

 1

Stream: Low Overhead Wireless Reprogramming for Sensor
Networks

Rajesh Krishna Panta, Issa Khalil, Saurabh Bagchi
Dependable Computing Systems Lab, School of Electrical and Computer Engineering, Purdue University

465 Northwestern Avenue,West Lafayette,IN 47907
Email: {rpanta,ikhalil,sbagchi}@purdue.edu

Abstract— Wireless reprogramming of a sensor network is

useful for uploading new code or for changing the functionality of
existing code. Through the process, a node should remain
receptive to future code updates because reprogramming may be
done multiple times during the node’s lifetime. Existing
reprogramming protocols, such as Deluge, achieve this by
bundling the reprogramming protocol and the application as one
program image, thereby increasing the overall size of the image
which is transferred through the network. This increases both
time and energy required for network reprogramming. We
present a protocol called Stream that mitigates the problem by
significantly reducing the size of the program image. Using the
facility of having multiple code images on a node and switching
between them, Stream pre-installs the reprogramming protocol as
one image and the application program equipped with the ability
to listen to new code updates as the second image. For a sample
application, Stream reduces the size of the program image by 10
pages (48 packets/page) compared to Deluge. Stream is
implemented on the Mica2 sensor nodes and we conduct testbed
and simulation experiments to show the reduction in energy and
reprogramming time of Stream compared to Deluge.
Index Terms— Network reprogramming, sensor networks,
Deluge, three way handshake, mica2 motes.

I. INTRODUCTION
ARGE scale sensor networks may be deployed for long
periods of time during which the requirements from the
network or the environment in which the nodes are

deployed may change. The change may necessitate uploading a
new code or retasking the existing code with different sets of
parameters. We will use the term code upload for referring to
both. A primary requirement is that the reprogramming be done
while the nodes are embedded in their sensing environment.
This has spurred interest in remote multihop reprogramming
protocols over the wireless link. For such reprogramming, it is
essential that the code update be 100% reliable and reach all
the nodes that it is destined for. It is important to minimize the
resource cost of the reprogramming – energy spent in
disseminating the code through the network and size of the
memory used on each node. The code upload should also be
fast since the network’s functionality is likely degraded, if not
reduced to zero, during the reprogramming period.

While the cost of transmitting code is high, the cost of
periodically transmitting meta-data about the code, to
determine if an updated code is available, can also be high. It is
conceivable that the process of code upload will be infrequent
for many deployments and therefore it may appear that its
resource consumption need not be optimized. However,
consider that the sensor network environment has inherent
unreliability in the wireless links that may have transient
failures. Thus the environment is dynamic with nodes coming

in and out of periods of disconnectedness. Also, the network
may have nodes added after the initial deployment while new
code may be injected at arbitrary points in time. Since in most
deployments, the sensor network is expected to operate over
extended periods of time, it is possible that the parameters for
the application, such as the monitoring period, change thereby
necessitating retasking. The code dissemination therefore
cannot be considered a one shot process and thus, it becomes
important to minimize the resource consumption used in
network reprogramming. Importantly, the resource cost which
is incurred during the quiescent or steady state of the network1,
due to keeping the code up-to-date must be optimized since
that is the dominant phase in the network lifetime.

A few researchers have proposed protocols for
reprogramming in sensor networks, the state-of-the-art being
defined by three protocols – Deluge [1], MNP [7], and Freshet
[8]. Common to the three protocols is the notion of transferring
the code image in chunks of pages on a hop-by-hop basis. Each
node disseminates code to its immediate neighbor through a
three-way handshake of advertisement, request, and actual
code transfer. MNP and Freshet build on Deluge and optimize
the transfer for energy consumption respectively through
judicious sender selection for dense networks and sleep-awake
protocols for large networks. The critical problem that besets
all three protocols is what is transferred. Common intuition
would be to transfer just what is needed, in other words, the
application image (or the image of the updates to the
application). However, each protocol transfers the image of the
entire reprogramming protocol together with the minimally
necessary part. Since the reprogramming protocols are of
considerable complexity, the inflation in the program image
size2 that gets transferred over the wireless medium increases
greatly. The exact amount of increase is application specific –
for a simple stand-alone application of 1 page, the increase is
20 folds, while for a communicating application of the same
size, the increase is 11 folds. In a stable environment, the
increase would be problematic. In a sensor network
environment, this poses an even bigger problem. First, the
network links are prone to transient failures and yet, the code
upload process needs to be 100% reliable. Second, the
networks are envisaged to be large and the cost of larger image
is incurred at every hop and does not get amortized. Third, it
puts pressure on multiple scarce resources of a node –

–––
1 Quiescent does not mean the node is idle. It means there is no activity related
to code upload, but the node is running its application and doing its normal
activity, such as monitoring.
2 We use the term application image to refer to the user application that needs
to run on the node, reprogramming protocol image to refer to the components
for protocols, such as Deluge, MNP, or Freshet, and program image to the
combined image that gets transferred over the wireless medium.

L

 2

communication bandwidth, battery energy, and program Flash
memory.

Our approach is optimizing what needs to be transferred over
the wireless medium and gives rise to our protocol called
Stream. Stream transfers close to the minimally required image
size by segmenting the program image into an application
image and the reprogramming protocol image. It transfers over
the wireless link the application image with minimal addition
(typically 1 page). It pre-installs in each node, before
deployment, the reprogramming protocol image. Stream
utilizes the ability to segment the Flash memory into multiple
images and stores the two in two different image areas. An
application is modified by linking it to a small component
called StreamApplicationSupport (Stream-AS) while
StreamReprogrammingSupport (Stream-RS) is pre-installed in
each node. Stream-AS is generic and can be inserted in any
TinyOS application through the insertion of just two lines of
code. Stream-RS builds on Deluge and uses its three-way
handshake for hop-by-hop code dissemination. Overall,
Stream’s design principle is to limit the size of Stream-AS and
providing it the facility to switch to Stream-RS when triggered
by a code update related message. The advantage afforded by
Stream is demonstrated over Deluge, though it can apply to any
of the three protocols, since the problem of code bloat is shared
by each.

A large part of the sensor node’s lifetime is spent in the
quiescent state or steady-state, when it is not actively
disseminating code. Hence, the energy expenditure due to
exchanging control information during the steady-state is of
significance. Stream optimizes the steady-state energy
expenditure by switching from a push-based mechanism
(where the node periodically sends advertisements) to a pull-
based mechanism where a newly inserted node requests for the
code.

There are several challenges to implementing the basic idea
of Stream in the Mica mote platform, the sensor node platform
of choice today. First, the node that has been updated with the
recent code needs to remain receptive to future code updates.
Thus, it cannot be running just the application. The mote
platform does not support multi-tasking and therefore the two
programs (reprogramming protocol and application) cannot be
executing concurrently. A design option we explored was to
pre-install the reprogramming protocol components in the node
and dynamically link it to the application to create a single
executable image once the application is uploaded. However,
the mote platform does not provide a linking facility on the
node itself. Interestingly, these constraints are also found in
other common sensor node platforms, such as Sensoria’s
WINS and JPL’s sensor node. Second, it is unreasonable to
assume that the code update will always occur according to a
preset schedule in which case the node could have queried the
base station for it. Third, Stream has to consider the possibility
that new nodes may be introduced into the network and may
query a given node for coming up-to-date with the latest
version of the code. Thus a node cannot be content to handle
just its own need for staying up-to-date.

The benefit of Stream shows up in fewer number of bytes
transferred over the wireless medium leading to increased
energy savings and reduced delay for reprogramming. We

demonstrate these claims by implementing Stream in nesC for
the Mica2 mote platform. We conduct experiments with
Deluge and Stream on a real small-sized testbed (of up to 16
nodes) in linear and grid topologies. The output metrics we
measure are number of bytes transferred (which relates to the
energy spent) and the delay. We see that Stream achieves 63%
to 98% reduction in reprogramming time and 75% to 132%
reduction in the number of bytes transferred for the grid
topologies. To evaluate Stream for larger networks, we use the
TOSSIM simulation environment. We present a mathematical
analysis to evaluate the performance of Stream and compare it
to the ideal case when exactly the application image is
transferred. The rest of the paper is organized as follows.
Section II surveys related work. Section III provides the
detailed design. Section IV presents the mathematical analysis.
Section V explains the testbed and the simulation setups and
results. Section VI concludes the paper.

II. RELATED WORK
Reliable multicast in unreliable environments, such as ad-hoc

networks, can be achieved by epidemic multicast protocols
based on each node gossiping the message it received to a
subset of neighbors [1]. This class of protocols gives
probabilistic guarantee for the update to reach all the group
members. The probability is monotonically increasing with the
fanout of each node (the number of neighbors to gossip to) and
the quiescence threshold (the time after which a node will stop
gossiping to its neighbors). By increasing the quiescence
threshold, the reliability can be made to approach 1, which is
the basic premise behind all the epidemic based code update
protocols in sensor networks – Deluge, MNP, and Freshet.

The push-pull method for data dissemination through the
three way handshake of advertisement-request-code has been
used previously in sensor networks with sensed data taking the
place of code. Protocols such as SPIN [2] and SPMS [3] rely
on the advertisement and the request packets being much
smaller than the data packets and the redundancy in the
network deployments which make several nodes disinterested
in any given advertisement. However, in the data dissemination
protocols, there is only suppression of the requests and the data
sizes are much smaller than the entire binary code images.

The earliest network reprogramming protocol XNP [4] only
operated over a single hop and did not provide incremental
updates of the code image. The Multihop Over the Air
Programming (MOAP) protocol extended this to operate over
multiple hops [5]. It introduced several concepts which are
used by later protocols, namely, local recovery using unicast
NACKs and broadcast of the code, and sliding window based
protocol for receiving parts of the code image. However, it did
not leverage the pipelining effect with segments of the code
image.

The three protocols that are substantially more sophisticated
than the rest and define the state-of-the-art today are Deluge,
MNP, and Freshet. All use the three way handshake for locally
propagating the code. Deluge [6] was the earliest and laid
down some design principles used by the other two. It uses a
monotonically increasing version number, segments the binary
code image into pages, and pipelines the different pages across
the network. It builds on top of Trickle [14], a protocol for a
node to determine when to propagate code in a one hop case.

 3

The code distribution functions through a three-way handshake
protocol of advertisement, request, and broadcast code. The
operation of each node is periodic according to a fixed size
time window. The first part of the window is for listening to
advertisements and requests and sending advertisements. The
second part of the window is for transmitting or receiving code
corresponding to the received requests. Within the first part of
the time window, a node randomly selects a time at which to
send an advertisement with meta-data containing the version
number, the number of complete pages it has, and the total
number of pages in the image of this version. When the time to
transmit the advertisement comes, the node sees whether it has
heard sa advertisements with identical meta-data, and if so, it
suppresses the advertisement. When a node hears code that is
newer than its own, it sends a request for that code and the
lowest number page it needs, to the node that advertised the
new code. In the second part of the periodic window, the node
transmits packets with the code image, corresponding to the
pages for which it received requests. A receiving node only
fills its pages in monotonically increasing order thereby
eliminating the need for maintaining large state for missing
holes in the code. For receiving the code, each node uses the
shared broadcast medium that allows overhearing and can fill
in a page requested by a neighbor.

The design goal of MNP [7] is to choose a local source of the
code which can satisfy the maximum number of nodes. They
provide energy savings by turning off the radio of non-sender
nodes. Freshet [8] aggressively optimizes the energy
consumption for reprogramming. During the initial phase in
Freshet, information about the code and topology (primarily
the number of hops a node is away from the wave front where
the code is at) propagates through the network rapidly. Using
the topology information each node estimates when the code
will arrive in its vicinity. Each node can go to sleep till that
time thereby saving energy. Freshet also optimizes the energy
consumption by exponentially reducing the meta-data rate
during the quiescent phase.

III. STREAM DESIGN

A. Design Approach
Stream optimizes the number of bytes that needs to be

disseminated over the wireless medium so that instead of
transferring the entire reprogramming component along with
the new application, only a small subset of reprogramming
functionality is included in the program image. For the actual
reprogramming protocol, Stream builds on the three-way
handshake based code distribution seen in existing protocols.
The idea is to have all nodes in the network be pre-installed
with the Stream-RS (Figure 1) component that includes the
complete functionality for network reprogramming. Stream-RS
is installed as image 0. The application image augmented with
the Stream-AS component that provides minimal support for
network reprogramming is installed as image 1. Henceforth,
image 0 means Stream-RS and image 1 means Stream-AS plus
application image. The addition to the size of the program
image over the application image size with Stream is
significantly less than in the Deluge case. When a new program
image is to be injected into the network, all the nodes in the
network running image 1 reboot from image 0 and the new
image is injected into the network using Stream-RS. The new

image again includes Stream-AS and we avoid the entire
Deluge component from being transferred to all the nodes each
time the network needs to be reprogrammed. This modification
is that instead of adding the Deluge component, she adds a
much smaller Stream-AS component to her application. Both
are localized two-line changes to the application code.

Base nodeBase node Circles are sensors
nodes

Code images in nodes
Image0: Stream-RS
Image1:Stream-AS+
user application

Figure 1: Images in Stream

The saving in terms of the number of pages transferred is
quite significant. The exact figure depends on the application.
Any application that uses radio communication will need to
add about 11 more pages if Deluge is used while Stream-AS
adds only one more page. We stress that this benefit is
demonstrated here for Deluge, but applies equally to all the
current network reprogramming protocols since each transfers
the entire protocol image along with the application image.
B. Protocol Description

Consider that initially all nodes have Stream-RS as image 0
and the application with Stream-AS as image 1. Each node is
executing the image 1 code. The node that initiates the
reprogramming is attached to a computer through the serial
port and is called the base node.

Following is the description of how Stream works when a
new user application, again with the Stream-AS component
added to it, has to be injected into the network.
1. In response to the reboot command from the user, all

nodes in the network reboot from image 0. This is
accomplished as follows:
a. The base node executing image 1 initiates the process

by generating a command to reboot from image 0. It
broadcasts the reboot command to its one hop
neighbors and itself reboots from image 0.

b. When a node running the user application receives the
reboot command, it rebroadcasts the reboot command
and itself reboots from image 0.

2. Once the reboot command reaches all nodes, all nodes
start running Stream-RS. Then the new user application is
injected into the network using Stream-RS.

3. Stream-RS starts to reprogram the entire network. It does
so by using the three way handshake method where each
node broadcasts the advertisement about the code pages
that it has. When a node hears the advertisement of newer
code than it currently has, it sends a request to the
advertising node. Then the advertising node broadcasts the
requested code pages. Each node maintains a set S
containing the node ids of the nodes from which it has
received the requests for code.

4. Once the node downloads the new code completely, it
performs a single-hop broadcast of an ACK indicating it
has completed downloading.

5. When a node α receives the ACK from a node β, it
removes the id of β from its set S.

6. When the set S is empty and all the images are complete

 4

(that is all pages of all images have been downloaded), the
node reboots from image 1. So, after sometime the entire
network is reprogrammed and all nodes are executing
image 1 (Stream-AS) which has the user application.

Handling incremental node deployments. Let a node n1
having an older version of application as image 1 and running
Stream-RS join the network. Node n1 advertises the code it has,
using Stream-RS. When neighbors of node n1 running image 1
hear the advertisement, they reboot from their image 0. Now
using steps 2 through 6, the new node downloads the new
application from the neighbors.
C. Design of Stream-AS

The main goal of Stream is to add small amount of
reprogramming functionality to the user application instead of
adding the entire reprogramming protocol (as in Deluge) so
that the program image that is transferred over the wireless
medium across the network is as small as possible. This is
achieved by attaching the Stream-AS component to the user
application. Stream-AS should be such that the increase in the
size when it is attached to the user application is minimum and
at the same time, the node should be receptive to code updates
in the future.

Stream-AS provides the functionality to reboot from image 0
when the user gives the reboot command. This reboot
command is disseminated through the network according to
steps 1 and 2 in the Section Protocol Description. The flooding
technique used to reboot all the nodes in the network does not
cause congestion because each node broadcasts the reboot
command only once and reboots from Stream-RS immediately
after. Stream-AS also provides functionality to reboot from
image 0 when new nodes are introduced to the network. When
new nodes join the network, they periodically broadcast the
advertisement. After one-hop neighbors of these new nodes
hear the advertisement, they reboot from image 0. Once a node
reboots from image 0, Stream-RS takes care of disseminating
the new application image.

As mentioned above, Stream-AS requires minimal change in
the user application. In TinyOS, following is the nesC code
required to be added when Deluge is attached to the user
application:
Components DelugeC;
Main.StdControl→DelugeC;
 To attach the user application to Stream-AS instead, replace

DelugeC by StreamASC.

Steady-state behavior
In Deluge, once a node’s reprogramming is over, it keeps on

advertising the code image that it has. This is to ensure that the
new nodes joining the network get the latest version of the
application image. As a result, radio resources are
continuously used by Deluge even in the steady state.
However, in Stream, in the steady-state, each node is running
Stream-AS, which does not proactively advertise the code
image that it has. However, both new nodes joining the
network and new code pushed in by the base station are
handled. The nodes running user application plus Stream-AS in
the steady state receive the advertisement from the new nodes,
reboot from Stream-RS, and send the updated application to
the new nodes. When the base station has to push an updated
application image, the nodes running user application plus

Stream-AS get the reboot command from the base node, reboot
from Stream-RS, and download the new application. The
steady-state advertisements in Deluge mean that the user
application has to share the node’s radio resources with Deluge
while this is not the case when Stream is used. Also, the
steady-state RAM usage is much less for Stream than for
Deluge because of the smaller size of the user application plus
Stream-AS compared to user application plus Deluge.

.

Source node Destination node

Advertisement

Request

Data

Figure 2: Three-way handshake for data dissemination

D. Design of Stream-RS
Stream-RS, preinstalled in all nodes as image 0 and executed

during the reprogramming phase, is responsible for actual
image transfer among the nodes in the network. It is based on
Deluge with the significant changes mentioned below. When
new application image is to be injected into the network, all
nodes reboot from Stream-RS. Then, reprogramming is done
by using a three-way handshake (Figure 2) in which each node
broadcasts the advertisement about the code pages that it
currently has. A node, upon hearing the advertisement of
newer code than it currently has, sends a request to the
advertising node. The advertising node then broadcasts the
requested code pages. Deluge optimizes this reprogramming
method by proper choice of the time when advertisements and
code pages are sent.

Changes from Deluge

Once reprogramming is done we want all the nodes to reboot
from the new application automatically. One obvious approach
would be to reboot each node from the user application after it
completes downloading the new application. But the flaw with
this approach is that even though a node has completed
downloading the new application, other nodes may still be
dependant on it for getting the updated code image. Therefore
the node needs to continue to run Stream-RS. To handle this,
when a node receives a request for code, it puts the node-id of
the requesting node in the set S. When a node completes
downloading the new application image, it broadcasts an ACK.
When a node receives an ACK from its neighbor, it removes
the id of that node from the set S. So, the following invariant is
maintained at all times for the set S of a node A:

. { | (,) (,) }A S x REQ x A true ACK x A false= = ∧ =
This ensures that the set S at a node A consists of the ids of

those nodes to which it is currently sending code fragments.
The condition for a node A to reboot from image 1 is as
follows:

. .#A S A pages Total number of pagesφ= ∧ =
The first condition is that no neighbor is waiting on A to send

it updated code and the second condition is that A itself has
downloaded all the pages of the application. Eventually all
nodes in the network download all the pages of the new

 5

application and reboot from image 1. So in the steady state all
the nodes run the application attached with Stream-AS.

There is a subtle drawback to the synchronization in Stream-
RS. A node A may be serving a node B without B having
explicitly sent a request to A. Thus B would never be included
in A’s set S. Let a node n1 hears the advertisement of newer
data than it currently has from node n2 during the
reprogramming phase. Before n1 sends request for the new
data, some other one-hop neighbor of n2, say n3, may send the
request. In response to the request from node n3, n2 broadcasts
the code. So, n1 may never send the request to n2 but keep on
receiving the code from n2, triggered by the request from n3. If
all the nodes that explicitly request data from the advertising
node n2 complete downloading the new application earlier than
n1, node n2 will reboot from the new application. This leaves n1
in the middle of downloading the new application. This
drawback, however, does not pose a correctness problem, but a
performance problem. This is because after the advertising
node n2 has rebooted from the user application, it still can hear
the advertisement sent by n1. Upon hearing the advertisement,
n2 will reboot from Stream-RS and start sending code to n1
through the three-way handshake.

These changes in Deluge ensure that all nodes reboot from
the user application after reprogramming is done. In Deluge, in
contrast to the automatic operation in Stream, once all nodes
complete downloading the new user application, they reboot
from the new application only after the user gives the reboot
command manually from the base node.

IV. STREAM ANALYSIS

A. Energy Cost
Here we analyze the energy cost of uploading applications

using three different protocols: Deluge, Stream and an ideal
protocol in which only the application needs to be uploaded
without any extra overhead. Let the application consist of Np
pages, each page has Npkt packets and each packet has Nb bytes.
Let C be the energy cost of transmitting and receiving a packet
once and Ps be the probability of successful transmission of a
packet over a single hop. Assuming that retransmissions of a
packet are independent, the probability that the number of
retransmissions (Nret) of a packet equals k is given by

1() (1)k
ret s sP N k P P −= = − (1)

The expected number of retransmissions K = E[Nret] is

()1

1

1
[] (1)

k
k

ret s s
k s

K E N k P P
P

=∞
−

=

� �= = ⋅ − =� ��
 (2)

The energy cost of a node at h hop from the source to
completely download the application is given by

p pkt
h p pkt

s

h N N C
E K h N N C

P

⋅ ⋅ ⋅
= ⋅ ⋅ ⋅ ⋅ =

 (3)
The total energy overhead of uploading the application on all

the nodes in a network in which each node is at most hmax hops
from the source is given by

max max

1 1

h h h h
p pkt

Nh h Nh
h h s

h N N C
E N E N

P

= =

= =

⋅ ⋅ ⋅� �
= ⋅ = ⋅� �

� �
� �

 (4)
where NNh is the number of nodes at hop h. NNh depends on
network topology and density d. For a line topology, NNh = 1.
For a uniformly distributed network on a disk with

communication radius r, NNh = πdr2(2h-1). For nxn grid, NNh =
h+1 when 1≤ h ≤ (n-1) or NNh = 2n-h-1 when n≤ h ≤(2n). For
10x10 grid, we calculate total energy E expended for (a)
standalone application (one that does not perform radio
communication) and (b) application that uses GenericComm
component (provided by TinyOS) for communication. The
application size is taken to be 1, 10, or 100 pages. In case (a),
the increases in the size of the program image (in units of a
page) are 10 and 20, respectively, for Stream and Deluge. In
case (b), these increases are 1 and 11, respectively, for Stream
and Deluge. We use fixed energy cost as 50 nJ/bit, Ps = 0.98,
the variable (distance dependent) energy cost is 100 pJ/bit × r2,
for a transmission distance of r, the receiving energy is equal to
the fixed energy cost. Figure 3 shows the significant difference
in energy expended between Stream and Deluge. Figure 4
reaffirms that for communicating applications, energy costs of
Stream and the ideal case are comparable.
B. Convergence Time

In this section, we analyze the convergence time, i.e., the
time to reprogram the entire network. Let Pk = P(Nr = k) be the
probability that a whole page has been successfully sent in the
kth round, where Nr is the number of rounds. The probability
that a given packet fails to be sent within k rounds is given by

 ()() 1 k
f k sP P= − (5)

Then, the probability of successfully sending the whole page
in at most k rounds (Nr � k) is

()

1

() 1 1
pkt

k Nk
r i s

i

P N k P P
=

� �≤ = = − −
� ��

 (6)
The expected number of rounds for successfully sending a

whole page is

 1 1 1

[] () ()r i r r
i i i

E N i P i P N i P N i
∞ ∞ ∞

= = =

= ⋅ = ⋅ = = ≥� � �
 (7)

() ()

1 1

[] 1 () 1 (1)r r r
i i

E N P N i P N i
∞ ∞

= =

= − < = − ≤ −� �
 (8)

()1

1

[] 1 1 (1) pktNi
r s

i

E N P
∞

−

=

� �= − − −� �� ��
 (9)

Since the page transmission is pipelined, the expected
number of rounds it takes to download the whole application at
a node h-hop away is given by

,[] (1) [] [] (1) []r h p r r p rE N N E N h E N N h E N= − + ⋅ = + −
 (10)

The last term is the time it takes to download the first page,
and the first term is the time it takes to download the rest of the
pages. Plugging (9) into (10), we get

()1

,
1

[] (1) 1 1 (1) pktNi
r h p s

i

E N N h P
∞

−

=

� �= + − − − −� �� ��
 (11)

Assuming maximum number of hops to be hmax and the round
time to be Tr, the expected convergence time Tconv is

 max,[]conv r r hT T E N= ⋅

()1
max

1

(1) 1 1 (1) pktNi
conv r p s

i

T T N h P
∞

−

=

� �= ⋅ + − ⋅ − − −� �� ��
 (12)

Assuming that Ps stays constant across the three cases (Ideal,
Stream, and Deluge), the time becomes directly proportional to

 6

the number of pages (since other factors are constant). Figure 5
and Figure 6 show the convergence times for the 10×10 grid.
In reality, since Stream puts less pressure on the bandwidth
than Deluge, Ps will be higher for Stream thus giving it
additional advantage for convergence time.

0

80

160

240

320

1 10 100

E
n

er
g

y
in

 J
o

u
le

s
(E

)

Ideal
Stream
Deluge

Figure 3: Total energy consumed in the 10××××10 grid

topology with standalone applications

0

80

160

240

320

1 10 100

E
n

er
g

y
in

 J
o

u
le

s
(E

)

Ideal
Stream
Deluge

Figure 4: Total energy consumed in the 10××××10 grid

topology with communicating applications

0

4000

8000

12000

16000

1 10 100

C
o

nv
er

ge
nc

e
Ti

m
e

(s
ec

o
nd

s)

Ideal
Stream
Deluge

Figure 5: Convergence time for 10××××10 grid topology with

standalone applications

0

3500

7000

10500

14000

1 10 100

C
on

ve
rg

en
ce

 T
im

e
(s

ec
on

ds
)

Ideal
Stream
Deluge

Figure 6: Convergence time for 10××××10 grid topology with

communicating applications

V. EXPERIMENTS AND RESULTS
We implement Stream using the nesC programming language

in TinyOS [5]. In this section, we compare the performances of
Stream and Deluge for different network sizes and node
densities. Both testbed experiments using Mica2 [4] motes and
simulations using TOSSIM [15] (a bit level simulator for
TinyOS platform) are used to demonstrate the advantages of
Stream over Deluge. Testbed experiments show the
performance of Stream and Deluge in realistic environment
while simulations exhibit their scalability.
A. Evaluation Metrics

Any network reprogramming protocol must ensure that all
nodes in the network receive the application image completely
minimizing the time and the energy for the reprogramming.
Both Deluge and Stream are 100% reliable, i.e. all nodes in the
network download every byte of the user application. So, in the
following sections, we focus on comparison in terms of time to
reprogram the network and the energy consumed during
reprogramming.
B. Testbed description and results

We perform the experiments using Mica2 nodes having a
7.37 MHz, 8 bit microcontroller. Each Mica2 node is equipped
with 128KB of program memory, 4KB of RAM and 512KB
external flash which is used for storing multiple code images.
These nodes communicate via a 916 MHz radio transceiver.

The first set of experiments is performed in 2x2, 3x3, and
4x4 square grid networks having a distance of 10 ft between
adjacent nodes in each row and column. Experiments of
network reprogramming using Stream are carried out by pre-
installing Stream-RS as image 0 and same version of
application image plus Stream-AS as image 1 on all nodes in
the network. A new application image plus Stream-AS is
injected into the source node (situated at one corner of the grid)
via a computer attached to it. Then the source node starts
disseminating the new application image to the network.
Experiments with Deluge are performed similarly by installing
Deluge as image 0 and the application image plus Deluge as
image 1. A new application image plus Deluge is injected into
the network.

Time to reprogram the network is the time interval between
the instant t0 when the source node sends the first data packet
to the instant t1 when the last node (the one which takes the
longest time to download the new application) completes
downloading the new application. Since clocks maintained by
the nodes in the network are not synchronized, we cannot take
the difference between the time instant t1 measured by the last
node and t0 measured by the source node. Although a
synchronization protocol can be used to solve this issue, we do
not use it in our experiments because we do not want to add to
the load in the network (due to synchronization messages) or
the node (due to the synchronization protocol). Instead, once
each node completes downloading the new application image,
it sends a special packet to the source node saying that it has
completed downloading the new application. The source node
measures the time instant t1

’ when it receives such packet,
timestamps the packet with t1

’ and sends the packet to the
computer. If the network has n nodes including the source
node, the computer attached to the source node receives one t0

 7

and (n-1) number of t1
’s. We take)'(

'
max

01

1

tt
t

tprog −= as the

reprogramming time. It should be noted that the actual

reprogramming time is)'(
'

max
01

1

dttt
t

−− where td is the time

required to send the special packet from the last node to the
source node. Since td is negligible compared to the
reprogramming time, our formula is a reasonable
approximation to the actual reprogramming time. Furthermore,
since we are interested in the difference between the
reprogramming times of Stream and Deluge, the effect of td
cancels out.

Among the various factors that contribute to the energy used
in the process of reprogramming, two important ones are the
amount of radio transmissions in the network and the number
of flash-writes (the downloaded application is written to the
external flash as image 1). Since the radio transmissions are the
major sources of energy consumption, we take the total number
of bytes transmitted by all nodes in the network as the measure
of energy used in reprogramming. In our experiments, each
node counts the number of bytes it transmits and logs that data
to its external flash. By summing the number of bytes
transmitted by each node, we find the total number of bytes
transmitted in the network for the purpose of reprogramming.
Since the amount of flash-writes in Deluge is higher, the
energy advantage will be increased if we take that factor into
account.

As mentioned earlier, compared to Deluge the exact gain
achieved by Stream in terms of number of pages transmitted
depends on the user application. In our experiments, we use a
simple application that performs radio communication but does
not write to external flash. The application image alone is 11
pages, application image plus Stream-AS is 12 pages and
application image plus Deluge is 22 pages.

Figure 7 compares reprogramming times of Stream and
Deluge for 2x2, 3x3, and 4x4 grid networks. Interestingly, we
observe from the experiments that the number of hops between
two nodes is dependent on environmental conditions and
changes during multiple runs of the experiment. For example, a
node is sometimes able to communicate with a node separated
by more than one grid point. Expectedly, the experiments show
that Stream reduces the reprogramming time significantly. This
large gain in reprogramming time is because Stream needs to
transfer only 12 pages whereas Deluge has to transfer 22
pages. The reduction in reprogramming time becomes more
pronounced for larger networks. Figure 8 shows the total
number of bytes transmitted in the network during the
reprogramming period. Both data packets and control packets
(request and advertisement packets for Deluge and request,
advertisement and ACK packets for Stream) are considered
while calculating the number of bytes. The results indicate that
despite the additional ACK traffic in Stream, the reduction in
data packets causes Stream to outperform Deluge. We see that
Stream achieves 63% to 98% reduction in reprogramming time
and 75% to 132% reduction in the total number of bytes
transferred for these grid topologies.

0

125

250

375

500

2x2 3x3 4x4

T
im

e(
se

co
nd

s)

Stream
Deluge

Figure 7: Reprogramming time for grid networks

0

50

100

150

200

2x2 3x3 4x4

N
u

m
b

er
 o

f b
yt

es
 (x

10
3)

Stream
Deluge

Figure 8: Number of bytes transmitted in the network

during reprogramming for grid networks
Next we performed the experiments for linear topologies

with 10 ft. separation between adjacent nodes. Source node is
situated at one end of the line. Figure 9 and Figure 10 provide
the comparison of the reprogramming time and total number of
bytes transmitted in the network respectively between Stream
and Deluge for different sizes of the linear topologies. Stream
reduces reprogramming time by 58% to 90% and the total
number of bytes transferred by 59% to 70% for different linear
topologies. If we compare the reprogramming time of 2x2 grid
with a 4 node linear network, we find that the latter takes
longer time to reprogram itself because 2x2 network can
involve at most 2 hop communications (mostly 1 hop) while 4
linear nodes can have at most 3 hop communications.

0

125

250

375

500

2 nodes 3 nodes 4 nodes 5 nodes

T
im

e
(s

ec
o

n
d

s)

Stream
Deluge

Figure 9: Reprogramming time for linear networks

 8

0

25

50

75

100

2 nodes 3 nodes 4 nodes 5 nodes

N
u

m
b

er
 o

f b
yt

es
(x

10
3)

Stream
Deluge

Figure 10: Number of bytes transmitted in the network

during reprogramming for linear networks
The above graphs show only the number of bytes that are

transmitted during the reprogramming period. In Deluge, each
node keeps on broadcasting the advertisement packets even
after the reprogramming period is over. As a result, the nodes
have to spend energy in advertising even when reprogramming
is not being done. Stream does not have this problem because
as soon as the reprogramming period is over, the nodes reboot
from the application image plus Stream-AS which does not
broadcast advertisements. As a result, we observe a
monotonically increasing difference in the number of bytes as
the protocols are allowed to continue to run in the steady state.
C. Simulation Results

In order to demonstrate the scalability of Stream and to
compare it with Deluge for larger network sizes, we performed
simulations using TOSSIM, a discrete event simulator for
TinyOS. Although TOSSIM does not model TinyOS hardware
precisely, it provides more accurate modeling of the physical
layer than many other simulators, such as ns-2. As TOSSIM
does not model execution time accurately, the simulation
results presented here only exhibit the overall behavior and
trend and proper scaling is required to give the absolute values
for the Mica2 platform. Since it takes tens of hours to complete
simulations for larger networks, in our simulations, we reduce
the number of packets per page from 48 to 24 packets. This is
not of serious concern because we are interested in the
comparison of performances of Stream and Deluge and not on
the absolute values.
Effect of network size

We use several square grid networks (10 ft distance between
successive nodes in any row and column) of varying size (up to
16x16 grid) for our simulations. A source node at one corner of
the grid disseminates the user application to all other nodes in
the network. Like before, Stream and Deluge need to transfer
12 and 22 pages respectively to all nodes in the network.
Figure 11 and Figure 12 compare the reprogramming times and
number of bytes transmitted in the network between Stream
and Deluge for different grid sizes. It shows that both Stream
and Deluge are scalable, at least up to 256 nodes simulated. In
our experiments, we found that compared to Deluge, Stream
reduces the reprogramming time by 41% to 101% for different
network sizes. We noticed that the reduction in the total
number of bytes transmitted in the network was between 75%
to 112% for different network sizes.

0

2000

4000

6000

8000

10000

2x2 4x4 6x6 8x8 10x10 12x12 14x14 16x16

Ti
m

e
(s

ec
o

nd
s)

Stream
Deluge

Figure 11: Reprogramming time for nxn grids

0

400

800

1200

1600

2000

2x2 4x4 6x6 8x8 10x10 12x12 14x14 16x16

N
u

m
b

er
 o

f b
yt

es
(x

10
4)

Stream
Deluge

Figure 12: Number of bytes transmitted in the network

during reprogramming for nxn grids
Effect of network densities

To compare the performances of Stream and Deluge for
different node densities, we vary the number of nodes in a 90 ft
by 90 ft area. For each node density, the nodes are still
arranged in grid fashion with uniform spacing between the
adjacent nodes (just the spacing decreases with increasing
density).

0

1250

2500

3750

5000

0 0.005 0.01 0.015 0.02 0.025 0.03

Density (nodes/sq. ft)

T
im

e
(s

ec
on

ds
) Deluge

Stream

Figure 13: Reprogramming time for different node

densities

0

2000

4000

6000

8000

0 0.005 0.01 0.015 0.02 0.025 0.03

Density(nodes/sq. ft)

N
u

m
be

r o
f b

yt
es

(x
10

3)

Deluge
Stream

Figure 14: Number of bytes transmitted in the network

during reprogramming for different node densities
Figure 13 shows that Stream reprograms the network much

 9

faster than Deluge for all network densities and Figure 14
shows that Stream uses lesser number of bytes than Deluge.
The increase in node density increases the reprogramming time
due to two reasons. First, there is an increase in the number of
nodes in a given area resulting in more collisions of the
transmitted packets. Second, there are simply more nodes that
need to download the new application. These figures show that
for higher node densities, the gap between reprogramming
times as well as number of bytes between Stream and Deluge
widens further. This can be explained by the fact that Stream
reduces collisions more effectively due to the reduced number
of bytes transferred.
Profile of code dissemination

Figure 15 shows the profile of code dissemination with
Stream in a 9×9 grid with 10 ft separation. The fill-pattern of
the node indicates its time to download the application code.
The results indicate that the dissemination takes place
uniformly with hop distance from the source (which is at the
top left corner). The results are close to what we get for Deluge
and matches with what the authors find in [6] for a low density
network.

t>1000

568<t<730 Source node 730<t<900

900<t<1000

Figure 15: Code dissemination profile according to the
convergence time of a node

VI. CONCLUSION
In this paper, we presented a sensor network reprogramming

protocol called Stream that significantly reduces the number of
bytes to be transmitted over the wireless medium for
reprogramming. It addresses a fundamental problem in all
existing network reprogramming protocols, whereby the
application image together with the reprogramming protocol
image is transferred. Stream pre-installs the reprogramming
protocol image in a node and transfers the application image
with a small addition. Consequently, it reduces the
reprogramming time, the number of bytes transferred, the
energy expended, and the usage of program memory. Stream is
implemented on TinyOS for the Mica2 sensor node.
Experiments conducted on a testbed of Mica2 motes
demonstrate up to 98% reduction in reprogramming time and
up to 132% reduction in the number of bytes transferred
compared to Deluge. Simulation experiments in TOSSIM show
the increasing advantages of Stream over Deluge with larger
network sizes.

Further we are experimenting with making Stream work with
multiple source nodes, ability to avoid congestion collapse in
the network during high reprogramming activity, and
integration with Freshet to provide a highly energy optimized
protocol.

ACKNOWLEDGMENT
This material is based upon work supported by the National

Science Foundation under Grant No. ECS-0330016 and the
Indiana 21st Century Research & Technology Fund under
Grant No. 512040817. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
sponsors.

REFERENCES

[1] J. Luo, P. T. Eugster, and J. P. Hubaux, "Route driven gossip:
probabilistic reliable multicast in ad hoc networks," at the Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), pp. 2229-2239, 2003.

[2] J. Kulik, W. Heinzelman, and H. Balakrishnan, "Negotiation-based
protocols for disseminating information in wireless sensor networks,"
Wireless Networks, vol. 8, no. 2/3, pp. 169-185, 2002.

[3] G. Khanna, S. Bagchi, and Y-S. Wu, "Fault tolerant energy aware data
dissemination protocol in sensor networks," at the International
Conference on Dependable Systems and Networks, pp. 795-804, 2004.

[4] Crossbow Tech Inc., "Mote In-Network Programming User Reference,"
http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf, 2003.

[5] T. Stathopoulos, J. Heidemann, and D. Estrin, "A remote code update
mechanism for wireless sensor networks," Technical Report CENS
Technical Report 30, no., 2003.

[6] J. W. Hui and D. Culler, "The dynamic behavior of a data dissemination
protocol for network programming at scale," at the Proceedings of the 2nd
international conference on Embedded networked sensor systems,
Baltimore, MD, USA, pp. 81-94, 2004.

[7] S. S. Kulkarni and W. Limin, "MNP: Multihop Network Reprogramming
Service for Sensor Networks," at the 25th IEEE International Conference
on Distributed Computing Systems, pp. 7-16, 2005.

[8] M. D. Krasniewski, S. Bagchi, C-L. Yang, W. J. Chappell, “Energy-
efficient, On-demand Reprogramming of Large-scale Sensor Networks,”
Submitted to IEEE Transactions on Mobile Computing (TMC). Available
as Purdue ECE Technical Report TR-ECE-06-02, 2006.

[9] University of California, Berkeley, “TinyOS”,at http://www.tinyos.net/.
[10] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and

D. Ganesan, "Building efficient wireless sensor networks with low-level
naming," at the Proceedings of the eighteenth ACM symposium on
Operating systems principles, Banff, Alberta, Canada, pp. 146-159, 2001.

[11] P. Levis and D. Culler, "Maté: a tiny virtual machine for sensor
networks," Proceedings of the 10th international conference on
Architectural support for programming languages and operating systems,
no., pp. 85-95, 2002.

[12] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, "TinyDB:
an acquisitional query processing system for sensor networks," ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122-173, 2005.

[13] Crossbow Technology, Inc., “MPR/ MIB user’s Manual” at
http://www.xbow.com/Support/Support_pdf_files/MPR-
MIB_Series_Users_Manual.pdf.

[14] P. Levis, N. Patel, S. Shenker, and D. Culler, "Trickle: A Self-Regulating
Algorithm for Code Propogation and maintenance in Wireless Sensor
Network," Proceedings of the First USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI 2004), no., 2004.

[15] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and
scalable simulation of entire tinyos applications,” First ACM Conference
on Embedded Networked Sensor Systems (SenSys 2003)

