
A Tale of Two Synchronizing Clocks

Abstract
A specific application for wastewater monitoring and ac-

tuation, called SwimNet, deployed city-wide in a mid-sized
US city, posed some challenges to a time synchronization
protocol. The nodes in SwimNet have a low duty cycle
(2% in current deployment) and use an external clock, called
the Real Time Clock (RTC), for triggering the sleep and
the wake-up. The RTC has a very low drift (2 ppm) over
the wide range of temperature fluctuations that the SwimNet
nodes have, while having a low power consumption (0.66
mW). However, these clocks will still have to be synchro-
nized occasionally during the long lifetime of the Swim-
Net nodes and this was the problem we confronted with our
time synchronization protocol. The RTC to fit within the
power and the cost constraints makes the tradeoff of hav-
ing a coarse time granularity of only 1 second. Therefore,
it is not sufficient to synchronize the RTC itself—that would
mean a synchronization error of up to 1 second would be
possible even with a perfect synchronization protocol. This
would be unacceptable for the low duty cycle operation—
each node stays awake for only 6 seconds in a 5 minute time
window. This was the first of three challenges for time syn-
chronization. The second challenge is that the synchroniza-
tion has to be extremely fast since ideally the entire network
should be synchronized during the 6 second wake-up period.
Third, the long range radio used for the metropolitan-scale
SwimNet does not make its radio stack software available,
as is seen with several other radios for long-range ISM band
RF communication. Therefore, a common technique for
time synchronization—MAC layer time-stamping—cannot
be used. Additionally, MAC layer time-stamping is known
to be problematic with high speed radios (even at 250 kbps).

We solve these challenges and design a synchronization
protocol called HARMONIA. It has three design innova-
tions. First, it uses the finely granular microcontroller clock

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

to achieve synchronization of the RTC, such that the syn-
chronization error, despite the coarse granularity of the RTC,
is in the microsecond range. Second, HARMONIA pipelines
the synchronization messages through the network resulting
in fast synchronization of the entire network. Third, HAR-
MONIA provides failure handling for transient node and link
failures such that the network is not overburdened with syn-
chronization messages and the recovery is done locally. We
evaluate HARMONIA on SwimNet nodes and compare the
two metrics of synchronization error and synchronization
speed with FTSP. It performs slightly worse in the former
and significantly better in the latter.

Keywords
Sleep and wake, synchronization, sensor, low duty cycle

1 Introduction
Wireless sensor actuator networks or WSANs consist of

computer controlled sensors and actuators that communi-
cate over a wireless (usually RF) communication network.
WSAN’s use sensed data to power actuators which can then
effect the sensed environment. The resulting changes in that
environment can then be sensed by the network. This forms
a distributed feedback loop that has the potential for effi-
ciently controlling geographically distributed processes at a
scale that was previously unthinkable. A metropolitan scale
(city wide) WSAN, called SwimNet1, is currently being built
by a partnership of private (Studebaker Inc.), public (City
of South Bend), and academic (University of Andromeda)
agencies2. The WSAN is being built to control the frequency
of combined sewer overflow (CSO) events in a mid sized
U.S. city (South Bend, Indiana). More than 700 cities in the
U.S. have sewer systems that combine sanitary and storm
water flows in the same system. During rain storms, wastew-
ater flows can easily overload these combined sewer systems,
thereby causing operators to dump the excess water into the
nearest river or stream. The discharge is called a combined
sewer overflow (CSO) event [11]. The problem addressed by
SwimNet represents a major public health and environmen-
tal issue faced by many U.S. cities. At present, the system
consists of 150 wireless sensor nodes monitoring 111 loca-

1The name is changed from the actual name to preserve
anonymity.

2Names of the private and the academic institutions are fictional
to preserve anonymity.



tions in the South Bend sewer system. Actuation nodes are
scheduled to be completed in summer 2009.

The SwimNet deploys nodes in the sewage channels for
sensing, on top of traffic poles for relaying, and at major
traffic intersections to act as gateways to the cellular network,
using which the sensed data is uploaded to a backend server.
The nodes are called Chasqui nodes, which are based on the
Crossbow mote design, but expand on it to add a longer range
and faster radio, and significant to our problem, a Real Time
Clock (RTC) with an extremely low drift of 2 ppm. The
Chasqui nodes are meant for long-term operation without the
need to change batteries. Therefore, a natural design point
is to have low duty cycle operation of the network. In the
current deployment, each node stays awake for 6 seconds in
a 5 minute period, leading to a 2% duty cycle. This led us
to the requirement of accurate time synchronization for the
Chasqui nodes.

The distinctive challenges for synchronization in Swim-
Net were three-fold. First, the synchronization had to be
fast since the network only stayed awake for 6 seconds at
a time and the projected scale of the network is large, of the
order of a few hundred nodes. Second, the Chasqui nodes
used the RTC, which is external to the microcontroller chip,
for the trigger for wake up. This is due to the RTC’s low
drift over the large temperature range to which the nodes
are exposed—from -13◦F to 122◦F. However, crystals used
for clocks have a tradeoff in three dimensions—drift, gran-
ularity, and power consumption. The power consumption
has also to be kept very low and hence the RTC sacrifices
the granularity that is exposed to the programmer—it has a
coarse granularity of only 1 second. Thus, we have the situ-
ation that wake up is controlled by a clock whose granularity
is so low that it is not sufficient to synchronize the clock,
given that the duty cycle is low. Third, the high power, long
range, and high speed radio used is a MaxStream 115.2 kbps
radio where the firmware is not available for modification.
Thus, we cannot use a common technique used in time syn-
chronization protocols—MAC-layer time-stamping. Addi-
tionally, MAC layer time-stamping with high speed radios
poses problems as documented in [15, 14]. While we have
posed these challenges in the context of SwimNet, we be-
lieve they are more general than that. Abstracting out the
details, these challenges to a time synchronization protocol
will be posed by any WSAN that has large scale, low duty cy-
cle operation, proprietary radio stack, and crystals that make
a natural tradeoff between drift, granularity, and power con-
sumption.

We found that no existing time synchronization proto-
col addressed these challenges motivating us to design and
develop our protocol called HARMONIA. HARMONIA is
designed and implemented in TinyOS and executes on the
Chasqui nodes. It has three primary design innovations.
First, it has an algorithm to use the high resolution micro-
controller clock to synchronize the low resolution RTC. Sec-
ond, the synchronization-related hand-shake between two
adjacent nodes happens in two rounds through a single mes-
sage in each round. However, HARMONIA pipelines the two
rounds, with a node acting as a source of the first round mes-
sage before it has itself received the second round message.

This design is important in achieving a rapid synchronization
of the entire network. Third, reliability is built into HARMO-
NIA to handle transient node and link failures. The goal is
to localize the effect of a failure and not overburden the net-
work with synchronization-related messages.

To evaluate HARMONIA, we create small-scale linear and
tree topologies with Chasqui nodes, with each node running
the SwimNet application and having a low 2% duty cycle.
We evaluate the time to synchronize the network and the syn-
chronization error between any two pair of nodes. We com-
pare this to FTSP running on Mica2 nodes. While a compar-
ative evaluation on the same hardware platform would have
been desirable, each protocol relies critically on some spe-
cific hardware feature. The results validate our design goal
that HARMONIA is faster than FTSP, while sacrificing syn-
chronization error. A representative result is that HARMO-
NIA is 8.7X and 12.1X faster than FTSP for a 5 hop linear
network depending on the setting of FTSP, and with a period
of 300 ms for synchronization messages. The average one-
hop synchronization error of FTSP is only 1.5 µs, while that
of HARMONIA is 16.77 µs.

Next, we describe our target system. In Section 3, we mo-
tivate why we need a new synchronization protocol. Then we
describe the design of HARMONIA. In Section 5, we present
the experiments and results. Then we provide a discussion of
extensions and issues with HARMONIA, followed by a sur-
vey of related work. Finally, we conclude the paper with an
outline of ongoing work.

2 SwimNet
2.1 SwimNet Architecture

SwimNet’s architecture was designed to be a set of lo-
cal WSAN’s that connect to an existing wide area network
(WAN) through gateway devices. SwimNet can therefore be
viewed as a heterogeneous sensor-actuator network. It con-
sists of four types of devices: 1. Instrumentation Node or IN-
ode: these nodes are responsible for retrieving the measure-
ment of a given environmental variable, processing that data
and forwarding the data to the destination gateway through a
radio transceiver. 2. Relay Node or RNode: these nodes aid
in forwarding data collected by INodes that are more than
one-hop away from the gateway node. The RNOdes only
serve to enhance the connectivity in the wireless network. 3.
Gateway Node or GNode: these nodes serve as gateways be-
tween the WSAN used to gather data from the INodes and
a Wide Area Network (WAN) which allows remote users
easy access to SwimNet’s data. 4. Actuator Node or AN-
ode: these nodes are connected to valves (actuators) that are
used to hold back water in the sewer system.

To appreciate the challenges posed to a synchronization
protocol, we first need to describe the system that is con-
trolled by SwimNet. Figure 1 shows a sewer system in
which combined sewer trunk lines (sanitation and storm wa-
ter flows) feed into a large interceptor sewer. Prior to 1974,
municipal combined sewer lines dumped directly into rivers
and streams. Under the Clean Water Act, cities were forced
to treat the water from these combined sewer lines before
they were released into a river or stream. One common way
to meet this regulatory burden was to build an interceptor



sewer along the river. This sewer would intercept the flow
from the combined sewer trunk lines and convey that flow to
a wastewater treatment plant (WWTP). Under dry weather
conditions the flows were small enough to be handled by the
WWTP. Under wet weather conditions (storms), the flows
often overwhelmed the WWTP’s capacity, thereby forcing
operators to dump the excess directly into the river or stream.
Such discharges constitute the CSO events described earlier.

Figure 1. South Bend Interceptor Sewer and CSO Diver-
sion Structure.

From Figure 1 we can see that the combined sewer trunk
lines and interceptor sewer connect at a CSO diversion struc-
ture. This is the point where we can apply control. This
means that the natural place to place ANodes is at the
CSO diversion points. These ANodes would then adjust
the amount of water diverted into the interceptor sewer line
based on an adaptive threshold that is a function of the cur-
rent flows into the system. The GNode serves as a gateway
between this particular WSAN and neighboring WSAN’s up
and down the interceptor line. Figure 2 illustrates this system
architecture with 2 different WSAN’s controlling the two di-
version structures into the interceptor line. GNodes at these
diversion structures and the WWTP are used to exchange
control information in a way that allows coordinated flow
control across the city’s entire sewer system.

Figure 2. SwimNet’s Hierarchical Architecture.

2.2 SwimNet Hardware
The basic building block of SwimNet’s WSAN is a more

rugged version of the MICA2 processor module called the
Chasqui wireless sensor node. The Chasqui node started
with the original embedded node designs developed by U.C.
Berkeley. Studebaker Inc. enhanced the radio subsystem and
sensor/actuator interface subsystems of this earlier design.
The Chasqui node uses a 115 kbps MaxStream radio oper-
ating at 900 MHz. It uses frequency hopping spread spec-
trum (FHSS) signaling to reduce the radio’s sensitivity to in-
terference. The radio has a larger maximum transmission
power (1 watt) than the conventional Chipcon radio. Conse-
quently, the Chasqui node has a range of over 700 meters in
urban environments and up to a 5 km range for line-of-sight
connections. The longer range of the Chasqui processor fits
well with the distances required by the SwimNet application.
The MAC layer of the radio is implemented in proprietary
firmware that is closed source. However, a feature signifi-
cant to our synchronization protocol, is that the radio sends
a signal a fixed offset time after the first bit being sent out
on the wireless channel and also a signal when the first bit
is received from the wireless channel. This signal is used to
trigger an interrupt followed by executing part of HARMO-
NIA’s algorithm.

To give a sense of the deployment for which our HAR-
MONIA is targeted, we provide in Figure 3 an overlaid map
view of the largest of the 36 CSO areas in South Bend, which
covers an area of 3758 acres. It has 7 RNodes, 3 INodes, 2
GNodes and 1 ANode, that controls an automated valve at
the basin. Notice that the network of Rnodes is almost linear.
Due to the requirements of the application that the network
needs to span a large geographical area, the Rnodes provide
relaying functionality, and the radio has a long range, the net-
work in most parts is almost linear. This is a driver for some
design decisions in HARMONIA, which we will discuss in
Section 6.

In spite of the higher transmission power required by the
MaxStream module, careful design of the SwimNet middle-
ware and hardware allows the WSAN’s based on the Chasqui
node to operate for several years before changing batteries.
The Chasqui node consumes up to 5W when fully active and
drops down to 0.14 mW in sleep mode. Long battery life
can be effectively achieved by using low duty cycles. All the
nodes in SwimNet wake up at the beginning of every Tw sec-
onds defined a slot, and stay awake only for the first Ta sec-
onds of each slot based on the RTC. Here, Ta is much smaller
than Tw to save battery power. In current deployment, those
are set to Ta = 6 seconds and Tw = 300 seconds, resiting in
2% duty cycle.

These values are possible due to the nature of the phe-
nomenon that the WSAN is meant to monitor—such events
last for more than 5 minutes. The biggest limitation to ef-
ficient communication in low duty cycle systems is precise
synchronization. Typical crystal tolerances such as the one
used in the Mica2 platform are on the order of 40 ppm yield-
ing drifts of up to 3.456 seconds per day. Extreme temper-
ature differentials can be seen in the SwimNet application:
nodes inside the sewer system are at a relatively constant
temperature of around 10◦C year round while nodes mounted



Figure 3. Overlaid map view of the largest of the 36 CSO
areas in South Bend. It shows the four different kinds
of nodes - Instrumentation node (INode in yellow), Relay
node (RNode in red), Gateway node (GNode in green),
and Actuator node (Anode in gray). The blue box is a
unit with a RNode and a GNode.

Figure 4. The duty cycle of a Chasqui node showing the
awake period (Ta = 6 seconds in the deployment) and the
sleep period, which together constitute a slot (Tw = 5 min-
utes in the deployment). The beginning of a round is
marked by the BS initiating a new synchronization pro-
cess.

on traffic poles can experience temperatures ranging between
-20◦C to 50◦C. Experiments at these temperatures showed
drifts of up to 3 seconds per day using regular crystals. While
synchronization algorithms can periodically reset the drift er-
ror between nodes, they also consume precious energy re-
sources. Therefore, the Chasqui node uses a precision real
time clock (RTC) [6]. Using this, the nodes can coordinate
their active and sleep cycles with sufficient precision to re-
liably function at a 2% duty cycle. The Chasqui node im-
plements a precision RTC with a typical drift of only 2 ppm
giving SwimNet tight synchronism between synchronization
updates. Experiments showed that the Chasqui nodes can
reliably function with periodic synchronization updates in
HARMONIA every 7 days. With such a duty cycle, the Swim-
Net applications based on the Chasqui processor node have
a service life in excess of three years with a 4 cell lithium
battery pack.

3 Can FTSP be Used to Synchronize Swim-
Net?

The FTSP protocol [5] represents the state-of-the-art in
synchronization protocols and compensates for most sources
of time variability, thus achieving highly accurate synchro-
nization. It does not rely on any network topology. A root is
elected, based on node IDs, and it initiates the synchroniza-
tion by periodically broadcasting a synchronization message.
After some initial startup time when the caches are being
populated, each node periodically broadcasts to its neighbors
its local estimate of the time at the root node. FTSP uses a
single broadcast message, rather than a two-way handshake,
to establish synchronization points between the sender and
the receiver. FTSP’s design eliminates many sources of syn-
chronization error, notably the interrupt handling time and
the encoding/decoding time. It also uses MAC-layer time-
stamping. Each node uses a linear regression table to esti-
mate the offsets between the local clock and that of the root
node. The performance of the protocol—the synchronization
error and the time to synchronize the network—is dependent
on the number of points that are used to create the regression
line. This technique enables each node to estimate its drift
with respect to another node and compensate for it.

If we say that the synchronization packet flooding period
is P, the number of points needed to draw the regression line
is k (k = 8 by default), and the maximum number of hops
in the network from the root is N, then FTSP takes approxi-
mately kPN time to synchronize the whole network [5]. This
is because only after a node finishes the linear regression by
receiving the k synchronization packets, it can start to flood
the estimate of the global time through a local broadcast.
Moreover, if the root fails and a new root needs to be re-
elected, this takes PN/2 time on an average. This is for the
average case where the new root is at a distance N/2 from the
old root. Such time requirements of the FTSP make it chal-
lenging to apply it to SwimNet synchronization since nodes
in the SwimNet stays awake only for 6 seconds every wakeup
and many parts of the network are in effect connected in a
linear topology. For example, even if we set the value of P
quite short (compared to values used in the experiments in
[5]) as P = 300ms and sacrifice the performance of linear
regression by taking the minimum two points, we can syn-
chronize at most a 20-hop network from the root within the
6 seconds. Practically this number will be smaller because
nodes can communicate with each other for even less than
6 seconds due to the drift in RTC when a synchronization
protocol is initiated.

Let us consider two straw man proposals to adapt FTSP
to our problem. First, we use FTSP to synchronize the mi-
crocontroller clock (MCC) since it has a fine granularity
(0.125 µs for the Mica2) and can benefit from the small syn-
chronization error achievable with FTSP. However, the MCC
does not run during the time the Chasqui node is asleep and
the sleep-wake is guided by the RTC. Therefore, synchroniz-
ing the MCC will not serve our purpose.

Second (and alternately to the first), we synchronize the
RTC since the RTC continues to tick through the microcon-
troller’s sleep period. Then we can relax the requirement
that the entire network needs to be synchronized within the



awake period of one slot. Rather the synchronization pack-
ets needed for regression can be collected over multiple slots
and the RTC synchronized with them. However, the RTC has
a coarse granularity of only 1 sec and therefore, despite the
small synchronization error of FTSP, the clock may differ by
up to 1 sec. This would be unsuitable for the low duty cycle
SwimNet.

The two straw man proposals suggest the approach that
we take in design of HARMONIA. The approach simply put
is to synchronize the MCC first and then change the RTC to
a globally determined value at the same time based on the
synchronized MCC. This achieves both finely granular value
for the time used in synchronization algorithm and synchro-
nism of RTC for sleep-wake. Therefore, applying FTSP to
this model boils down to first synchronizing the MCC using
FTSP and then adjusting the RTC based on this synchronized
MCC. However, this runs in to the slow network-wide syn-
chronization problem of the FTSP explained at the beginning
of this section. This argument crucially depends on the fol-
lowing observation—the synchronization of the MCC has to
happen within one awake period of one slot. This cannot be
staggered over multiple slots.

(a) MCC drift between a pair of nodes.

(b) MCC difference between the pair.

Figure 5. FTSP’s problem with linear regression when
working with sleep-wake operation.

The reason is explained by Figure 5. Consider that node
B is trying to synchronize itself to the clock of node A. In

Figure 5(a), we see two lines one corresponds to node B’s
MCC measured with respect to node B’s MCC — obviously
this is a 45◦ line from the origin; the second corresponds
to node A’s MCC again measured with respect to node B’s
MCC. The two clocks have different frequencies and hence
the difference in slope between the two lines. Node A’s clock
also has an offset—time t0 in the figure. In Figure 5(b), we
see the MCC difference between A and B with respect to
node B’s MCC. Ideally, node B should be able to estimate
the difference in drift between A’s MCC and its own MCC.
Thus, in Figure 5(b), it should be able to estimate the slope
l. According to FTSP, if FTSP had completed within the
wake period, it would indeed have been able to estimate the
slope. However, since the synchronization does not com-
plete within the wake period, node B hits against the onset
of sleep, time t1 in Figure 5(a). At this time the offset that
A’s MCC has over B’s MCC is ∆t. However, nodes A and
B wake up after their sleep based on a trigger from their re-
spective RTCs. The RTCs also have different frequencies.
Therefore, nodes A and B wake up at slightly different times,
say node A wakes up before node B. Then the offset at node
B’s MCC time t1 suddenly jumps from ∆t to ∆t + ∆t′. In
other words, the curve in Figure 5(b) has a discontinuity at
time t1. Now, consider what happens if node B had staggered
its regression points across the two awake periods. Node B
would then have estimated, using FTSP, that the slope of the
relative MCC difference is l′ (Figure 5(b)), rather than the
correct slope of l. There is no fixed relation between l′ and
l—it depends on the arbitrary order and difference in time
between the wake-up of nodes A and B.

The nub of the argument then is that the linear regression
should be finished within each awake period. For networks
of the size of SwimNet, FTSP out-of-the-box cannot achieve
this as we will show in the experiments section. Hence, the
need for a new synchronization protocol, hence HARMONIA.

4 Proposed Protocol
4.1 Operational Scenario

The SwimNet is connected for data dissemination and
collection in a tree topology whose root is a base station
(BS). The topology is created by stateless gradient-based
routing [7]. Each node in the network has a gradient number
that is an indication of how close the node is to the destina-
tion. Since there might be several destinations, each node
stores one gradient number per destination in the network.
HARMONIA will also use the tree topology.

Recollect that all nodes in the SwimNet wake up at the
beginning of every Tw seconds defined as a slot, and stay
awake only for the first Ta seconds of each slot. The BS ini-
tiates the synchronization procedure in certain slots. We say
a new round of synchronization is started when that happens.
The BS may decide when to initiate this based on a fixed pe-
riod, for example, through calculation of the worst case drift
of the RTC, or some indication that the network has gone out
of synch, for example, inferring from a drop in the received
data rate.

We first provide a conceptual view of how HARMONIA
works, hiding the technical details. Note that there are two
clocks in the picture - a microcontroller clock (MCC) and the



Real Time Clock (RTC). The MCC has a high drift but high
resolution, and it also does not tick when the node is sleep-
ing. The RTC has a low drift but low resolution, low enough
that synchronizing the RTC alone will have a large synchro-
nization error (up to 1 sec) and thus will not be sufficient for
our requirements. Our goal is to synchronize RTCs of all
nodes accurately enough to ensure all nodes in the network
wake up at the same time.

The BS initiates the synchronization once a certain time
has elapsed since waking up. Synchronization happens in
cascaded stages where the synchronization proceeds along
the tree topology with the BS acting as the root node. The
interaction between a node and its children happens in two
phases. A pipelining effect is achieved between multiple lev-
els of the tree by having a node perform the first phase of the
synchronization with its children even though it has not com-
pleted its own synchronization, i.e., it is yet to complete its
second phase. After a node has received the two phases from
its parent, a node is considered synchronized with respect to
its parent. It then sets an alarm using its MCC. The drift in
the MCC during this alarm interval contributes to the syn-
chronization error in HARMONIA, in addition to other fac-
tors. The synchronization achieves the effect that the alarms
of all the nodes in the network will go off at the same time,
modulo the synchronization error. When the alarm goes off,
a node sets its RTC’s second hand to a value determined by
globally known parameters. Since all the nodes do this at the
same time and since sleep-wake happens according to the
RTC value, this implies that the entire network is synchro-
nized for its sleep-wake.

Once the BS decides to synchronize a network, it begins
the protocol Ts seconds after it wakes up as depicted in Fig-
ure 6. The value of Ts should be chosen to ensure that all the
children of the BS have already woken up so as not to miss
any synchronization-related messages from the BS. In addi-
tion, since all nodes adjust their RTC at Talarm = Ts +Tinterval
they have to stay awake until the RTC is adjusted. Thus the
values for Ts and Tinterval must be taken to satisfy the follow-
ing conditions:

Ts > Td and Ts +Tinterval < Ta−Td , (1)

where Td denotes the maximum offest in RTC that has built
up between a parent and a child node since the previous sy-
chornization. However the second condition is not as critical
if we enforce the design that a node delays going to sleep till
its alarm has expired. Additionally, the value Tinterval used at
the BS should be large enough that all the nodes in the net-
work have gone through both synchronization phases and are
ready to set their RTCs. However, there is a desire to keep
Tinterval small since the drift in the MCC during this interval
contributes to the synchronization error.
4.2 Synchronization Protocol

Our goal is to synchronize RTCs of all nodes to ensure all
nodes in the network wake up at the same time. However,
since RTC has only 1-second resolution, if we adjust any
node’s RTC on the basis of another node’s, there could be
at worst a 1-second synchronization error between the two
nodes. In order to reduce this kind of uncontrollable syn-
chronization error, we adopt another timer in our protocol,

which uses a MCC provided by the Atmel Atmega128L, a
microcontoller used in Chasqui motes. The MCC provides
much finer resolution than the RTC, operating at the fre-
quency of 8MHz. However it cannot be used directly as a
system clock since it does not run when a node is sleeping.
Therefore the core part of HARMONIA is about how to use
the MCC to set the RTC to the same value, at the same time.
Here “same time” must be defined within a high resolution,
identical to that of the MCC. From now on, the value of the
MCC is expressed using lowercase t not to be confused with
the value of the RTC, which is being expressed using upper-
case T .

When the BS initiates the protocol, it sets an alarm to go
off after Tinterval . To achieve this, it sets the MCC timer that
goes off at talarm. For example, for Tinterval = 2s and for a 8
MHz MCC, it will set the timer to expire after 16×106 ticks.
When the alarm fires, the RTC’s second hand is set to the
value Talarm = Ts +Tinterval . Right after setting the alarm, the
BS gets to be the first to do the following two-phase message
transmission. This is repeated recursively by each node with
its children through the network.

Phase 1: SYNC packet transmission and reception
- Transmission: A parent sends to its children a syncrhonzi-

ation initiator packet called SYNC that carries talarm.
The parent records tp the local time at which its radio
chip starts to transmit the first bit of the SYNC through
an antenna.

- Reception: Each child records tc the local time at which its
radio chip starts to receive the first bit of the SYNC.

Phase 2: SYNCD packet transmission and reception
- Transmission: A parent sends to its children a synchro-

nization data packet called SYNCD carrying the tp and
tdi f , where the tdi f is the offset between its MCC and
the BS’s. For the BS, the tdi f is always set to zero.

- Reception: After receiving the SYNCD, each child of the
parent updates its tdi f as tdi f = trcv

di f + tc − tp (the “rcv”
indicates it is the value received by the node), and sets
an alarm that goes off at (talarm + tdi f ).

Here each SYNC(SYNCD) packet is sent after a backoff
time taken randomly from a uniform distribution over [0, tb f ],
where tb f denotes the maximum backoff time. This is
to avoid contention in the synchronization packets among
neighbors.

Figure 7 depicts the above two-phase synchroization
packet transmissions and receptions performed from the BS
to two-level lower hierarchy. Every node in the network be-
comes aware of talarm, the time at which the BS expires its
alarm by receiving SYNC packet from its parent. However,
since all nodes’ MCC may not be synchronized, each node
needs to figure out the offset in the MCC between itself and
BS to make its alarm go off at the same physical time as at the
BS. This is done by the SYNCD packet propagation: When
a node receives the SYNCD from its parent, the SYNCD lets
it know the offset between the parent and the BS, that is, tdi f .
Thus the node can calculate the offset between itself and the
BS by adding the offset between itself and its parent to the
received tdi f . It would be obvious from the above descrip-
tion that HARMONIA does not compensate for the difference
in drifts in the MCCs or the RTCs of two nodes, nor for the



Figure 6. Sleep-wake operation and its relationship to the synchronization protocol.

jitter in the interrupt handling times for the interrupts arising
from the MaxStream signals.

Note that the tp and tc in the Phase 1 are recorded in a
similar way that MAC layer time-stamping technique gets
timestamps, but unlike in the MAC layer time-stamping, the
value of tp is transmitted in a different packet—SYNCD, not
SYNC. This is because the MaxStream radio MAC firmware
is not modifiable and we cannot embed the tp into the SYNC.
MaxStream Signaling on Bit Transmission and Recep-
tion
In our description above, we simplified the issue of signaling
from the MaxStream radio to the microcontroller. In real-
ity, what happens is depicted in Figure 8. On the transmitter
side, the radio generates a pulse of width TT L and on the re-
ceiver side, the radio generates a pulse of width TRL. Trigger
to the Chasqui microcontroller happen respectively on the
rising edge and the falling edge. There is a time difference
between when the event is time-stamped at the transmitter
and at the receiver end, since TT L > TRL. According to the
MaxStream 9XTend OEM RF Module specification [1], this
difference is 190 µs, while experimentally we found this to
be 250 µs. We capture this using a parameter tcon and thus tdi f
in phase 2 reception is updated as tdi f = trcv

di f + tc − tp + tcon.
We explain in Section 5 how tcon is experimentally measured.

Figure 8. The signaling from the MaxStream radio to the
microcontroller. The signal on the transmit and on the
receive side are used to take timestamps which are used
in HARMONIA.

4.3 Failure Handling
In this section, we discuss how HARMONIA can handle

transient failures in either links or nodes. A node needs to
detect the loss of any synchronization packet. For this it uses
overhearing of its child’s synchronization packet as an im-
plicit acknowledgement (ACK).

After a node sends SYNC to its children, it sets a timer
which goes off after tout time within which it expects to over-
hear all its children sending SYNC to their own children. If
the node does not overhear the SYNC packet(s) from one or
more children, this is taken as an indication of failure and it
sends the SYNC again. The protocol has a bound Nmax for
which the process will be tried, within a slot, before declar-
ing failure.

A parent node begins sending the SYNCD packet to its
children only after it has been assured that all its children
have received the Sync packet, or that there has been a fail-
ure. The same technique is used by the node to detect and to
handle failure in SYNCD.

4.4 Packet Sequences and State Management
In HARMONIA, since retransmissions can occur, we need

a way to allow the nodes which have already received a
packet to disregard the same type of packet subsequently.
Practically those state variables are managed in the follow-
ing manner. Every node has two different kinds of round
sequences: One is round sequence as a parent denoted by
Nrp and the other is round sequence as a child which is Nrc.
Those are both initially set to zero. Whenever BS initiates
a new round of synchronization procedure, it increases the
Nrp by 1. All SYNC and SYNCD packets carry the node’s
Nrp value. A child accepts a synchronization packet with Nrp
greater than or equal to its current Nrc if the packet is from its
parent. When a node receives a Nrp value from its parent, it
updates its own Nrp value to be the received one. It updates
its Nrc value as Nrc = Nrp + 1 after it sends SYNCD. This
will help the node disregard re-sends of the SYNC from its
parent.

In addition to the round sequences, the SYNC packet
should carry another type of sequence number for the ARQ
operation denoted by Ntrial which represents how many times



Figure 7. Illustration of the synchronization protocol.

the SYNC transmission has been tried so far including the
current one. A parent does not know at what value of Ntrial
the SYNC packet will be received at each child, Therefore, it
has to record all the instants at which the SYNC is sent with
the corresponding value of Ntrial , and send all these informa-
tion in the SYNCD packet. Each child remembers the value
of Ntrial in the SYNC it received, and finds the correspoding
time of sending the SYNC when it receives the SYNCD. It
uses this time to calculate tdi f in reception step of the Phase
2. For example, if a node A had to send two SYNCs to satisfy
its two children C1 and C2. The times corresponding to these
two sends are tp1 and tp2. Then when A sends the SYNCD,
it has fields: Trial 1: tp1; Trial 2: tp2.
4.5 Fast Recovery

In spite of trying Nmax number of times within a slot, a
node may be unable to synchronize all its children. For this
case, we introduce the feature of fast recovery. A node can
then proactively initiate fast recovery for synchronizing its
descendant sub-tree in the next slot, and does not have to wait
for the BS to initiate the next synchronization round. Let us
say a node A is in this situation. Let us consider one of its
child nodes C1. This situation can happen because of any of
the three reasons: (i) C1 did not even receive the SYNC; (ii)
C1 received the SYNC but for some reason did not finish get-
ting synchronized in the slot; (iii) C1 is synchronized, but the
implicit acknowledgment has been lost to A, or A is trying to
synchronize a sibling of C1. For case (i), no special treatment
of the state variables Nrp or Nrc is needed since these had not
been incremented (the SYNC was not even received). For

case (ii), C1 decrements its Nrc before going to sleep so that
it will accept the SYNC in the next slot. For case (iii), C1
disregards the synchronization message and sends an explicit
acknowledgment to A by sending a message called SYNCA.
A node tries fast recovery for a maximum Nmaxtrial times.

The fast recovery concept is powerful enough to handle
the situation that a large network cannot all be synchronized
in one slot. Rather the synchronization proceeds with as
much of the network being synchronized initially as possi-
ble, and the unsynchronized parts of the network being han-
dled through fast recovery.
4.6 Choice of Important Parameters

Here we discuss the tradeoffs in choosing the most impor-
tant parameters in HARMONIA.
1. Ts: This is the time the BS waits after waking up to initi-
ate the synchronization messages. This value has to be large
enough to accommodate clock drifts that have built up be-
tween a parent and its child node. This is to ensure that the
child node is awake to receive the synchronization message.
But, it must be small enough that the synchronization can
complete in the awake period of one slot. We find for the
SwimNet a value of 2 s is reasonable.
2. Nmax: This is the maximum number of times a node tries to
synchronize its children nodes within a slot. A larger value
will increase the reliability of the synchronization process,
within one slot. However, it cannot be so large that the node
arrives at the time to sleep within the slot before it has ex-
hausted all Nmax tries. Also there is a resource consumption
that goes up with increasing values of Nmax. This depends



upon the frequency of transient failures in the network. We
find a value of 3 works well for us.
3. Tinterval : This is the time after which an alarm will be
triggered to set the RTC, all together all through the network.
This value should be large enough to give time for the entire
network to be synchronized. But, the drift in the MCC in
this time contributes to the synchronization error; therefore,
it should be kept small. The value will depend on the scale
of the network and we should set it to the smallest possible
value that meets the above condition.
4. tb f , tout : The first is the backoff before sending a SYNC or
SYNCD, the second is the time between the two phases. We
have the condition tout > tb f + tproc, where tproc is the small
time used in processing the synchronization message. This
condition is required since otherwise a node may mistake
that its SYNC message to its child has been lost when in re-
ality the child was backing off before sending it along. The
parameter tb f should be chosen based on the network den-
sity, a higher density requiring a larger value. The smaller
the value of tb f is, the faster will be the synchronization time
of HARMONIA. For our case with a network density of 6
neighbors, we find tb f = 100ms does not cause appreciable
collisions. However, we are yet to do thorough experimenta-
tion to determine its setting.

5 Experiments
5.1 Experimental Methodology

We tested HARMONIA focusing on network-wide syn-
chronization time and synchronization error with three dif-
ferent network topologies shown in Figure 9. However, in
our experiments, in all three topologies, the nodes are ac-
tually placed within a short distance. This is to make the
experiments feasible from a logistic standpoint. Therefore,
we use software topology control to define the neighbor re-
lations between the nodes. Thus, if node i is not connected
to node j in the topology, it disregards all packets it receives
from j and vice-versa. Note that this still causes contention
that would not be present in the actual network.
Metrics
We define the synchronization error for a node as the differ-
ence in its estimate of the BS’s local time from the actual
local time at the BS. For HARMONIA, synchronization er-
ror for node i corresponds to the difference in time when
the BS and the node adjusts its RTC. We measure this er-
ror right after i has been synchronized. For FTSP, a polling
node queries the network nodes with a fixed period (3 s in
our experiments). On being polled, a node i responds with
its estimate of the BS’s local time and at that instant the BS’s
own local time is also measured. The difference gives the
synchronization error. Thus, for FTSP, there can be a delay
of up to 3 s from the synchronization to the measurement.

We define the network-wide synchronization time as the
time from when a round of the synchronization protocol be-
gins to when all nodes in the network get all the packets re-
quired to make an estimate of the BS’s local time and then
have finished the processing of the packets. In HARMONIA,
the time ends when the last node has received SYNCD and
done the processing (update its tdi f ) based on SYNCD.

For the experiments with HARMONIA, the microcon-

troller is programmed to generate a rectangular pulse at Pin
7 and Pin 10 on the Chasqui board shown in Figure 10 at the
instants when we have to pinpoint to calculate the synchro-
nization error and the network-wide synchronization time.
These two pins are connected to an oscilloscope. Specifi-
cally, a node generates the pulse at Pin 7 when it receives
SYNCD for the first time in a round of synchronization pro-
cedure and has completed the attendant processing. A node
generates a pulse at Pin 10 when it adjusts its RTC to get
synchrony back. In case of BS, it generates a pulse at Pin
7 whenever it initiates a round of the synchronization proce-
dure. Therefore, the synchronization error between a pair of
nodes is the time gap in the rising edge of the pulse gener-
ated at Pin 10 and the network-wide synchronization time is
measured by taking the time gap at Pin 7 between the BS and
the last node to generate the pulse.

All the experimental results are statistics calculated from
at least 10 points—in many cases, it is more; the 10 runs are
used when experimental errors caused us to reject other runs.
We have run experiments for HARMONIA for four different
values for tout (tout = 150,200,250, and 300 (ms)) choosing
other parameters as in Table 1. Regarding how to measure
the value of tcon, we need to think about what the potential
sources are for the synchronization error in HARMONIA: (i)
the propagation delay; (ii) the frequency difference in MCC
of each node, accumulated between the time the alarm is set
to when the alarm fires, and (iii) the handling time for the
interrupts that the radio chip signals to record tp and tc with
the SYNC packet. For this calculation, we neglect (i) and
(iii) because those factors are normally in a range of a few
microseconds. Let us use the uncorrected equation for syn-
chronization: tdi f = tdi f + tc − tp. Then, the absolute value
of the synchronization error between a sender (node i) and a
receiver (node j) E can be expressed as E = tcon +F , where
F is the error due to (ii). We then measure the absolute value
E ′ of the synchronization error with node j as sender and i
as receiver. Then E ′ = tcon−F . Hence, we can obtain tcon as
tcon = (E +E ′)/2. Averaging over a number of experiments,
we select tcon as 250 µs.

(a) Topology 1.

(b) Topology 2. (c) Topology 3.

Figure 9. Network topologies used for our experiments.

5.2 Network-wide Synchronization Time
Our main objective is to synchronize a network of sensor

nodes running on a very low duty-cycle quickly—within the



Table 1. Values of parameters in HARMONIA used in the experiments.
Ta Tw Ts Talarm tb f tcon Nmax
6s 5min 2s 4s 100ms 250µs 3

Figure 10. Chasqui board.

time period for which they remain awake—keeping the syn-
chronization error among the nodes within a tolerable limit.
Hence synchronization time is the primary metric for us.

For the experiment with HARMONIA, we vary the time
between a SYNC and a SYNCD message, denoted as tgap.
This time is given by a time-out at the sender side (tout ) fol-
lowed by a back-off at the sender side (chosen in a random
uniform manner from [0, tb f ]). Therefore, the expected value
of tgap = tout + tb f /2. This calculation of tgap assumes there
is no retransmission. In our experiments, there are collisions
and retransmissions, and the synchronization time value for
HARMONIA is measured in the presence of such events. It
is only that the average value of tgap would be higher in that
case from what is plotted.

Figure 11 shows that HARMONIA can synchronize the
three networks within several hundred microseconds for all
the chosen parameters. Since HARMONIA pipelines the
SYNC and SYNCD transmissions, the network-wide syn-
chronization time is kept small. Thus, a node does not have
to finish getting synchronized before it can act as a source of
synchronization messages. When there is no retransmission,
increment in the network-wide synchronization time at each
hop is due to the backoff, not the timeout. The total syn-
chronization time can be modeled as c+h×b, where c is the
constant cost due to the timeout at the BS and b is the vari-
able cost which depends on the back-off and is multiplied
by the number of hops h. We can see from the figure that
even considering retransmissions, which occur in the exper-
iments, the synchronization time increases quite slowly with
hops.

We ran some testbed experiments using Mica2 motes for
the topologies shown in Figure 9 using FTSP to see if it can
achieve our goal and also to compare FTSP with HARMO-
NIA. In FTSP, each node periodically broadcasts the syn-
chronization packet (say with a period P) containing the
MAC layer time-stamp of the instant when the packet is sent.
A node needs to receive NR (8 by default) number of such
packets to apply linear regression (to account for the clock
drift) and get synchronized with the root node. Since the net-

Table 2. Slopes of the linear relationship between net-
work synchronization time and synchronization period
observed in our experiments. Nreg is the number of re-
gression points used by FTSP.

Topology-1 Topology-2 Topology-3
Nreg=2 Nreg=8 Nreg=2 Nreg=8 Nreg=2 Nreg=8

slope 0.005442 0.011031 0.001486 0.005951 0.003056 0.005194
y-intercept 4.003156 4.639860 0.020137 0.086050 1.890372 2.296942

work synchronization time, say TN , is directly proportional
to P and NR, we reduced the values of these parameters as
much as we could to see how fast FTSP can synchronize the
network. For linear regression, NR has to be at least 2. We
found that the TinyOS timer count not fire when we reduced
P below 10 ms and therefore the minimum value for which
we have the reading is P = 10 ms.

Figure 12 shows the network synchronization time for the
three topologies as a function of NR and P. As expected,
TN decreases as NR and P are reduced. However, except for
one-hop network of topology-2, the network synchronization
time is quite large for our purpose because we need to syn-
chronize the network within 6 s when the nodes are awake.
Furthermore, these figures also show that TN increases with
the increase in the number of hops in the network. Thus
FTSP out-of-the-box would not be suitable for deployment
in SwimNet due to its performance in terms of network syn-
chronization time.

Although we do not provide the network synchronization
time for larger values of the synchronization period, note that
Figure 12 shows that it increases linearly with the synchro-
nization period. The slope of this linear relationship depends
upon various factors like network topology, link reliabilities
among the nodes, etc. Table 2 shows the slope of these lines
along with the y-intercept value using linear regression.

First off, comparison between HARMONIA and FTSP
would ideally have been done on the same platform. How-
ever, critical features of the protocols are dependent on the
features of the specific hardware. Thus, HARMONIA de-
pends on the signals from the MaxStream radio while FTSP
depends on MAC layer time-stamping available in the Mica2
radio stack. Nevertheless, we see that the network synchro-
nization time for HARMONIA is of the order of a few seconds
in FTSP and it is in the order of a few hundreds of millisec-
onds in HARMONIA. For example, with topology-1, which
most closely resembles SwimNet topology, with tgap=200
ms and equivalently, P=200 ms, FTSP is 7.4X and 9.8X
slower than HARMONIA, for number of regression points
2 and 8 respectively. The improvement of HARMONIA in-
creases with increasing values of the period. The improve-
ment is 8.7X and 12.1X for tgap=P=300 ms. Note that the
equivalence between tgap and P is not perfect. In FTSP, P de-
notes a fixed period; in HARMONIA, tgap is an expected value
and this represents the gap between SYNC and SYNCD mes-
sages and not a period.



Figure 11. Average network-wide synchronization time of HARMONIA.

Figure 12. Average network-wide synchronization time of FTSP.

5.3 Synchronization Error
First, we measure the synchronization error in HARMO-

NIA and FTSP in a single-hop network. In this, there are only
two nodes. For this, HARMONIA results in an average syn-
chronization error of 16.77µs, while FTSP results in 1.5µs as
shown in Table 3.

HARMONIA FTSP (Nreg = 8)
average 16.77µs 1.5µs

max 38µs 3µs
Table 3. One-hop synchronization error.

Thus FTSP outperforms HARMONIA in terms of synchro-
nization error. There are two primary contributory factors.
First, we do not compensate for the differential drifts in the
MCCs of two nodes. Note however that we are exposed to
this effect only during the period Tinterval . Second, we do not
account for the jitter in interrupt handling that occurs when
the MaxStream radio gives a signal on message transmis-
sion and on message reception. However, since the RTC has
a high precision oscillator (with a drift of only 2ppm), the
synchronization error achieved by HARMONIA still means
SwimNet can operate for extended periods of time between
synchronizations. A simple computation for this can be for-
mulated as follows. Consider that for a safety margin, we do
not want a parent and a child node to go out of synchroniza-
tion by more than 2 s. Right after synchronization, the two
clocks differ by 38 µs (the maximum value from our experi-

ments). Therefore, the nodes can run for (2×106 −38)/2 s
or 11.5 days before requiring another round of synchroniza-
tion. Note that for data flow in SwimNet it is important for
the parent and its children nodes to be synchronized to one
another.

How HARMONIA will work in multi-hop networks can be
seen from Figure 13, where the synchronization error at node
i is the absolute value of the synchronization error between
node i and the BS. We use the default value of tout = 200 ms.
The synchronization error decreases from node 1 to node 2.
This can be explained by the fact that the synchronization
error at node 1 has the opposite sign to the synchronization
error between node 1 and node 2. The sign of the synchro-
nization error between a pair of nodes depends on the relative
frequencies of the clocks of the two nodes and could be ei-
ther positive or negative. Thus, the synchronization error in
HARMONIA will not continously build up as the number of
hops from the BS increases. We can also see from Figure
14 that the time gap between SYNC and SYNCD does not
have a strong impact on the synchronization error. This is ex-
pected — the synchronization error will go up with Tinterval
and with message load that would cause a higher rate of in-
terrupts at a node. With a really small value of Tgap, the sec-
ond effect could be seen, but this was not observed during
the experiments.

From Figures 15 and 16, we see that the synchronization
error in FTSP is very small (the results for Topology 3 are



Figure 13. Synchronization error of HARMONIA for the
different nodes in Topology 1.

Figure 14. Synchronization errors of HARMONIA with
different values of Tgap in Topology 1.

omitted since they are similar to that of Topology 2). The er-
ror tends to increase when the synchronization messages are
sent too quickly (faster than 100 ms) except for the one-hop
network (Topology 2). However, the error is always within
the tolerable limit for SwimNet. Also as the number of re-
gression points is increased, the synchronization error de-
creases, as expected.

6 Discussion
On-demand synchronization
HARMONIA can be easily extended to handle on-demand
synchronization in which a node requests its parent for initi-
ating synchronization. It sends a SYNC REQ packet which
causes the parent to send the SYNC packet thereby initiat-
ing the first phase of the two phase protocol. The child will

Figure 15. Synchronization error of FTSP in Topology 1.

Figure 16. Synchronization error of FTSP in Topology 2.

send the request if it has not been synchronized for greater
than some multiple of the duration of a round. This thresh-
old time is such that if the node does not get synchronized
then complete asynchrony may result, meaning the node’s Ta
wake period completely misses the wake period of a neigh-
bor. With the on-demand synchronization, the node initiating
the request and the sub-tree rooted at that node will be syn-
chronized. This function would be important when a node or
a link recovers from a failure and the synchronization pro-
cess had occurred during the failure duration.
Issues with MAC-layer time-stamping
MAC-layer time-stamping is quite widely used in synchro-
nization protocols, e.g., TPSN and FTSP. In SwimNet’s
Chasqui node, MAC-layer time-stamping was not possible
due to the proprietary closed-source nature of the MAC pro-
tocol. However, even if it had been possible, there are some
cautions to using the technique. On the receiving side, as
soon as a (synchronization) packet comes in, it is time-
stamped at the MAC layer and put in a queue. A queue is re-
quired since for fast radios, more than one packet may come
in before being consumed by the synchronization protocol.
However, the packet itself may be discarded by the receiver
if it fails the CRC check. Then, in the absence of identify-
ing information attached to the time-stamp, the receiver has
no way of discarding the timestamp that corresponds to the
discarded packet. This issue was hinted at in [15] and in
subsequent postings on the TinyOS help forum [14].
Synchronization in sparse (almost) linear networks
The SwimNet is almost linear in most parts when we con-
sider the Rnodes as the network nodes. This means that
HARMONIA can have a low back-off time since a parent has
one or only a few children nodes. However, in our experi-
ments, we have the Chasqui nodes placed on a table close
by to each other and use software topology control. How-
ever, this increases the likelihood of collisions. Addition-
ally, MaxStream radio typically sends larger-sized packets
than the Chipcon radios making the packets more suscepti-
ble to collisions. The maximum packet size in MaxStream is
2048 Bytes while in CC2420 it is 128 Bytes. Therefore, in
actual deployment, we expect that HARMONIA will have a
lower synchronization time since it will incur smaller back-
off times.
Reliance on topology
HARMONIA relies on some other middleware service (like



the stateless gradient-based routing in the case of Swim-
Net) to get the knowledge about the tree structure used for
communication. FTSP does not require this knowledge. Al-
though at first glance this may seem as a drawback of HAR-
MONIA, we believe this prerequisite about the knowledge of
the topological structure is essential to tradeoff generality
for synchronization speed. It is because of this knowledge
of the topological structure that a node n1 can quickly start
synchronizing its children after receiving the synchroniza-
tion packet from its parent. It just needs to backoff a short
random time depending upon the number of nodes present at
the same depth of the tree as n1 to prevent collision. With-
out such knowledge, after a node receives a synchronization
packet, it has to conservatively estimate the backoff time or
wait for a timer with a sufficiently long interval to fire (as
in FTSP) before starting to broadcast its own synchroniza-
tion packet. Although HARMONIA relies on the knowledge
of the tree structure, it works with any such structure as long
as it gets this information from some other middleware ap-
plication. During the network operation, if the tree structure
is changed due to node/link failure, HARMONIA will work
with the new topology by adjusting the backoff period of a
node.
Handling permanent failures
If the external service that creates the topology is run rela-
tively infrequently and a node fails permanently or for a long
time, the subtree rooted at the failed node may lose syn-
chrony. However, HARMONIA can be adjusted such that a
node does not need to wait for the topology service to recon-
struct the tree if its parent has a permanent failure or a failure
that persists for a long time. In such a situation, the children
of the failed node can select a new parent by broadcasting
the ReqToChangeParent packet containing the information
about the depth of this node in the tree. Since many nodes
at different depths of the tree can receive this request, they
may concurrently try to be the parent of the requesting node.
To avoid this, each node replies to this request if its depth is
smaller than that of the requesting node (i.e. if it is higher up
in the tree than the requesting node) after a random interval
proportional to the difference between its depth and that of
the requesting node. This causes the nodes which are in the
closest tier above the requesting node in the tree to respond
to the request first and become the parent. If another node
overhears this response, it will suppress its response. This
will allow the sub-tree to be synchronized before the topol-
ogy has been repaired.

7 Related Work
Clock synchronization has long been a subject of study

in the wireline universe. NTP and GPS-based receivers are
popularly used for synchronization. However, there are sig-
nificant challenges in applying them to wireless sensor net-
works, such as high power consumption, accuracy of only
milliseconds, and unavailability of synchronization signals
indoors. We also need to consider that the hardware clocks
on the individual nodes may experience significant drifts.
This happens chiefly due to manufacturing variations in the
different crystals, the temperature fluctuations the nodes (and
consequently the crystals) are exposed to, and aging of the

crystals. Tight budget concerns in the design of the sensor
nodes rule out the use of the highly accurate oven controlled
crystal oscillator (OCXO) or high-end temperature compen-
sated crystal oscillator (TCXO). Also, the multi-hop nature
of the sensor network precludes the use of client-server so-
lutions, which most of the solutions from the wireline world
fall in.

Therefore, there has been active research in time syn-
chronization in the sensor network community. We refer
the reader to [12] for a good coverage of the early work
in this field and here we focus on the more recent work.
At the high level, HARMONIA is motivated by the unmet
need for synchronizing networks that are sleep-wake enabled
and that have low duty cycle. The real-world constraints
of the Chasqui node introduce the additional challenge for
HARMONIA to synchronize a low resolution real time clock.
These challenges are orthogonal to those addressed by the
existing work that we survey here.

The Timing-sync Protocol for Sensor Networks (TPSN)
[2] aims to provide network-wide time synchronization. The
TPSN algorithm elects a root node and builds a spanning tree
of the network during an initial discovery phase. The syn-
chronization phase proceeds in rounds with the children node
in the tree being synchronized to their parents through a two-
way message handshake in each round. Each node embeds
its local clock’s readings in the two-way message handshake
and through it the child node can calculate the propagation
delay and its clock offset relative to its parent’s. TPSN in-
troduced the idea of MAC-layer time-stamping. However,
TPSN does not compensate for clock drifts which makes
frequent resynchronization necessary. In addition, TPSN re-
quires the two-way handshake to complete between a parent-
child pair before the synchronization can propagate further in
the network.

The Flooding Time Synchronization Protocol (FTSP) [5]
has already covered it in some detail in Section 3.

The Reachback Firefly Algorithm (RFA) for clock syn-
chronization [16] is inspired by the way neurons and fire-
flies spontaneously synchronize. Each node periodically
generates a pulse (message) and observes pulses from other
nodes to adjust its own firing phase. RFA only provides
synchronicity—nodes agree on the firing phases but do not
have a common notion of time. RFA is likely to take a long
time to get all the nodes to be firing synchronously and there-
fore will likely not be suitable for our application.

In [9], the authors propose a way to estimate the drifts
in the clocks of two nodes caused by the environment-
dependent variations. The authors introduce the notion of
a software compensated crystal oscillator (SCXO). In an
SCXO, the differential drift between the crystals of two
nearby nodes is used to estimate the drift in the crystal of
one of the nodes. The solution comprises of a one time cali-
bration phase and a runtime measurement and compensation
phase. SCXO achieves mean effective clock stability of 1.6
ppm over a temperature range of -40◦C to 75◦C. This would
allow us to increase the period between synchronizations of
SwimNet. The authors provide a practical implementation of
the SCXO work in [10] and describe a Crystal Compensated
Crystal based Timer (XCXT), a new way of compensating



a pair of crystals which achieves a 1.2ppm precision over a
temperature range of -10 to 60◦C while using only 1.27mW.
The solution relies on a node having two crystal inputs and
two timer units (TMote Sky is their demonstration platform).
To improve the power consumption the authors describe two
approaches. The first is to simply duty cycle one of the crys-
tals. The second approach is to use two crystals, one fast
and the other slow. The fast crystal (8 MHz crystal of the
MSP430 microcontroller in their demonstration) is used if
fine granularity time is needed. The second slower crystal
(32 kHz in their demonstration) is used while the system
is in sleep. Both crystals compensate for each other’s drift
and together form a highly stable timer unit. This last hard-
ware design feature, in a context quite different from that of
the Chasqui nodes, shares a similarity with the Chasqui de-
sign of two clocks. However, this is used by the authors for
achieving power savings.

A recent development in the field is gradient based clock
synchronization [13]. In this the authors present the design to
minimize the clock offset between neighboring nodes. The
motivation is that other time synchronization protocols syn-
chronize clocks based on some topology, whether assumed
or created as part of the synchronization protocol. Two ge-
ographically nearby nodes may be distant in this topology.
Therefore, existing protocols, while trying to ensure a small
synchronization error globally in the network, may cause the
synchronization error in a local neighborhood to be appre-
ciable. Therefore, the authors design the protocol to have
very low synchronization error in local neighborhoods. The
gradient property of a clock synchronization algorithm re-
quires that the synchronization error between any two nodes
is bounded by the distance (uncertainty in the message de-
lay) between the two nodes. For example, Lenzen et al. [3]
proposed a distributed clock synchronization algorithm guar-
anteeing clock skew O(logD) between neighboring nodes
while the global skew between any two nodes is bounded by
O(D). In GTSP, the nodes periodically broadcast synchro-
nization beacons to their neighbors. Using a simple update
algorithm, they try to converge to a common logical clock
value and a common logical clock rate with their neighbors.

8 Conclusions
We have presented a synchronization protocol called

HARMONIA targeted to low duty cycle multi-hop wireless
networks. The requirements for the synchronization proto-
col come from a wastewater monitoring and actuation appli-
cation called SwimNet, deployed city-wide in a mid- sized
city. The nodes in SwimNet use an external clock called the
Real Time Clock (RTC) which has a low drift, but a coarse
1 second resolution. The RTC is used for driving the sleep-
wake periods on the nodes. The radio used on the nodes
does not allow MAC layer time-stamping, a technique com-
monly used in synchronization protocols. The innovation
in HARMONIA is to use a finely granular microcontroller
clock with a relatively high drift to achieve synchronization
of the RTC, such that the synchronization error is in the mi-
crosecond range despite the coarse granularity of the RTC.
HARMONIA pipelines the synchronization packets enabling
the entire network to be synchronized within an awake pe-

riod. Also, failure handling for transient node and link fail-
ures is excuted locally, not overburdening the network with
synchronization-related messages. Experiment results show
that HARMONIA’s synchronization error is higher than that
of FTSP, but is still acceptable for SwimNet, being in the
range of tens of microseconds. However, HARMONIA is sig-
nificantly faster than FTSP with respect to the network syn-
chronization time making it a good fit for low duty cycle
networks.

In ongoing work, we are deploying and measuring the
performance of HARMONIA in the real deployment. We ex-
pect to find interesting insights by subjecting our protocol to
the different interference and collision environment. On the
design side, we are laying out the failure handling function-
ality of HARMONIA for long-lasting failures. We are also
looking to incorporate techniques to compensate for the dif-
ference in drifts without sacrificing the speed of HARMONIA.
9 References

[1] Digi International Inc. 9xtend oem rf module.
http://www.digi.com/products/wireless/long-range-multipoint/xtend-
module.jsp, Retrieved: 4/8/2009.

[2] S. Ganeriwal, R. Kumar, and M. Srivastava. Timing-sync protocol for
sensor networks. In Proc. of 1st intl. conf. on Embedded networked
sensor systems, pages 138–149, 2003.

[3] C. Lenzen, T. Locher, and R. Wattenhofer. Clock Synchronization
with Bounded Global and Local Skew. In Proc. 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2008.

[4] M. Lukac, P. Davis, R. Clayton, and D. Estrin. Recovering Tempo-
ral Integrity with Data Driven Time Synchronization. In Information
Processing in Sensor Networks, 2009. IPSN’0.9 Intl. Conf. on (To Ap-
pear), pages 1–13, 2009.

[5] M. Maroti, B. Kusy, G. Simon, and Á. Lédeczi. The flooding time
synchronization protocol. In Proceedings of the 2nd intl. conf. on
Embedded networked sensor systems, pages 39–49, 2004.

[6] Maxim Inc. Ds3231 extremely accurate i2c-integrated rtc/tcxo/crystal.
http://www.maxim-ic.com/quick view2.cfm/qv pk/4627, Retrieved:
4/8/2009.

[7] L. Montestruque and M. Lemmon. Csonet: a metropolitan scale wire-
less sensor-actuator network. In MODUS ’08: International Workshop
on Mobile Device and Urban Sensing, 2008.

[8] J. Sallai, B. Kusy, A. Ledeczi, and P. Dutta. On the scalability of
routing integrated time synchronization. Lecture Notes in Computer
Science, 3868:115, 2006.

[9] T. Schmid, Z. Charbiwala, J. Friedman, Y. H. Cho, and M. B.
Srivastava. Exploiting manufacturing variations for compensating
environment-induced clock drift in time synchronization. SIGMET-
RICS Perform. Eval. Rev., 36(1):97–108, 2008.

[10] T. Schmid, J. Friedman, Z. Charbiwala, Y. H. Cho, and M. B. Sri-
vastava. Low-power high-accuracy timing systems for efficient duty
cycling. In ISLPED ’08: Proceeding of the thirteenth intl. symposium
on Low power electronics and design, pages 75–80, 2008.

[11] M. Schütze, A. Campisano, H. Colas, W. Schilling, and P. Vanrol-
leghem. Real time control of urban wastewater systemswhere do we
stand today? Journal of Hydrology, 299(3-4):335–348, 2004.

[12] F. Sivrikaya and B. Yener. Time synchronization in sensor networks:
A survey. IEEE network, 18(4):45–50, 2004.

[13] P. Sommer and R. Wattenhofer. Gradient Clock Synchronization in
Wireless Sensor Networks. In Information Processing in Sensor Net-
works, 2009. IPSN’09. Intl. Conf. on (To Appear), pages 1–12, 2009.

[14] Tinyos-help. Ftsp on tmotes. http://www.mail-archive.com/tinyos-
help@millennium.berkeley.edu/msg07079.html, Retrieved: 4/8/2009.

[15] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fi-
delity and yield in a volcano monitoring sensor network. 7th Sympo-
sium on Operating Systems Design and Implementation (OSDI ’06),
pages 381–396, 2006.

[16] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal.
Firefly-inspired sensor network synchronicity with realistic radio ef-
fects. In Proceedings of the 3rd intl. conf. on Embedded networked
sensor systems, pages 142–153, 2005.


