanetLab node at Princeton University, and the sender is
a host at Purdue University. We sent the same text file as
in the previous experiments over this non-detectable timing
channel. The data rate is approximately 5 bits/sec, and the
decoding error is only 1% during peak time when the RTT
varies from 39.8 ms to 63.5 ms. The distribution of the
packet inter-transmission time from this experiment is plotted
in Figure 11 along with Pareto and geometric distributions.

As shown in this figure, our timing channel traffic follows the
Pareto distribution very closely.

A recent covert channel detection scheme [16] uses entropy
changes in correlated traffic to detect covert timing channels.
Their detection method is based on the observation “that
a covert timing channel cannot be created without causing
some effects on the entropy of the original process”. As the
authors pointed out, this observation does not apply to i.i.d.
processes. Thus, their detection scheme cannot detect covert
timing channels like ours, that mimic i.i.d. traffic patterns.
Moreover, our scheme is immune to any polynomial time
detection scheme since it is provably secure for mimicking
i.i.d. traffic (detecting our channel in section 5 is equivalent
to cracking the secure PRNG). An interesting future research
direction is to derive a model for some normal traffic with
correlated inter-packet transmission times, and to design a
covert timing channel that mimics the correlated traffic.

Packet Inter-Transmission Time

0.16f
i ——inter—transmission time
0.14(, - - -pareto distribution
H - - geometric distribution
0.12f .
2 04 |
= \
[
Qo
[<
Q- 0.06

3 3.5 4 4.5
log10 milliseconds

Fig. 11.

Probability Distribution of Tj.

VI. CONCLUSION

We have designed a robust L-bits to n-packets scheme for
communication using timing channels. The data rate of our
scheme is close to the theoretical upper bound — the achievable
rate of the geometric codes. We have implemented our scheme
and have conducted extensive experiments on the PlanetLab
nodes and found that our scheme achieves between two to five
times the data rate of the previous state-of-the-art. In local net-
works with greater control over timing, one can significantly
improve the achieved data rate. Thus, the data leakage rate can
be much higher if the receiver is planted closer to the source
(i.e. sender). We have also designed a computationally non-
detectable timing channel scheme so that the distribution of the
inter-transmission times generated by our timing channel fits
any i.i.d. traffic pattern. We implemented our scheme to mimic
the telnet packet inter-transmission time distribution such that
it is computationally indistinguishable from real telnet traffic.
The non-detectable scheme results in a drop of the data rate;
however it is still able to achieve a rate of 5 bits/sec with only
1% decoding error. This suggests that TCP/IP timing channels
can be far stealthier than previously thought possible.

There are several interesting future directions for this work.
One is to investigate the effect of jammers when additional
jitter is added to the TCP/IP flow. Another is to design
a computationally non-detectable covert timing channel that
mimics correlated traffic.

VII. ACKNOWLEDGMENT

We thank Mr. Pablo Navarrete and Professor Edward Coyle
for assisting us with our initial experiments at Princeton Uni-
versity. We thank Professor Ninghui Li for helpful discussions
on computational indistinguishability.

REFERENCES

[1] U.S. Department of Defense. “Trusted computer system evaluation. The
Orange Book,” DoD 5200.28-STD Washington: GPO:1985, 1985

[2] S. Cabuk, C. E. Brodley, and C. Shields “IP covert timing channels:
design and detection,” Proceedings of 11th ACM conf. Computer and
communication security, pp. 178 — 187, New York, 2004

[3] V. Anantharam and S. Verdu, “Bits through queues,”
Inform. Theory, vol. 42, Jan. 1996

[4] J. A. Thomas “On the Shannon capacity of discrete time queues,” I[EEE
Int. Symp. Inform. Theory, July 1997

[5] A. Bedekar and M. Azizoglu “The information-theoretic capacity of
discrete-time queues,” IEEE Trans. Inform. Theory, vol. 44, Mar. 1998

IEEE Trans.

[6] J. Giles and B. Hajek “An Information-theoretic and game-theoretic
study of timing channels,” IEEE Trans. on Inform. Theory, VOL. 48,
Sep. 2002

[71 X. Liu and R. Srikant “The timing capacity of single-server queues

with multiple flows,” DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, 2004
[8] A.B. Wagner and V. Anantharam “Information Theory of Covert Timing
Channels,” Proceedings of the 2005 NATO/ASI Workshop on Network
Security and Intrusion Detection, 2005
B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Petterson, M. Wawrzoniak,
and M. Bowman “Planetlab: an overlay testbed for broad-coverage
services,” in SIGCOMM Comput. Commun. Rev. 33,3, (2003), 3-12
S. H. Sellke, C. C. Wang, N. B. Shroff, and S. Bagchi “Capacity bounds
on timing channels with bounded service times,” in Proceedings of IEEE
International Symposium on Information Theory, June 2007
I. S. Moskowitz and A. R. Miller “Simple timing channels,” Proceedings
of IEEE Computer Society Symposim on Research in Security and
Privacy, 1994
W. M. Hu “Reducing Timing Channels with Fuzzy Time,” in
Proceedings of the IEEE Symposium in Security and Privacy, May. 1991
M. H. Kang, I. S. Moskowitz, and D. C. Lee “A network version of the
pump,” in Proceedings of the IEEE Symposium in Security and Privacy,
May. 1995
J. C. Wray “An analysis of covert timing channels,” Proceedings of
IEEE Computer Society Symposim on Research in Security and Privacy,
May 1991
V. Berk, A. Giani, and G. Cybenko ‘“Detection of covert channel
encoding in network packet delays,” Technical Report
S. Gianvecchio and H. Wang “Detecting Covert Timing Channels: An
Entropy-Based Approach,” Proceedings of 14th ACM conf. Computer
and communication security, 2007
G. Shah, A. Molina and M. Blaze “Keyboard and covert channels,”
USENIX, 2006
H. Kopetz and G. Bauer “The time-triggered architecture,” Proceedings
of the IEEE Special Issue on Modeling and Design of Embedded
Software, Jan 2003
S. H. Sellke, C. C. Wang, S. Bagchi, and N. B. Shroff,
TCP/IP Timing Channels: Theory to Implementation,”
http://www.stat.purdue.edu/~ssellke/CovertTC.pdf
V. Paxson and S. Floyd “Wide-area traffic: the failure of Poisson
modeling,” IEEE tran. Networking, May 1991
S. Goldwasser and M. Bellare “Lecture Notes on Cryptograpy,”
Available: http://www-cse.ucsd.edu/ mihir/papers/gb.html
0. Goldreich The Foundations of Cryptography, Cambridge University
Press, 2001

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19] “Covert

Available:
[20]
[21]

[22]

