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Abstract— Wireless reprogramming of a sensor network is 

useful for uploading new code or for changing the functionality of 
existing code. Through the process, a node should remain 
receptive to future code updates because reprogramming may be 
done multiple times during the node’s lifetime. Existing 
reprogramming protocols, such as Deluge, achieve this by 
bundling the reprogramming protocol and the application as one 
program image, thereby increasing the overall size of the image 
which is transferred through the network. This increases both 
time and energy required for network reprogramming. We 
present a protocol called Stream that mitigates the problem by 
significantly reducing the size of the program image. Using the 
facility of having multiple code images on a node and switching 
between them, Stream pre-installs the reprogramming protocol as 
one image and the application program equipped with the ability 
to listen to new code updates as the second image. For a sample 
application, Stream reduces the size of the program image by 10 
pages (48 packets/page) compared to Deluge. Stream is 
implemented on the Mica2 sensor nodes and we conduct testbed 
and simulation experiments to show the reduction in energy and 
reprogramming time of Stream compared to Deluge. 
Index Terms— Network reprogramming, sensor networks, 
Deluge, three way handshake, mica2 motes. 

I. INTRODUCTION 
ARGE scale sensor networks may be deployed for long 
periods of time during which the requirements from the 
network or the environment in which the nodes are 

deployed may change. The change may necessitate uploading a 
new code or retasking the existing code with different sets of 
parameters. We will use the term code upload for referring to 
both. A primary requirement is that the reprogramming be done 
while the nodes are embedded in their sensing environment. 
This has spurred interest in remote multihop reprogramming 
protocols over the wireless link. For such reprogramming, it is 
essential that the code update be 100% reliable and reach all 
the nodes that it is destined for. It is important to minimize the 
resource cost of the reprogramming – energy spent in 
disseminating the code through the network and size of the 
memory used on each node. The code upload should also be 
fast since the network’s functionality is likely degraded, if not 
reduced to zero, during the reprogramming period.  

While the cost of transmitting code is high, the cost of 
periodically transmitting meta-data about the code, to 
determine if an updated code is available, can also be high. It is 
conceivable that the process of code upload will be infrequent 
for many deployments and therefore it may appear that its 
resource consumption need not be optimized. However, 
consider that the sensor network environment has inherent 
unreliability in the wireless links that may have transient 
failures. Thus the environment is dynamic with nodes coming 

in and out of periods of disconnectedness. Also, the network 
may have nodes added after the initial deployment while new 
code may be injected at arbitrary points in time. Since in most 
deployments, the sensor network is expected to operate over 
extended periods of time, it is possible that the parameters for 
the application, such as the monitoring period, change thereby 
necessitating retasking. The code dissemination therefore 
cannot be considered a one shot process and thus, it becomes 
important to minimize the resource consumption used in 
network reprogramming. Importantly, the resource cost which 
is incurred during the quiescent or steady state of the network1, 
due to keeping the code up-to-date must be optimized since 
that is the dominant phase in the network lifetime.  

A few researchers have proposed protocols for 
reprogramming in sensor networks, the state-of-the-art being 
defined by three protocols – Deluge [1], MNP [7], and Freshet 
[8]. Common to the three protocols is the notion of transferring 
the code image in chunks of pages on a hop-by-hop basis. Each 
node disseminates code to its immediate neighbor through a 
three-way handshake of advertisement, request, and actual 
code transfer. MNP and Freshet build on Deluge and optimize 
the transfer for energy consumption respectively through 
judicious sender selection for dense networks and sleep-awake 
protocols for large networks. The critical problem that besets 
all three protocols is what is transferred. Common intuition 
would be to transfer just what is needed, in other words, the 
application image (or the image of the updates to the 
application). However, each protocol transfers the image of the 
entire reprogramming protocol together with the minimally 
necessary part. Since the reprogramming protocols are of 
considerable complexity, the inflation in the program image 
size2 that gets transferred over the wireless medium increases 
greatly. The exact amount of increase is application specific – 
for a simple stand-alone application of 1 page, the increase is 
20 folds, while for a communicating application of the same 
size, the increase is 11 folds. In a stable environment, the 
increase would be problematic. In a sensor network 
environment, this poses an even bigger problem. First, the 
network links are prone to transient failures and yet, the code 
upload process needs to be 100% reliable. Second, the 
networks are envisaged to be large and the cost of larger image 
is incurred at every hop and does not get amortized. Third, it 
puts pressure on multiple scarce resources of a node – 

––– 
1 Quiescent does not mean the node is idle. It means there is no activity related 
to code upload, but the node is running its application and doing its normal 
activity, such as monitoring.  
2 We use the term application image to refer to the user application that needs 
to run on the node, reprogramming protocol image to refer to the components 
for protocols, such as Deluge, MNP, or Freshet, and program image to the 
combined image that gets transferred over the wireless medium.  
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communication bandwidth, battery energy, and program Flash 
memory.  

Our approach is optimizing what needs to be transferred over 
the wireless medium and gives rise to our protocol called 
Stream. Stream transfers close to the minimally required image 
size by segmenting the program image into an application 
image and the reprogramming protocol image. It transfers over 
the wireless link the application image with minimal addition 
(typically 1 page). It pre-installs in each node, before 
deployment, the reprogramming protocol image. Stream 
utilizes the ability to segment the Flash memory into multiple 
images and stores the two in two different image areas. An 
application is modified by linking it to a small component 
called StreamApplicationSupport (Stream-AS) while 
StreamReprogrammingSupport (Stream-RS) is pre-installed in 
each node. Stream-AS is generic and can be inserted in any 
TinyOS application through the insertion of just two lines of 
code. Stream-RS builds on Deluge and uses its three-way 
handshake for hop-by-hop code dissemination. Overall, 
Stream’s design principle is to limit the size of Stream-AS and 
providing it the facility to switch to Stream-RS when triggered 
by a code update related message. The advantage afforded by 
Stream is demonstrated over Deluge, though it can apply to any 
of the three protocols, since the problem of code bloat is shared 
by each.  

A large part of the sensor node’s lifetime is spent in the 
quiescent state or steady-state, when it is not actively 
disseminating code. Hence, the energy expenditure due to 
exchanging control information during the steady-state is of 
significance. Stream optimizes the steady-state energy 
expenditure by switching from a push-based mechanism 
(where the node periodically sends advertisements) to a pull-
based mechanism where a newly inserted node requests for the 
code. 

There are several challenges to implementing the basic idea 
of Stream in the Mica mote platform, the sensor node platform 
of choice today. First, the node that has been updated with the 
recent code needs to remain receptive to future code updates. 
Thus, it cannot be running just the application. The mote 
platform does not support multi-tasking and therefore the two 
programs (reprogramming protocol and application) cannot be 
executing concurrently. A design option we explored was to 
pre-install the reprogramming protocol components in the node 
and dynamically link it to the application to create a single 
executable image once the application is uploaded. However, 
the mote platform does not provide a linking facility on the 
node itself. Interestingly, these constraints are also found in 
other common sensor node platforms, such as Sensoria’s 
WINS and JPL’s sensor node. Second, it is unreasonable to 
assume that the code update will always occur according to a 
preset schedule in which case the node could have queried the 
base station for it. Third, Stream has to consider the possibility 
that new nodes may be introduced into the network and may 
query a given node for coming up-to-date with the latest 
version of the code. Thus a node cannot be content to handle 
just its own need for staying up-to-date. 

The benefit of Stream shows up in fewer number of bytes 
transferred over the wireless medium leading to increased 
energy savings and reduced delay for reprogramming. We 

demonstrate these claims by implementing Stream in nesC for 
the Mica2 mote platform. We conduct experiments with 
Deluge and Stream on a real small-sized testbed (of up to 16 
nodes) in linear and grid topologies. The output metrics we 
measure are number of bytes transferred (which relates to the 
energy spent) and the delay. We see that Stream achieves 63% 
to 98% reduction in reprogramming time and 75% to 132% 
reduction in the number of bytes transferred for the grid 
topologies. To evaluate Stream for larger networks, we use the 
TOSSIM simulation environment. We present a mathematical 
analysis to evaluate the performance of Stream and compare it 
to the ideal case when exactly the application image is 
transferred. The rest of the paper is organized as follows. 
Section II surveys related work. Section III provides the 
detailed design. Section IV presents the mathematical analysis. 
Section V explains the testbed and the simulation setups and 
results. Section VI concludes the paper. 

II. RELATED WORK 
Reliable multicast in unreliable environments, such as ad-hoc 

networks, can be achieved by epidemic multicast protocols 
based on each node gossiping the message it received to a 
subset of neighbors [1]. This class of protocols gives 
probabilistic guarantee for the update to reach all the group 
members. The probability is monotonically increasing with the 
fanout of each node (the number of neighbors to gossip to) and 
the quiescence threshold (the time after which a node will stop 
gossiping to its neighbors). By increasing the quiescence 
threshold, the reliability can be made to approach 1, which is 
the basic premise behind all the epidemic based code update 
protocols in sensor networks – Deluge, MNP, and Freshet.  

The push-pull method for data dissemination through the 
three way handshake of advertisement-request-code has been 
used previously in sensor networks with sensed data taking the 
place of code. Protocols such as SPIN [2]  and SPMS [3] rely 
on the advertisement and the request packets being much 
smaller than the data packets and the redundancy in the 
network deployments which make several nodes disinterested 
in any given advertisement. However, in the data dissemination 
protocols, there is only suppression of the requests and the data 
sizes are much smaller than the entire binary code images.  

The earliest network reprogramming protocol XNP [4] only 
operated over a single hop and did not provide incremental 
updates of the code image. The Multihop Over the Air 
Programming (MOAP) protocol extended this to operate over 
multiple hops [5]. It introduced several concepts which are 
used by later protocols, namely, local recovery using unicast 
NACKs and broadcast of the code, and sliding window based 
protocol for receiving parts of the code image. However, it did 
not leverage the pipelining effect with segments of the code 
image.  

The three protocols that are substantially more sophisticated 
than the rest and define the state-of-the-art today are Deluge, 
MNP, and Freshet. All use the three way handshake for locally 
propagating the code. Deluge [6] was the earliest and laid 
down some design principles used by the other two. It uses a 
monotonically increasing version number, segments the binary 
code image into pages, and pipelines the different pages across 
the network. It builds on top of Trickle [14], a protocol for a 
node to determine when to propagate code in a one hop case. 
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The code distribution functions through a three-way handshake 
protocol of advertisement, request, and broadcast code. The 
operation of each node is periodic according to a fixed size 
time window. The first part of the window is for listening to 
advertisements and requests and sending advertisements. The 
second part of the window is for transmitting or receiving code 
corresponding to the received requests. Within the first part of 
the time window, a node randomly selects a time at which to 
send an advertisement with meta-data containing the version 
number, the number of complete pages it has, and the total 
number of pages in the image of this version. When the time to 
transmit the advertisement comes, the node sees whether it has 
heard sa advertisements with identical meta-data, and if so, it 
suppresses the advertisement. When a node hears code that is 
newer than its own, it sends a request for that code and the 
lowest number page it needs, to the node that advertised the 
new code. In the second part of the periodic window, the node 
transmits packets with the code image, corresponding to the 
pages for which it received requests. A receiving node only 
fills its pages in monotonically increasing order thereby 
eliminating the need for maintaining large state for missing 
holes in the code. For receiving the code, each node uses the 
shared broadcast medium that allows overhearing and can fill 
in a page requested by a neighbor. 

The design goal of MNP [7] is to choose a local source of the 
code which can satisfy the maximum number of nodes. They 
provide energy savings by turning off the radio of non-sender 
nodes. Freshet [8] aggressively optimizes the energy 
consumption for reprogramming. During the initial phase in 
Freshet, information about the code and topology (primarily 
the number of hops a node is away from the wave front where 
the code is at) propagates through the network rapidly. Using 
the topology information each node estimates when the code 
will arrive in its vicinity. Each node can go to sleep till that 
time thereby saving energy. Freshet also optimizes the energy 
consumption by exponentially reducing the meta-data rate 
during the quiescent phase.  

III. STREAM DESIGN 

A. Design Approach 
Stream optimizes the number of bytes that needs to be 

disseminated over the wireless medium so that instead of 
transferring the entire reprogramming component along with 
the new application, only a small subset of reprogramming 
functionality is included in the program image. For the actual 
reprogramming protocol, Stream builds on the three-way 
handshake based code distribution seen in existing protocols. 
The idea is to have all nodes in the network be pre-installed 
with the Stream-RS (Figure 1) component that includes the 
complete functionality for network reprogramming. Stream-RS 
is installed as image 0. The application image augmented with 
the Stream-AS component that provides minimal support for 
network reprogramming is installed as image 1. Henceforth, 
image 0 means Stream-RS and image 1 means Stream-AS plus 
application image. The addition to the size of the program 
image over the application image size with Stream is 
significantly less than in the Deluge case. When a new program 
image is to be injected into the network, all the nodes in the 
network running image 1 reboot from image 0 and the new 
image is injected into the network using Stream-RS. The new 

image again includes Stream-AS and we avoid the entire 
Deluge component from being transferred to all the nodes each 
time the network needs to be reprogrammed. This modification 
is that instead of adding the Deluge component, she adds a 
much smaller Stream-AS component to her application. Both 
are localized two-line changes to the application code. 

Base nodeBase node Circles are sensors 
nodes

Code images in nodes
Image0: Stream-RS
Image1:Stream-AS+ 
user application

 
Figure 1: Images in Stream 

The saving in terms of the number of pages transferred is 
quite significant. The exact figure depends on the application. 
Any application that uses radio communication will need to 
add about 11 more pages if Deluge is used while Stream-AS 
adds only one more page. We stress that this benefit is 
demonstrated here for Deluge, but applies equally to all the 
current network reprogramming protocols since each transfers 
the entire protocol image along with the application image. 
B. Protocol Description 

Consider that initially all nodes have Stream-RS as image 0 
and the application with Stream-AS as image 1. Each node is 
executing the image 1 code. The node that initiates the 
reprogramming is attached to a computer through the serial 
port and is called the base node.  

Following is the description of how Stream works when a 
new user application, again with the Stream-AS component 
added to it, has to be injected into the network. 
1. In response to the reboot command from the user, all 

nodes in the network reboot from image 0. This is 
accomplished as follows: 
a. The base node executing image 1 initiates the process 

by generating a command to reboot from image 0. It 
broadcasts the reboot command to its one hop 
neighbors and itself reboots from image 0. 

b. When a node running the user application receives the 
reboot command, it rebroadcasts the reboot command 
and itself reboots from image 0. 

2. Once the reboot command reaches all nodes, all nodes 
start running Stream-RS. Then the new user application is 
injected into the network using Stream-RS.  

3. Stream-RS starts to reprogram the entire network. It does 
so by using the three way handshake method where each 
node broadcasts the advertisement about the code pages 
that it has. When a node hears the advertisement of newer 
code than it currently has, it sends a request to the 
advertising node. Then the advertising node broadcasts the 
requested code pages. Each node maintains a set S 
containing the node ids of the nodes from which it has 
received the requests for code. 

4. Once the node downloads the new code completely, it 
performs a single-hop broadcast of an ACK indicating it 
has completed downloading. 

5. When a node α receives the ACK from a node β, it 
removes the id of β from its set S. 

6. When the set S is empty and all the images are complete 
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(that is all pages of all images have been downloaded), the 
node reboots from image 1. So, after sometime the entire 
network is reprogrammed and all nodes are executing 
image 1 (Stream-AS) which has the user application. 

Handling incremental node deployments. Let a node n1 
having an older version of application as image 1 and running 
Stream-RS join the network. Node n1 advertises the code it has, 
using Stream-RS. When neighbors of node n1 running image 1 
hear the advertisement, they reboot from their image 0. Now 
using steps 2 through 6, the new node downloads the new 
application from the neighbors. 
C. Design of Stream-AS 

The main goal of Stream is to add small amount of 
reprogramming functionality to the user application instead of 
adding the entire reprogramming protocol (as in Deluge) so 
that the program image that is transferred over the wireless 
medium across the network is as small as possible. This is 
achieved by attaching the Stream-AS component to the user 
application. Stream-AS should be such that the increase in the 
size when it is attached to the user application is minimum and 
at the same time, the node should be receptive to code updates 
in the future.  

Stream-AS provides the functionality to reboot from image 0 
when the user gives the reboot command. This reboot 
command is disseminated through the network according to 
steps 1 and 2 in the Section Protocol Description. The flooding 
technique used to reboot all the nodes in the network does not 
cause congestion because each node broadcasts the reboot 
command only once and reboots from Stream-RS immediately 
after. Stream-AS also provides functionality to reboot from 
image 0 when new nodes are introduced to the network. When 
new nodes join the network, they periodically broadcast the 
advertisement.  After one-hop neighbors of these new nodes 
hear the advertisement, they reboot from image 0. Once a node 
reboots from image 0, Stream-RS takes care of disseminating 
the new application image.  

As mentioned above, Stream-AS requires minimal change in 
the user application. In TinyOS, following is the nesC code 
required to be added when Deluge is attached to the user 
application: 
Components DelugeC; 
Main.StdControl→DelugeC; 
 To attach the user application to Stream-AS instead, replace 

DelugeC by StreamASC.  

Steady-state behavior 
In Deluge, once a node’s reprogramming is over, it keeps on 

advertising the code image that it has. This is to ensure that the 
new nodes joining the network get the latest version of the 
application image.  As a result, radio resources are 
continuously used by Deluge even in the steady state. 
However, in Stream, in the steady-state, each node is running 
Stream-AS, which does not proactively advertise the code 
image that it has. However, both new nodes joining the 
network and new code pushed in by the base station are 
handled. The nodes running user application plus Stream-AS in 
the steady state receive the advertisement from the new nodes, 
reboot from Stream-RS, and send the updated application to 
the new nodes. When the base station has to push an updated 
application image, the nodes running user application plus 

Stream-AS get the reboot command from the base node, reboot 
from Stream-RS, and download the new application. The 
steady-state advertisements in Deluge mean that the user 
application has to share the node’s radio resources with Deluge 
while this is not the case when Stream is used. Also, the 
steady-state RAM usage is much less for Stream than for 
Deluge because of the smaller size of the user application plus 
Stream-AS compared to user application plus Deluge. 

.  

Source node Destination node 

Advertisement 

Request 

Data 

 
Figure 2: Three-way handshake for data dissemination 

D. Design of Stream-RS 
Stream-RS, preinstalled in all nodes as image 0 and executed 

during the reprogramming phase, is responsible for actual 
image transfer among the nodes in the network. It is based on 
Deluge with the significant changes mentioned below. When 
new application image is to be injected into the network, all 
nodes reboot from Stream-RS. Then, reprogramming is done 
by using a three-way handshake (Figure 2) in which each node 
broadcasts the advertisement about the code pages that it 
currently has. A node, upon hearing the advertisement of 
newer code than it currently has, sends a request to the 
advertising node. The advertising node then broadcasts the 
requested code pages. Deluge optimizes this reprogramming 
method by proper choice of the time when advertisements and 
code pages are sent.  

 
Changes from Deluge 

Once reprogramming is done we want all the nodes to reboot 
from the new application automatically. One obvious approach 
would be to reboot each node from the user application after it 
completes downloading the new application. But the flaw with 
this approach is that even though a node has completed 
downloading the new application, other nodes may still be 
dependant on it for getting the updated code image. Therefore 
the node needs to continue to run Stream-RS. To handle this, 
when a node receives a request for code, it puts the node-id of 
the requesting node in the set S. When a node completes 
downloading the new application image, it broadcasts an ACK. 
When a node receives an ACK from its neighbor, it removes 
the id of that node from the set S. So, the following invariant is 
maintained at all times for the set S of a node A: 

. { | ( , ) ( , ) }A S x REQ x A true ACK x A false= = ∧ =  
This ensures that the set S at a node A consists of the ids of 

those nodes to which it is currently sending code fragments. 
The condition for a node A to reboot from image 1 is as 
follows: 

. .#A S A pages Total number of pagesφ= ∧ =  
The first condition is that no neighbor is waiting on A to send 

it updated code and the second condition is that A itself has 
downloaded all the pages of the application. Eventually all 
nodes in the network download all the pages of the new 
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application and reboot from image 1. So in the steady state all 
the nodes run the application attached with Stream-AS. 

There is a subtle drawback to the synchronization in Stream-
RS. A node A may be serving a node B without B having 
explicitly sent a request to A. Thus B would never be included 
in A’s set S. Let a node n1 hears the advertisement of newer 
data than it currently has from node n2 during the 
reprogramming phase. Before n1 sends request for the new 
data, some other one-hop neighbor of n2, say n3, may send the 
request. In response to the request from node n3, n2 broadcasts 
the code. So, n1 may never send the request to n2 but keep on 
receiving the code from n2, triggered by the request from n3. If 
all the nodes that explicitly request data from the advertising 
node n2 complete downloading the new application earlier than 
n1, node n2 will reboot from the new application. This leaves n1 
in the middle of downloading the new application. This 
drawback, however, does not pose a correctness problem, but a 
performance problem. This is because after the advertising 
node n2 has rebooted from the user application, it still can hear 
the advertisement sent by n1. Upon hearing the advertisement, 
n2 will reboot from Stream-RS and start sending code to n1 
through the three-way handshake. 

These changes in Deluge ensure that all nodes reboot from 
the user application after reprogramming is done. In Deluge, in 
contrast to the automatic operation in Stream, once all nodes 
complete downloading the new user application, they reboot 
from the new application only after the user gives the reboot 
command manually from the base node.  

IV. STREAM ANALYSIS 

A. Energy Cost 
Here we analyze the energy cost of uploading applications 

using three different protocols: Deluge, Stream and an ideal 
protocol in which only the application needs to be uploaded 
without any extra overhead. Let the application consist of Np 
pages, each page has Npkt packets and each packet has Nb bytes. 
Let C be the energy cost of transmitting and receiving a packet 
once and Ps be the probability of successful transmission of a 
packet over a single hop. Assuming that retransmissions of a 
packet are independent, the probability that the number of 
retransmissions (Nret ) of a packet equals k is given by 

1( ) (1 )k
ret s sP N k P P −= = −  (1) 

The expected number of retransmissions K = E[Nret] is 

( )1

1

1
[ ] (1 )

k
k

ret s s
k s

K E N k P P
P

=∞
−

=

� �= = ⋅ − =� ��
 (2) 

The energy cost of a node at h hop from the source to 
completely download the application is given by 

p pkt
h p pkt

s

h N N C
E K h N N C

P

⋅ ⋅ ⋅
= ⋅ ⋅ ⋅ ⋅ =

 (3) 
The total energy overhead of uploading the application on all 

the nodes in a network in which each node is at most hmax hops 
from the source is given by 

max max

1 1

h h h h
p pkt

Nh h Nh
h h s

h N N C
E N E N

P

= =

= =

⋅ ⋅ ⋅� �
= ⋅ = ⋅� �

� �
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 (4) 
where NNh is the number of nodes at hop h. NNh depends on 
network topology and density d. For a line topology, NNh = 1. 
For a uniformly distributed network on a disk with 

communication radius r, NNh = πdr2(2h-1). For nxn grid, NNh = 
h+1 when 1≤ h ≤ (n-1) or NNh = 2n-h-1 when n≤ h ≤(2n). For 
10x10 grid, we calculate total energy E expended for (a) 
standalone application (one that does not perform radio   
communication) and (b) application that uses GenericComm 
component (provided by TinyOS) for communication. The 
application size is taken to be 1, 10, or 100 pages. In case (a), 
the increases in the size of the program image (in units of a 
page) are 10 and 20, respectively, for Stream and Deluge. In 
case (b), these increases are 1 and 11, respectively, for Stream 
and Deluge. We use fixed energy cost as 50 nJ/bit, Ps = 0.98, 
the variable (distance dependent) energy cost is 100 pJ/bit × r2, 
for a transmission distance of r, the receiving energy is equal to 
the fixed energy cost. Figure 3 shows the significant difference 
in energy expended between Stream and Deluge. Figure 4 
reaffirms that for communicating applications, energy costs of 
Stream and the ideal case are comparable.  
B. Convergence Time 

In this section, we analyze the convergence time, i.e., the 
time to reprogram the entire network. Let Pk = P(Nr = k) be the 
probability that a whole page has been successfully sent in the 
kth round, where Nr is the number of rounds. The probability 
that a given packet fails to be sent within k rounds is given by 

 ( )( ) 1 k
f k sP P= −  (5) 

Then, the probability of successfully sending the whole page 
in at most k rounds (Nr � k) is 

 
( )

1

( ) 1 1
pkt

k Nk
r i s

i

P N k P P
=

� �≤ = = − −
� ��

 (6) 
The expected number of rounds for successfully sending a 

whole page is  

 1 1 1
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Since the page transmission is pipelined, the expected 
number of rounds it takes to download the whole application at 
a node h-hop away is given by 

,[ ] ( 1) [ ] [ ] ( 1) [ ]r h p r r p rE N N E N h E N N h E N= − + ⋅ = + −
 (10) 

The last term is the time it takes to download the first page, 
and the first term is the time it takes to download the rest of the 
pages. Plugging (9) into (10), we get 

       
( )1

,
1

[ ] ( 1) 1 1 (1 ) pktNi
r h p s

i

E N N h P
∞

−

=

� �= + − − − −� �� ��
 (11) 

Assuming maximum number of hops to be hmax and the round 
time to be Tr, the expected convergence time Tconv is 

 max,[ ]conv r r hT T E N= ⋅
  

( )1
max

1

( 1) 1 1 (1 ) pktNi
conv r p s

i

T T N h P
∞

−

=
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 (12) 

Assuming that Ps stays constant across the three cases (Ideal, 
Stream, and Deluge), the time becomes directly proportional to 
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the number of pages (since other factors are constant). Figure 5 
and Figure 6 show the convergence times for the 10×10 grid. 
In reality, since Stream puts less pressure on the bandwidth 
than Deluge, Ps will be higher for Stream thus giving it 
additional advantage for convergence time. 
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Figure 3: Total energy consumed in the 10××××10 grid 

topology with standalone applications 
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Figure 4: Total energy consumed in the 10××××10 grid 

topology with communicating applications 
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Figure 5: Convergence time for 10××××10 grid topology with 

standalone applications 
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Figure 6: Convergence time for 10××××10 grid topology with 

communicating applications  

V. EXPERIMENTS AND RESULTS 
We implement Stream using the nesC programming language 

in TinyOS [5]. In this section, we compare the performances of 
Stream and Deluge for different network sizes and node 
densities. Both testbed experiments using Mica2 [4] motes and 
simulations using TOSSIM [15] (a bit level simulator for 
TinyOS platform) are used to demonstrate the advantages of 
Stream over Deluge. Testbed experiments show the 
performance of Stream and Deluge in realistic environment 
while simulations exhibit their scalability. 
A. Evaluation Metrics 

Any network reprogramming protocol must ensure that all 
nodes in the network receive the application image completely 
minimizing the time and the energy for the reprogramming. 
Both Deluge and Stream are 100% reliable, i.e. all nodes in the 
network download every byte of the user application. So, in the 
following sections, we focus on comparison in terms of time to 
reprogram the network and the energy consumed during 
reprogramming. 
B. Testbed description and results 

We perform the experiments using Mica2 nodes having a 
7.37 MHz, 8 bit microcontroller. Each Mica2 node is equipped 
with 128KB of program memory, 4KB of RAM and 512KB 
external flash which is used for storing multiple code images. 
These nodes communicate via a 916 MHz radio transceiver. 

The first set of experiments is performed in 2x2, 3x3, and 
4x4 square grid networks having a distance of 10 ft between 
adjacent nodes in each row and column. Experiments of 
network reprogramming using Stream are carried out by pre-
installing Stream-RS as image 0 and same version of 
application image plus Stream-AS as image 1 on all nodes in 
the network. A new application image plus Stream-AS is 
injected into the source node (situated at one corner of the grid) 
via a computer attached to it. Then the source node starts 
disseminating the new application image to the network. 
Experiments with Deluge are performed similarly by installing 
Deluge as image 0 and the application image plus Deluge as 
image 1. A new application image plus Deluge is injected into 
the network. 

Time to reprogram the network is the time interval between 
the instant t0 when the source node sends the first data packet 
to the instant t1 when the last node (the one which takes the 
longest time to download the new application) completes 
downloading the new application. Since clocks maintained by 
the nodes in the network are not synchronized, we cannot take 
the difference between the time instant t1 measured by the last 
node and t0 measured by the source node.  Although a 
synchronization protocol can be used to solve this issue, we do 
not use it in our experiments because we do not want to add to 
the load in the network (due to synchronization messages) or 
the node (due to the synchronization protocol). Instead, once 
each node completes downloading the new application image, 
it sends a special packet to the source node saying that it has 
completed downloading the new application. The source node 
measures the time instant t1

’ when it receives such packet, 
timestamps the packet with t1

’ and sends the packet to the 
computer.  If the network has n nodes including the source 
node, the computer attached to the source node receives one t0 
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and (n-1) number of t1
’s. We take )'(

'
max

01

1

tt
t

tprog −= as the 

reprogramming time. It should be noted that the actual 

reprogramming time is )'(
'

max
01

1

dttt
t

−− where td is the time 

required to send the special packet from the last node to the 
source node. Since td is negligible compared to the 
reprogramming time, our formula is a reasonable 
approximation to the actual reprogramming time. Furthermore, 
since we are interested in the difference between the 
reprogramming times of Stream and Deluge, the effect of td 
cancels out.  

Among the various factors that contribute to the energy used 
in the process of reprogramming, two important ones are the 
amount of radio transmissions in the network and the number 
of flash-writes (the downloaded application is written to the 
external flash as image 1). Since the radio transmissions are the 
major sources of energy consumption, we take the total number 
of bytes transmitted by all nodes in the network as the measure 
of energy used in reprogramming. In our experiments, each 
node counts the number of bytes it transmits and logs that data 
to its external flash. By summing the number of bytes 
transmitted by each node, we find the total number of bytes 
transmitted in the network for the purpose of reprogramming. 
Since the amount of flash-writes in Deluge is higher, the 
energy advantage will be increased if we take that factor into 
account. 

As mentioned earlier, compared to Deluge the exact gain 
achieved by Stream in terms of number of pages transmitted 
depends on the user application. In our experiments, we use a 
simple application that performs radio communication but does 
not write to external flash. The application image alone is 11 
pages, application image plus Stream-AS is 12 pages and 
application image plus Deluge is 22 pages.  

Figure 7 compares reprogramming times of Stream and 
Deluge for 2x2, 3x3, and 4x4 grid networks. Interestingly, we 
observe from the experiments that the number of hops between 
two nodes is dependent on environmental conditions and 
changes during multiple runs of the experiment. For example, a 
node is sometimes able to communicate with a node separated 
by more than one grid point. Expectedly, the experiments show 
that Stream reduces the reprogramming time significantly. This 
large gain in reprogramming time is because Stream needs to 
transfer only 12 pages whereas Deluge has to transfer 22 
pages.  The reduction in reprogramming time becomes more 
pronounced for larger networks. Figure 8 shows the total 
number of bytes transmitted in the network during the 
reprogramming period. Both data packets and control packets 
(request and advertisement packets for Deluge and request, 
advertisement and ACK packets for Stream) are considered 
while calculating the number of bytes. The results indicate that 
despite the additional ACK traffic in Stream, the reduction in 
data packets causes Stream to outperform Deluge. We see that 
Stream achieves 63% to 98% reduction in reprogramming time 
and 75% to 132% reduction in the total number of bytes 
transferred for these grid topologies.  
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Figure 7: Reprogramming time for grid networks 
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Figure 8: Number of bytes transmitted in the network 

during reprogramming for grid networks 
Next we performed the experiments for linear topologies 

with 10 ft. separation between adjacent nodes. Source node is 
situated at one end of the line. Figure 9 and Figure 10 provide 
the comparison of the reprogramming time and total number of 
bytes transmitted in the network respectively between Stream 
and Deluge for different sizes of the linear topologies. Stream 
reduces reprogramming time by 58% to 90% and the total 
number of bytes transferred by 59% to 70% for different linear 
topologies. If we compare the reprogramming time of 2x2 grid 
with a 4 node linear network, we find that the latter takes 
longer time to reprogram itself because 2x2 network can 
involve at most 2 hop communications (mostly 1 hop) while 4 
linear nodes can have at most 3 hop communications. 
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Figure 9: Reprogramming time for linear networks  
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Figure 10: Number of bytes transmitted in the network 

during reprogramming for linear networks 
The above graphs show only the number of bytes that are 

transmitted during the reprogramming period. In Deluge, each 
node keeps on broadcasting the advertisement packets even 
after the reprogramming period is over. As a result, the nodes 
have to spend energy in advertising even when reprogramming 
is not being done. Stream does not have this problem because 
as soon as the reprogramming period is over, the nodes reboot 
from the application image plus Stream-AS which does not 
broadcast advertisements. As a result, we observe a 
monotonically increasing difference in the number of bytes as 
the protocols are allowed to continue to run in the steady state.  
C. Simulation Results 

In order to demonstrate the scalability of Stream and to 
compare it with Deluge for larger network sizes, we performed 
simulations using TOSSIM, a discrete event simulator for 
TinyOS. Although TOSSIM does not model TinyOS hardware 
precisely, it provides more accurate modeling of the physical 
layer than many other simulators, such as ns-2. As TOSSIM 
does not model execution time accurately, the simulation 
results presented here only exhibit the overall behavior and 
trend and proper scaling is required to give the absolute values 
for the Mica2 platform. Since it takes tens of hours to complete 
simulations for larger networks, in our simulations, we reduce 
the number of packets per page from 48 to 24 packets. This is 
not of serious concern because we are interested in the 
comparison of performances of Stream and Deluge and not on 
the absolute values.  
Effect of network size 

We use several square grid networks (10 ft distance between 
successive nodes in any row and column) of varying size (up to 
16x16 grid) for our simulations. A source node at one corner of 
the grid disseminates the user application to all other nodes in 
the network. Like before, Stream and Deluge need to transfer 
12 and 22 pages respectively to all nodes in the network. 
Figure 11 and Figure 12 compare the reprogramming times and 
number of bytes transmitted in the network between Stream 
and Deluge for different grid sizes. It shows that both Stream 
and Deluge are scalable, at least up to 256 nodes simulated. In 
our experiments, we found that compared to Deluge, Stream 
reduces the reprogramming time by 41% to 101% for different 
network sizes. We noticed that the reduction in the total 
number of bytes transmitted in the network was between 75% 
to 112% for different network sizes. 

0

2000

4000

6000

8000

10000

2x2 4x4 6x6 8x8 10x10 12x12 14x14 16x16

Ti
m

e 
(s

ec
o

nd
s)

Stream
Deluge

 
Figure 11: Reprogramming time for nxn grids 
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Figure 12: Number of bytes transmitted in the network 

during reprogramming for nxn grids 
Effect of network densities 

To compare the performances of Stream and Deluge for 
different node densities, we vary the number of nodes in a 90 ft 
by 90 ft area. For each node density, the nodes are still 
arranged in grid fashion with uniform spacing between the 
adjacent nodes (just the spacing decreases with increasing 
density).  
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Figure 13: Reprogramming time for different node 

densities 
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Figure 14: Number of bytes transmitted in the network 

during reprogramming for different node densities 
Figure 13 shows that Stream reprograms the network much 
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faster than Deluge for all network densities and Figure 14 
shows that Stream uses lesser number of bytes than Deluge. 
The increase in node density increases the reprogramming time 
due to two reasons. First, there is an increase in the number of 
nodes in a given area resulting in more collisions of the 
transmitted packets. Second, there are simply more nodes that 
need to download the new application. These figures show that 
for higher node densities, the gap between reprogramming 
times as well as number of bytes between Stream and Deluge 
widens further. This can be explained by the fact that Stream 
reduces collisions more effectively due to the reduced number 
of bytes transferred. 
Profile of code dissemination 

Figure 15 shows the profile of code dissemination with 
Stream in a 9×9 grid with 10 ft separation. The fill-pattern of 
the node indicates its time to download the application code. 
The results indicate that the dissemination takes place 
uniformly with hop distance from the source (which is at the 
top left corner). The results are close to what we get for Deluge 
and matches with what the authors find in [6] for a low density 
network.  

 
t>1000 
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900<t<1000 

Figure 15: Code dissemination profile according to the 
convergence time of a node 

VI. CONCLUSION 
In this paper, we presented a sensor network reprogramming 

protocol called Stream that significantly reduces the number of 
bytes to be transmitted over the wireless medium for 
reprogramming. It addresses a fundamental problem in all 
existing network reprogramming protocols, whereby the 
application image together with the reprogramming protocol 
image is transferred. Stream pre-installs the reprogramming 
protocol image in a node and transfers the application image 
with a small addition. Consequently, it reduces the 
reprogramming time, the number of bytes transferred, the 
energy expended, and the usage of program memory. Stream is 
implemented on TinyOS for the Mica2 sensor node. 
Experiments conducted on a testbed of Mica2 motes 
demonstrate up to 98% reduction in reprogramming time and 
up to 132% reduction in the number of bytes transferred 
compared to Deluge. Simulation experiments in TOSSIM show 
the increasing advantages of Stream over Deluge with larger 
network sizes. 

Further we are experimenting with making Stream work with 
multiple source nodes, ability to avoid congestion collapse in 
the network during high reprogramming activity, and 
integration with Freshet to provide a highly energy optimized 
protocol. 

ACKNOWLEDGMENT 
This material is based upon work supported by the National 

Science Foundation under Grant No. ECS-0330016 and the 
Indiana 21st Century Research & Technology Fund under 
Grant No. 512040817. Any opinions, findings, and conclusions 
or recommendations expressed in this material are those of the 
authors and do not necessarily reflect the views of the 
sponsors. 

 
REFERENCES 

[1] J. Luo, P. T. Eugster, and J. P. Hubaux, "Route driven gossip: 
probabilistic reliable multicast in ad hoc networks," at the Twenty-Second 
Annual Joint Conference of the IEEE Computer and Communications 
Societies (INFOCOM), pp. 2229-2239, 2003. 

[2] J. Kulik, W. Heinzelman, and H. Balakrishnan, "Negotiation-based 
protocols for disseminating information in wireless sensor networks," 
Wireless Networks, vol. 8,  no. 2/3, pp. 169-185, 2002. 

[3] G. Khanna, S. Bagchi, and Y-S. Wu, "Fault tolerant energy aware data 
dissemination protocol in sensor networks," at the International 
Conference on Dependable Systems and Networks, pp. 795-804, 2004. 

[4] Crossbow Tech Inc., "Mote In-Network Programming User Reference," 
http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf, 2003. 

[5] T. Stathopoulos, J. Heidemann, and D. Estrin, "A remote code update 
mechanism for wireless sensor networks," Technical Report CENS 
Technical Report 30,  no., 2003. 

[6] J. W. Hui and D. Culler, "The dynamic behavior of a data dissemination 
protocol for network programming at scale," at the Proceedings of the 2nd 
international conference on Embedded networked sensor systems, 
Baltimore, MD, USA, pp. 81-94, 2004. 

[7] S. S. Kulkarni and W. Limin, "MNP: Multihop Network Reprogramming 
Service for Sensor Networks," at the 25th IEEE International Conference 
on Distributed Computing Systems, pp. 7-16, 2005. 

[8] M. D. Krasniewski, S. Bagchi, C-L. Yang, W. J. Chappell, “Energy-
efficient, On-demand Reprogramming of Large-scale Sensor Networks,” 
Submitted to IEEE Transactions on Mobile Computing (TMC). Available 
as Purdue ECE Technical Report TR-ECE-06-02, 2006. 

[9] University of California, Berkeley, “TinyOS”,at http://www.tinyos.net/. 
[10] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and 

D. Ganesan, "Building efficient wireless sensor networks with low-level 
naming," at the Proceedings of the eighteenth ACM symposium on 
Operating systems principles, Banff, Alberta, Canada, pp. 146-159, 2001. 

[11] P. Levis and D. Culler, "Maté: a tiny virtual machine for sensor 
networks," Proceedings of the 10th international conference on 
Architectural support for programming languages and operating systems,  
no., pp. 85-95, 2002. 

[12] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, "TinyDB: 
an acquisitional query processing system for sensor networks," ACM 
Trans. Database Syst., vol. 30,  no. 1, pp. 122-173, 2005. 

[13] Crossbow Technology, Inc., “MPR/ MIB user’s Manual” at 
http://www.xbow.com/Support/Support_pdf_files/MPR-
MIB_Series_Users_Manual.pdf. 

[14] P. Levis, N. Patel, S. Shenker, and D. Culler, "Trickle: A Self-Regulating 
Algorithm for Code Propogation and maintenance in Wireless Sensor 
Network," Proceedings of the First USENIX/ACM Symposium on 
Networked Systems Design and Implementation (NSDI 2004),  no., 2004. 

[15] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and 
scalable simulation of entire tinyos applications,” First ACM Conference 
on Embedded Networked Sensor Systems (SenSys 2003)

 


